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We revisit some problems arising in the context of multiallelic discrete-time evolutionary dynamics
driven by fitness. We consider both the deterministic and the stochastic setups and for the latter
both the Wright-Fisher and the Moran approaches. In the deterministic formulation, we construct
a Markov process whose Master equation identifies with the nonlinear deterministic evolutionary
equation. Then, we draw the attention on a class of fitness matrices that plays some role in
the important matter of polymorphism: the class of strictly ultrametric fitness matrices. In the
random cases, we focus on fixation probabilities, on various conditionings on nonfixation, and on
(quasi)stationary distributions.

1. Introduction

Population genetics aims at elucidating the fate of genotype frequencies undergoing the
basic evolutionary processes when various driving “forces” such as fitness, mutation, or
recombination are at stake in the gene pool. This requires to clarify the updating mechanisms
of the gene frequency-distributions over time. Another important additional driving source
is the genetic drift whose nature is exclusively random. The corresponding field of interest is
the statistical theory arising from this aspect of the gene replacement processes and it requires
some use of the Markov chain theory (see [1]).

In this note, we revisit the basics of both the deterministic and stochastic dynamics
arising in discrete-time asexual multiallele evolutionary genetics driven only by fitness. We
do not touch at all upon other important mechanisms such as mutation. We start with the
haploid case with K alleles before switching to the more interesting diploid case.

Let us summarize and comment the material developed in Section 2. In the
deterministic haploid case, a vector of fitness is attached to the alleles. The interest is on the
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evolution of the allelic frequency distribution over time. The updates of the allele frequency
distributions are driven by the relative fitnesses of the alleles, ending up in a state where
only the fittest monomorphic state will survive. This state is also an extremal point of the
simplex over which the dynamics takes place. From this dynamics, it appears that the mean
fitness increases as time passes by, the rate of increase being the variance in relative fitness (a
well-known particular incarnation of the Fisher theorem of natural selection). We recall the
background and the evolution equations.

The haploid replicator dynamics, as a nonlinear updating mapping from the simplex
to the simplex, may be viewed as the discrete-time nonlinear Master equation of some
randomMarkov process.We supply a construction for this process thereby giving a stochastic
interpretation to the original deterministic formulation of the dynamics.

In the diploid case, there is a similar deterministic updating dynamics but now on the
full array of the genotype frequencies. It involves the fitness matrix attached to the genotypes.
Whenmating is random so that the Hardy-Weinberg law applies, wemay look at the induced
marginal allelic frequencies dynamics. The updating dynamics looks quite similar to the one
occurring in the haploid case except that the mean fitness is now the mean fitness quadratic
form in the current frequencies whereas marginal fitnesses are no longer constant but affine
functions in these frequencies. As for the haploid case, it is possible to construct a Markov
process whose nonlinear Master equation coincides with the diploid replicator dynamics. We
supply this construction which we believe is new.

In the diploid context, the Fisher theorem still holds true but, as a result of the fitness
landscape being more complex, there is a possibility for a polymorphic equilibrium state to
emerge. Due to its major evolutionary interest, our subsequent concern is to identify examples
of diploid dynamics leading to a unique polymorphic state on the simplex, either unstable or
stable. We start with the unstable case and draw the attention on a class of fitness matrices
leading to a unique unstable polymorphic equilibrium state: the class of strictly potential
matrices. Strictly ultrametric matrices are particular instances of strictly potential matrices
[2] which therefore will display unstable polymorphism as well. There is a useful canonical
representation of strictly ultrametric matrices due to [3] which we recall which helps giving
specific examples of strictly ultrametric matrices. When dealing with the class of strictly
potential fitness matrices, the mean fitness quadratic form is definite-positive; we derive a
related class of fitness matrices leading to a definite-negative mean fitness quadratic form.
For this class of matrices, there will also be a unique polymorphic equilibrium state for the
diploid dynamics and it will be stable. We also draw the attention on a subclass of the latter:
the so-called “antistrictly ultrametric matrices.” For such matrices, among other things, the
fitness of each homozygote should not exceed the ones of all the heterozygotes carrying the
allele of the homozygote. To the best of our knowledge, the large class of potential fitness
matrices as natural candidates for polymorphic states to emerge was not discussed in the
literature.

Section 3 is devoted to the stochastic version of these considerations when the
transitions in the constitutive allelic population sizes are given by a K-dimensional Wright-
Fisher model with total constant-size N (see [1, 4]). It takes into account an additional
important driving source of evolution, namely, the genetic drift, whose nature is exclusively
random. Under fitness only and in particular in the absence of mutations, the multiallelic
Wright-Fisher model is a transient Markov chain on a

(
N+K−1
K−1
)
-dimensional state-space

whose absorbing states are the monomorphic states. We give an expression for the fixation
probabilities of this process. Then, we develop four conditioning problems: conditioning on
fixating in a given monomorphic state, conditioning on avoiding the extremal states before
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the current instant, conditioning on nonfixation at each transition time, and conditioning on
avoiding the extremal states in the remote future. For the last three conditioned processes, the
equilibrium structure of the fitness mechanism shows up.

Finally, we run into similar considerations for the Moran model. When dealing with
the fixation probabilities in this Moran context, we suggest a new mean-field approximation
of these probabilities which is based on a well-known explicit formula for the 2-alleles case
[1]. It concerns the case of multiplicative fitnesses only. Finally, we consider the Moran model
conditioned on nonfixation at each transition time. We exploit the reversible character of this
process to derive a new explicit product formula for its invariant probability measure.

2. Deterministic Evolutionary Dynamics

We start with the haploid case before moving to the more interesting diploid case.

2.1. Single Locus: Haploid Population with K Alleles

Consider K alleles Ak, k = 1, . . . , K attached to a single locus. Suppose that the current
time-t allelic frequency distribution is given by the column vector x := xk, k = 1, . . . , K.
(Throughout, a boldface variable, say x, will represent a column-vector so that its transpose,
say x∗, will be a line-vector.) We therefore have x ∈ SK = {x ≥ 0 : |x| := ∑K

k=1 xk = 1}, the
K-simplex as a convex subset of R

K with dimension K − 1. Let w := wk > 0, k = 1, . . . , K
denote the absolute fitnesses of the alleles. Let

w(x) :=
∑

l

wlxl = w∗x (2.1)

be the mean fitness of the population at time t. We will also need

σ2(x) =
K∑

k=1

xk(wk −w(x))2, (2.2)

the variance in absolute fitness, and

σ2(x) =
K∑

k=1

xk

(
wk

w(x)
− 1
)2

=
σ2(x)

w(x)2
, (2.3)

the variance in relative fitness wk/w(x).

2.1.1. Dynamics

From the deterministic evolutionary genetics point of view, the discrete-time update of the
allele frequency distribution on the simplex SK is given by

x′k = pk(x) :=
xkwk

w(x)
, k = 1, . . . , K. (2.4)
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(the symbol ′ is a common and useful notation to denote the updated frequency.) The quantity
wk/w(x)− 1 therefore interprets as the frequency-dependent Malthus growth rate parameter
of xk. As required, the vector p(x) := pk(x), k = 1, . . . , K, maps SK into SK. In vector form,
with Dx := diag(xk, k = 1, . . . , K), the nonlinear deterministic evolutionary dynamics reads

x′ = p(x) =
1

w(x)
Dwx =

1
w(x)

Dxw, (2.5)

or, with Δx := x′ − x, the increment of x

Δx =
(

1
w(x)

Dw − I
)
x. (2.6)

Avoiding the trivial case where fitnesses are all equal, without loss of generality, we can
assume that either w1 ≥ · · · ≥ wK = 1 or w1 ≤ · · · ≤ wK = 1. Thus that allele A1 or AK

has largest fitness.

2.1.2. Mean Fitness Increase

According to the dynamical system (2.4), unless the equilibrium state is attained, the absolute
mean fitness w(x) increases:

Δw(x) = w
(
x′
) −w(x) =

∑

k

wkΔxk

=
∑

k

wkxk

(
wk

w(x)
− 1
)

=

∑
k w

2
k
xk

w(x)
−w(x) > 0.

(2.7)

The mean fitness is maximal at equilibrium. The rate of increase of w(x) is

Δw(x)
w(x)

=
∑

k

xk

(
wk

w(x)
− 1
)2

=
∑

k

(Δxk)2

xk
, (2.8)

which is the variance in relative fitness σ2(x) defined in (2.3). These last two facts are
sometimes termed the 1930s Fisher fundamental theorem of natural selection. The equilibria
of (2.4) are the extremal states (0-faces) of the boundary of SK. Tomake it simple, if there is an
allele whose fitness is strictly larger than the ones of the others, the deterministic evolutionary
dynamics (2.4)will attain an equilibriumwhere only the fittest will survive; starting from any
initial state of SK which is not an extremal (or monomorphic) point, the haploid trajectories
will converge to this fittest state.

2.1.3. A Stochastic Interpretation of the Deterministic Dynamics (2.4)

A vector x of SK can be thought of as a probability vector. The dynamical equation (2.4), as
a nonlinear update mapping from SK to SK, may be viewed as the discrete-time nonlinear



Journal of Probability and Statistics 5

Master equation of some Markov process whose construction we now give. Suppose that we
have a population of N haploid individuals each of which can be of one among K types or
colors (carrying one among the K possible alleles). We will need to introduce an extra color-
state, say ∂ = {0}, which will be absorbing for the process we will now construct. Let K(t) :=
Kn(t), n = 1, . . . ,N be the random color distribution of the population at time t, therefore with
enlarged state-space {0, 1, . . . , K}. Assume that the individuals are indistinguishable leading

to the exchangeability property: Kn(t)
d= K1(t), n = 2, . . . ,N (equality in distribution). Let

Ut,m, t = 1, 2, . . . ; m = 1, . . . ,N beN i.i.d. driving sequences of uniformly distributed random
variables on [0, 1], independent of K(t). Let wk := wk/

∑
k wk, k = 1, . . . , K. To decide the

alleleKm(t+1) carried by the individual numberm ∈ {1, . . . ,N} at time t+1, with 1(A) being
the indicator function of the event A, consider the random Markovian dynamical system:

1(Km(t + 1) = k, τm > t + 1) = 1

(
wk

N

N∑

n=1

1(Kn(t) = k, τn > t) > Ut+1,m

)

. (2.9)

Here k ∈ {1, . . . , K} and τn is the first time that Kn(t) hits the absorbing state ∂. As a result

of Kn(t)
d= K1(t), we naturally assume τn

d= τ1, n = 2, . . . ,N. For each n, our model therefore
attributes a positive probability that Kn(t) = 0 for all t ≥ τn. Although, in principle, there is a
possibility that the type of the mth particle is the one of the fictitious unobservable allele A0,
as a result of (2.9), the sample paths of K(t) leading to this A0 are ruled out because focus is
on the observable states only.

In words, for the dynamics (2.9), the observable event Km(t + 1) = k is realized
(together then with τm > t + 1) if the proportion at t of type-k individuals, weighted by
the corresponding scaled fitness wk, is large enough (compared to Ut+1) and of course if the
whole process was not absorbed at {0} in the previous step. Taking first the expectation with
respect to the driving noiseUt+1,m in (2.9),we get

P(Km(t + 1) = k, τm > t + 1 | K(t) > 0) =
wk

N

N∑

n=1

1(Kn(t) = k, τn > t). (2.10)

Putting zk(t) := P(K1(t) = k, τ1 > t), recalling (Kn(t); τn)
d= (K1(t); τ1), n = 2, . . . ,N, and

taking the expectation with respect to K(t), we get an unnormalized version of (2.4):

zk(t + 1) = wkzk(t), k ∈ {1, . . . , K}. (2.11)

We have 1 > P(τ1 > t) =
∑K

k=1 zk(t) =
∑K

k=1 xk(0)w
t
k → 0, geometrically fast. Defining the

normalized conditional probabilities

xk(t) =
zk(t)

∑K
k=1 zk(t)

= P(K1(t) = k | τ1 > t), (2.12)

we obtain the normalized haploid dynamics (2.4):

x′k =
wkxk

∑K
k=1wkxk

, k ∈ {1, . . . , K}. (2.13)
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It now may be viewed as the nonlinear Master equation of some stochastic Markov process.
Let us make some miscellaneous remarks.

(i) Clearly this construction makes also sense ifN = 1 (a single particle). (ii) WhenN
is finite, we should stress that the initial condition can be chosen to be deterministic, say with
xk(0) = zk(0) = ik/N, for some sequence of integers ik ≥ 0 satisfying i1 + · · · + iK = N (i0 = 0)
and quantifying the initial population sizes. It could also be chosen to be random, with xk(0)
defining the initial probability distribution of the alleles. This occurs in the large N limit if
ik = �Nxk(0)	 so that ik/N → xk(0). The latter choice may therefore be interpreted as a
largeN limit of the former one. (iii) In the stochastic interpretation (2.9) of the deterministic
dynamics (2.4), xk(t) can be interpreted either as the probability that the random allele carried
by a typical individual is Ak or like the expected proportion of the individuals of type k
within the whole population (a frequentist point of view). (iv) The appeal to the coffin state
∂ was a necessary step to understand the normalization zk → xk. (v) Even though K(t) is
exchangeable, it is not true that, with n1 /=n2 any two distinct individuals, their random labels
Kn1(t) and Kn2(t) are independent. The random algorithm allowing to update the joint types
of Kn1(t) and Kn2(t) could be written down but is much more involved.

2.2. Single Locus: Diploid Population with K Alleles

We now run into similar considerations but with diploid populations.

2.2.1. Joint Evolutionary Dynamics

Let wk,l ≥ 0, k, l = 1, . . . , K stand for the absolute fitness of the genotypes AkAl attached
to a single locus. Assume wk,l = wl,k (wk,l being proportional to the probability of an AkAl

surviving to maturity, it is natural to take wk,l = wl,k). Let then W be the symmetric fitness
matrix with k, l-entry wk,l.

Assume that the current frequency distribution at time t of the genotypesAkAl is given
by xk,l. Let X be the frequencies array with k, l-entry xk,l. The joint evolutionary dynamics in
the diploid case is given by the updating:

x′k,l = xk,l
wk,l

ω(X)
, (2.14)

where the mean fitness ω is now given by ω(X) =
∑

k,l xk,lwk,l. The relative fitness of the
genotype AkAl is wk,l/ω(X). The joint dynamics takes the matrix form:

X′ =
1

ω(X)
X ◦W =

1
ω(X)

W ◦X, (2.15)

where ◦ stands for the (commutative) Hadamard product of matrices.
Let J be the flat K ×K matrix whose entries are all 1. Then

ΔX := X′ −X =
1

ω(X)
(X − J) ◦W =

1
ω(X)

W ◦ (X − J). (2.16)
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We will also let

σ2(X) =
K∑

k,l=1

xk,l(wk,l −ω(X))2 (2.17)

stand for the genotypic variance in absolute fitness and

σ2(X) =
K∑

k,l=1

xk,l

(
ωk,l

ω(X)
− 1
)2

=
σ2(X)

ω(X)2
(2.18)

will stand for the diploid variance in relative fitness.
Consider the problem of evaluating the increase of the mean fitness. We have

Δω(X) =
∑

k,l

Δxk,lwk,l =
∑

k,l

xk,l

(
w2
k,l

ω(X)
−wk,l

)

= ω(X)σ2(X) > 0 (2.19)

with a relative rate of increase: Δw(X)/w(X) = σ2(X). This is the full diploid version of the
Fisher theorem.

2.2.2. Marginal Allelic Dynamics

Assuming a Hardy-Weinberg equilibrium, the frequency distribution at time t, say xk,l, of the
genotypes AkAl is given by xk,l = xkxl where xk =

∑
l xk,l is the marginal frequency of allele

Ak in the whole genotypic population . The whole frequency information is now enclosed
within x := xk, k = 1, . . . , K. For instance, the mean fitness is now given by the quadratic
form: ω(x) :=

∑
k,l xkxlwk,l = x∗Wx, with x∗ being the transposed line vector of the column

vector x = X1 (1 the unit K-vector). We will also let

σ2(x) =
K∑

k,l=1

xkxl(wk,l −ω(x))2 (2.20)

stand for the genotypic variance in absolute fitness and

σ2(x) =
K∑

k,l=1

xkxl

(
wk,l

ω(x)
− 1
)2

=
σ2(x)

ω(x)2
(2.21)

will stand for the diploid variance in relative fitness.
Consider now the update of the allelic marginal frequencies x themselves. If we first

define the frequency-dependent marginal fitness of Ak by wk(x) = (Wx)k :=
∑

l wk,lxl, the
marginal dynamics is given as in (2.4) by:

x′k = xk
wk(x)
ω(x)

=
1

ω(x)
xk(Wx)k =: pk(x), k = 1, . . . , K. (2.22)
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This dynamics involves a multiplicative interaction between xk and (Wx)k, the kth entry of
the imageWx of x byW . In (2.22) there is a normalization by the quadratic formω(x) = x∗Wx.
In vector form (2.22) reads

x′ =
1

ω(x)
DxWx =

1
ω(x)

DWxx =: p(x), (2.23)

where pmaps SK into SK. Iterating, the time-t frequency distribution is

x(t) = p(p(· · · t times · · · (p(x0)))). (2.24)

Except for the fact that the mean fitness ω in (2.22) is now a quadratic form in x and
that the marginal fitness of Ak is now frequency-dependent, depending linearly on x, as far
as the marginal frequencies are concerned, the updating formalism (2.22) in the diploid case
looks very similar to the one in (2.4) describing the haploid case.

In the diploid case, assuming fitnesses to be multiplicative, say with wk,l = wkwl, then
wk(x)/x∗Wx = wk/

∑
l wlxl and the dynamics (2.22) boils down to (2.4). However, the mean

fitness in this case is ω(x) = (
∑

l wlxl)
2 and not w(x) =

∑
l wlxl as in the haploid case.

2.2.3. A Stochastic Interpretation of the Deterministic Dynamics (2.22)

As for the haploid case, there is a Markov chain governed by the Master equation (2.22).
Consider a population of diploid individuals. The number of alleles N in this population
is therefore twice the number of genes. Each allele can be of one among K types or colors
(carrying one among the K possible alleles). As before, we introduce an extra color-state,
say ∂ = {0} which is absorbing for the process to be constructed. For c = 1, 2, let Kc(t) :=
Kc
n(t), n = 1, . . . ,N be two independent copies of the random color distribution of the allelic

population at time t. Let K(t) = (K1(t),K2(t)). Assume that the alleles are indistinguishable

within each sample, leading to Kc
n(t)

d= Kc
1(t), n = 2, . . . ,N, c = 1, 2. For c = 1, 2, let Uc

t,m, t =
1, 2, . . . ; m = 1, . . . ,N be two mutually independent i.i.d. driving N-sequences of uniformly
distributed random variables on [0, 1] and independent of K(t). To decide the type of the
random allele Km(t + 1), m = 1, . . . ,N, at time t + 1, consider now the Markovian dynamical
system:

1(Km(t + 1) = k, τm > t + 1)

= 1

(
1
N

N∑

n=1

1
(
K1
n(t) = k, τ

1
n > t
)
> U1

t+1,m

)

1

(
1
N

N∑

n=1

Wk,K2
n(t)1(τ2n>t) > U

2
t+1,m

)

.
(2.25)

Here k ∈ {1, . . . , K}, τcn are the first hitting times of eachKc
n(t) of the absorbing state ∂, c = 1, 2

and W := W/‖W‖ for any matrix norm ‖W‖, say, for example, ‖W‖ = ∑k,l wk,l. We assume

τcn
d= τc1 , n = 2, . . . ,N, c = 1, 2.

In words, for this new dynamics, the observable event Km(t + 1) = k is seen to be
realized together with τm > t + 1 if two natural independent conditions are now satisfied
which can be read from the two indicator functions in the right-hand side of (2.25):
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(i) first, the proportion at t of type-k individuals of the first copy should be large
enough (compared toU1

t+1);

(ii) second, for the second sample copy K2(t), the expected fitness of the genotypes
AkAl, l = 1, . . . , K, containing allele Ak at t should be large enough (compared to
U2
t+1).

As for the haploid case, it is necessary that both processes K(t) should not be absorbed at
{0} in the previous step. Taking first the expectation with respect to the independent driving
noisesUc

t+1,m in (2.25), we get

P(Km(t + 1) = k, τm > t + 1 | K(t) > 0)

=
1
N

N∑

n=1

1
(
K1
n(t) = k, τ

1
n > t
)
· 1
N

N∑

n=1

Wk,K2
n(t)1(τ2n>t).

(2.26)

Putting zk(t) = P(K1(t) = k, τ1 > t), taking the expectation with respect toK(t) and using our
independence and exchangeability hypotheses, we get

zk(t + 1) = zk(t) · E
[
Wk,K2

1(t)1(τ
2
1>t)

]
= zk(t) ·

k∑

l=1

Wk,lzl(t), (2.27)

corresponding to an unnormalized version of (2.22):

zk(t + 1) = zk(t)
(
Wz(t)

)

k
, k ∈ {1, . . . , K}. (2.28)

Defining the normalized conditional probabilities

xk(t) =
zk(t)

∑K
k=1 zk(t)

= P(K1(t) = k | τ1 > t), (2.29)

we obtain the normalized nonlinear Markovian diploid dynamics (2.22):

x′k =
xk(Wx)k

∑K
k=1 xk(Wx)k

, k ∈ {1, . . . , K}. (2.30)

Note that this construction makes sense if N = 2 (a single individual and its 2 alleles of K
possible types). The need for two copies of K(t) was governed by the quadratic character of
the interaction appearing in the numerator of (2.22).
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2.2.4. Increase of Mean Fitness

Again, the mean fitness ω(x), as a Lyapunov function, increases as time passes by. We indeed
have

Δω(x) = ω
(
x′
) −ω(x) = 1

ω(x)2
∑

k,l

xkwk(x)wk,lxlwl(x) −
∑

k,l

xkwk,lxl > 0, (2.31)

because, defining 0 < X(x) :=
∑

k,l xk(1 −wk(x)/ω(x))wk,l(1 −wl(x)/ω(x))xl, we have

Δω(x) = X(x) +
2

ω(x)

(
∑

k

xkwk(x)2 −ω(x)2
)

> 0. (2.32)

Its partial rate of increase due to frequency shifts only is δω(x) :=
∑

k Δxkwk(x). It satisfies

δω(x)
ω(x)

=
∑

k

xk

(
wk(x)
ω(x)

− 1
)2

=
∑

k

(Δxk)2

xk
=
σ2
A(x)
2

, (2.33)

where σ2
A(x) is the allelic variance in relative fitness:

σ2
A(x) := 2

K∑

k=1

xk

(
wk(x)
ω(x)

− 1
)2

. (2.34)

2.2.5. An Alternative Representation of the Allelic Dynamics

There is an alternative vectorial representation of the dynamics (2.22). Define the symmetric
positive-definite matrix G(x) = Dx(I − 1x∗) with quadratic entries in the frequencies:

G(x)k,l = xk(δk,l − xl). (2.35)

Introduce the quantity VW(x) = (1/2) logω(x),which is half the logarithm of themean fitness.
Then, (2.22) may be recast as the gradient-like dynamics:

Δx =
1

ω(x)
G(x)Wx = G(x)∇VW(x), (2.36)

with |Δx| = 1∗Δx = 0 as a result of 1∗G(x) = 0∗. Note

∇VW(x)∗Δx = ∇VW(x)∗G(x)∇VW(x) ≥ 0. (2.37)
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The dynamics (2.36) is of pure gradient-type with respect to the Svirezhev-Shashahani
distance metric dG(x, x′); see [5, 6]. For this metric, the distance between x and x′ = x + Δx of
SK is

dG
(
x, x′
)
=
(
Δx∗G−1Δx

)1/2
=

(
K∑

k=1

x−1k (Δxk)2
)1/2

. (2.38)

From (2.33) and (2.34), this quantity, which is the length of Δx satisfying |Δx| = 0, is also the
square-root of half the allelic variance (the standard deviation) in relative fitness.

2.3. Equilibria (Diploid Case)

The mean fitness increase phenomenon occurs till the evolutionary dynamics reaches an
equilibrium state. We wish to briefly discuss the questions relative to equilibria in the diploid
case.

2.3.1. Preliminaries

In contrast with the haploid case, in the diploid situation, the dynamics (2.22) can have more
complex equilibrium points, satisfying wk(xeq) = w1(xeq), k = 2, . . . , K, and

∑
l xeq,l = 1.

To avoid linear manifolds of equilibria, we first assume that all principal minors of W are
nonsingular and also that the fitnesses of all homozygoteswk,k are positive. In this case, from
the Bézout theorem, the number of equilibria is finite and less or equal than the number 2K−1
of faces of SK. Note that the K extremal endpoints of SK (0-faces) are always monomorphic
fixed points of (2.22).

An instructive example fulfilling these preliminary conditions is W = I. There are
2K − 1 equilibrium points (the barycenters of the

(
K
k+1

)
k-dimensional faces, k = 0, . . . , K − 1),

but only one polymorphic equilibrium which is the barycenter xB of SK. This point is the
one with minimal fitness and it is unstable. The 0-faces are stable fixed points whereas the
barycenters of the k faces with k ∈ {1, . . . , K − 2} are saddle-points. The simplex SK could be
partitioned into pieces each of which being the attraction basins of the stable 0-face states: in
contrast with the haploid case, the type of the survivor is not necessarily the one of the fittest;
it will depend on the initial condition.

Similar conclusions can be drawn if instead of W = I, we start with W = (I −Dλ)
−1

where λ := (λk, k = 1, . . . , K) satisfies 0 ≤ λ < 1 (meaning 0 ≤ λk < 1, for all k). In this
case again, there is only one unstable polymorphic equilibrium which is easily seen to be
xeq = (1 − λ)/(K − |λ|) ∈ SK.

Due to its evolutionary interest, we would like now to discuss the opportunity for a
polymorphic state to be stable. Under the above assumptions onW , a unique stable internal
(polymorphic) equilibrium state can exist, necessary and sufficient conditions being that
(i) there is a unique z > 0 for which Wz = 1 and (ii) W has exactly one strictly positive
dominant eigenvalue and at least one strictly negative eigenvalue or else the sequence of
principal minors ofW alternates in sign (see Kingman [7]). If this is the case, the equilibrium
polymorphic state is xeq = z/|z|. It is stable in the sense that it is a local maximum of the mean
fitness ω(x) = x∗Wx, with ω(xeq) = 1/|z|. Since |W |/= 0, the linearization of p(x) at xeq has no
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eigenvalue of modulus 1 and so xeq is hyperbolic and/or isolated (see [8]). A stable isolated
polymorphic state is asymptotically Lyapunov stable.

Under these additional assumptions therefore onW , starting from any initial condition
in the interior of SK, all trajectories will be attracted by xeq = z/|z|which is an isolated global
maximum of ω(x).

When there is no such unique globally stable polymorphic equilibrium, all trajectories
will still converge but perhaps to a local equilibrium state where some alleles get extinct.
Which allele and how many alleles are concerned seems to be an unsolved problem in its full
generality.

2.3.2. Special Classes of Fitness Matrices Leading to a Polymorphic State

We now draw the attention on a particular class of fitness matrices that lead to a polymorphic
state, either unstable or stable. We start with the unstable case, extending the above special
diagonal caseW = (I −Dλ)

−1 leading to a unique unstable polymorphic state.

(i) The Unstable Case

Let Λ ≥ 0 be a symmetric irreducible strictly substochastic matrix satisfying Λ1 := q < 1 : the
positive mass-defect vector of Λ is 1 − q. Let λ > 0. Define the symmetric strictly potential
matrix: W = λ−1(I −Λ)−1 ≥ 0, with W−1 = λ(I − Λ) defining a strictly row-diagonally
dominant Stieltjes matrix with the properties [3]: (W−1)k,k > 0, (W−1)k,l ≤ 0 for k /= l and
(W−1)k,k +

∑
l /= k (W

−1)k,l > 0 for all k. Then

λ1 > z =W−11 = λ(I −Λ)1 = λ(1 − q) > 0. (2.39)

The vector z = λ(1 − q) is called the equilibrium potential ofW.We have |z| = λ(K − |q|). For
this class ofW therefore,Wz = 1 admits a positive solution z.

Conversely, given a nonsingular matrix W ≥ 0 satisfying Wz = 1 for some z ≥ 0, the
matrix Λ = I − λ−1W−1 defines a substochastic matrix if and only W−1 satisfies (W−1)k,k >
0, (W−1)k,l ≤ 0 for k /= l and λ ≥ maxk(W−1)k,k. Then, W

−1 is row-diagonally dominant and
W = λ−1(I −Λ)−1 is a potential matrix.

Strictly ultrametric (sUm) matrices are special classes of positive-definite and
symmetric strictly potential matrices [2]. An sUm matrix W is symmetric with nonnegative
entries, satisfying (i) wk,l ≥ min{wk,j ,wj,l}, for all j, k, l and (ii) wk,k > maxl /= k{wk,l}, for all
k (If in condition (ii), ≥ is substituted for >, thenW is simply an ultrametric matrix and this
new condition is implied by (i)). If W is an sUm matrix, the fitness dynamics will admit an
unstable polymorphic equilibrium state, as a result ofW being positive-definite.

Remark 2.1. Suppose that Λ is substochastic and primitive. Then W = λ−1(I −Λ)−1 > 0 is an
ultrametric matrix. If V is the Hadamard reciprocal ofW with entries vk,l = 1/wk,l, it satisfies
that vk,l ≤ max{vk,j , vj,l}. Therefore V is an ultrametric distance associated to the ultrametric
potentialW . Tree matrices are ultrametric matrices that are not sUm.

(ii) The Stable Case

To produce a stable equilibrium state from the sUmmatrix construction, letW = λ−1(I −Λ)−1

define a symmetric strictly potential matrix as before. Then, there is a z = λ(1 − q) > 0 for
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whichWz = 1.With α > 1, define

W̃ :=
α

|z|J −W. (2.40)

With W̃ = [w̃k,l], we have min w̃k,l = α/|z| −maxwk,l and we can choose α > 1 so that W̃ ≥ 0.
We have (α − 1)W̃z = 1 and δ∗W̃δ = −δ∗Wδ < 0 for all δ /= 0 satisfying |δ| = 0 showing
that xeq := z/|z| = (1 − q)/(K − |q|) is now a stable polymorphic state for W̃ . IfW is an sUm
matrix, then clearly W̃ satisfies the “anti-sUm” property expressing a fitness domination of
the heterozygotes AkAl over the homozygotes:

w̃k,l ≤ max
{
w̃k,j , w̃j,l

}
, ∀j, k, l, w̃k,k < min

l /= k
{w̃k,l}, ∀k. (2.41)

Nonnegative symmetric negative-definite anti-sUm fitness matrices W̃ will therefore display
a stable polymorphic equilibrium state xeq. Note that x∗eqW̃xeq = (α−1)/|z| is now themaximal
value of the mean fitness.

Example 2.2. When K = 2, with s > −1, h > 0, and sh > −1, let

W =
[
1 + s 1 + sh
1 + sh 1

]
> 0 (2.42)

define the fitness matrix with selection parameter s and dominance h. ThisW is sUm if and
only if s < 0 and h > 1. The equilibrium state is x∗eq := (h/(2h − 1); (h − 1)/(2h − 1)) and it is
unstable. ThisW is anti-sUm if and only if s > 0 and h > 1. The equilibrium state is the same
but it is now stable.

Note that a singular multiplicative fitness matrix of the form W = ww∗ cannot be a
strictly potential matrix because its determinant |W | is zero.

2.3.3. A General Construction to Produce sUm and Anti-sUm Matrices

Consider the problem consisting in splitting binarily and recursively the set {1, . . . , K}
till complete reduction to singletons (leaves) which are left behind in the process. For
instance, consider the refinement sequence with K = 6 of {1, . . . , 6} ≡ (123456): (123456) →
((23)(1456)) → (((2)(3))((16)(45))) → (((1)(6))((4)(5))).

Starting from the left, there are 2K−1 = 11 blocks of symbols (the total number of nodes
in the splitting binary tree withK leaves). To each encountered block, numbered from l = 1 to
2K−1, starting from the left, attach a vector ul of sizeKwith ith entry ul(i) = 1 if symbol i is in
the block string, 0 otherwise. For instance, from the above sequence, u∗1 = (1, 1, 1, 1, 1, 1), u∗2 =
(0, 1, 1, 0, 0, 0), u∗3 = (1, 0, 0, 1, 1, 1), . . ., and u∗10 = (0, 0, 0, 1, 0, 0), u∗11 = (0, 0, 0, 0, 1, 0). To each
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such ul, attach a number sl which is > 0 if |ul| = 1 (the leaves) and ≥ 0 if |ul| > 1 (the internal
nodes, including the root). Then (see [3]), for any choice of sl respecting these constraints

W =
2K−1∑

l=1

slulu∗l ≥ 0 (2.43)

is an sUm matrix and any sUm matrix can be represented in this way. Because for the ul
corresponding to the leaves sl > 0, the diagonal terms ofW are necessarily > 0.

Since for each set {1, . . . , K}, there are bK splitting tree sequences where bK satisfies
bK =

∑K−1
k=1
(
K
k

)
bkbK−k, k ≥ 2, b1 = 1, there are many ways to generate an sUm matrix.

Clearly, for each splitting procedure, with λ−1 :=
∑2K−1

l=1 sl > 0,W may be written as

W = λ−1
(

J −
2K−1∑

l=2

λsl
(
J − ulu∗l

)
)

≥ 0, (2.44)

where the matrices J − ulu∗l take values in {0, 1}.
Now, with γ−1 > 0, any matrix of the form

W̃ =
(
λ−1 + γ−1

)
J −W = γ−1

(

J +
2K−1∑

l=2

γsl
(
J − ulu∗l

)
)

≥ 0 (2.45)

is an anti-sUm matrix. Assuming γ = 1 and sl = shl, W̃ may be written under the form:
W̃ = J + sA where A :=

∑2K−1
l=2 hl(J − ulu∗l ). It has at most 2K − 1 independent parameters,

namely, the hl, l = 2, . . . , 2K − 1, and s. If the hl are known, then W̃ is a one-parameter family
of fitness matrices. (Fitness matrices of the form J + sA were considered in [9] in the context
of the estimation of s problem).

Examples 2.3. Assume also that sl = s/(2(K − 1)), for all l, with s > 0 being a selection
parameter. Then, defining the (0, 1]-valued matrix

A :=
1

2(K − 1)
2K−1∑

l=2

(
J − ulu∗l

)
> 0, (2.46)

an anti-sUm matrix of the form W̃ = J + sA will admit a stable polymorphic equilibrium.
Clearly, A itself is anti-sUm. Because of this, there is a zA > 0 such that AzA = 1. Thus
(J + sA)zA = (|zA| + s)1 showing that, with z = zA/(|zA| + s), W̃z = (J + sA)z = 1. We thus
have |z| = |zA|/(|zA| + s) and so xeq = z/|z| = zA/|zA|. Furthermore, the equilibrium mean
fitness for such models is x∗eqW̃xeq = 1/|z| = (|zA| + s)/|zA| > 1.
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For the following simple sequence example with K = 4 (four alleles, say A,C,T,G),
(1234) → ((1)(234)) → ((24)(3)) → ((2)(4)) we find

A =
1
6

⎡

⎢
⎢
⎣

5 6 6 6
6 3 5 4
6 5 4 5
6 4 5 3

⎤

⎥
⎥
⎦ (2.47)

which itself clearly is a symmetric anti-sUm matrix, together with W̃ = J + sA. For this
example, x∗eq = (1/13)(8, 1, 3, 1) and the equilibrium mean fitness is 1 + s/13.

Note that taking sl = s/(2(K − 1)) just for the indices l that were initially chosen to
satisfy sl > 0 would also lead to anti-sUm matrices A > 0 and W̃ = J + sA > 0. In this case,
the sum (2.46) definingA should then be restricted to the indices l from 2 to 2K − 1 for which
sl > 0. Proceeding in this extreme way for the above simple example, we get the borderline
anti-sUm shapes:

A =
1
6

⎡

⎢⎢
⎣

3 4 4 4
4 3 4 4
4 4 3 4
4 4 4 3

⎤

⎥⎥
⎦, W̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

s + 2
2

3 + 2s
3

3 + 2s
3

3 + 2s
3

3 + 2s
3

s + 2
2

3 + 2s
3

3 + 2s
3

3 + 2s
3

3 + 2s
3

s + 2
2

3 + 2s
3

3 + 2s
3

3 + 2s
3

3 + 2s
3

s + 2
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.48)

Here, x∗eq is simply the barycenter of the 4-simplex.

Remark 2.4. The ultrametric conditions (2.41) should be comparedwith the so-called “triangle
inequality” conditions (leading to stable polymorphism) pointed out in [10], which read

w̃k,l < w̃k,j + w̃l,j , ∀k /= l and at least one j /= k, j /= l,

w̃k,l >
w̃k,k + w̃l,l

2
, ∀k /= l.

(2.49)

It is clear that the class of anti-sUm matrices is a particular subclass of the Lewontin one.

3. Stochastic Evolutionary Dynamics

We now switch to the random point of view of multiallelic evolutionary dynamics driven by
selection. There are twomodels of interest: theWright-Fisher and the Moran models. We start
with Wright-Fisher.
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3.1. The Wright-Fisher Model

The Wright-Fisher model is a discrete space-time model which takes into account another
important driving source of evolution, namely, the genetic drift whose nature is exclusively
random.

3.1.1. The Model and Its First Properties

Consider an allelic population with constant size N. In the haploid (diploid) case, N is
(twice) the number of real individuals. Let i := ik and i′ := i′k, k = 1, . . . , K be two vectors
of integers quantifying the size of the allelic populations at two consecutive generations t
and t + 1. We will let SK,N = {i integers : |i| = ∑K

k=1 ik = N}. Suppose that the stochastic
evolutionary dynamics is now given by a Markov chain whose one-step transition matrix P
from states I = i to I′ = i′ is given by the multinomial Wright-Fisher model:

P
(
I′t+1 = i′ | It = i

)
=: P
(
i, i′
)
=
(

N
i′1 · · · i′K

) K∏

k=1

pk

(
i
N

)i′
k

. (3.1)

Therefore, given It = i, to form the next generation, each allele chooses its type independently
of the others with probability p, where p = (pk, k = 1, . . . , K) is given either by (2.4) in the
haploid case or by (2.22) in the diploid case. In the diploid case, the mechanism p is assumed
to present a unique polymorphic state, either stable or unstable.

The state-space dimension of the Markov chain governed by (3.1) is n =
(
N+K−1
K−1
)
(the

number of compositions of integer N into K nonnegative parts which is also the number of
ways to assign N indistinguishable balls into K distinguishable boxes). To view P(i, i′) as a
standard transition matrix of some Markov chain, we need first to order the states i and i′ in
(3.1). Starting from the bottom right corner of P states should be arranged in decreasing order
when listing the entries of P moving up and left along the lines and columns, respectively;
or equivalently, starting from the top left corner of P states should be arranged in increasing
order when moving down and right.

For example, we can order the states i ∈ SK,N in decreasing order from n to 1, as
follows. Let H(i) = (1/N)

∑K
k=1 (N + 1)−(k−1)ik be a base-(N + 1) code of the state i that will

serve as a ranking function. The largest state in for which H(i) is maximal (equal to 1) is
i∗n := (N, 0, . . . , 0). Given a state i, define the subsequent state in decreasing order as

σ−(i) = arg min
j:H(j)<H(i)

(H(i) −H(j)). (3.2)

Then i∗n = (N, 0, . . . , 0), i∗n−1 = (N − 1, 1, 0, . . . , 0), . . . , i∗1 = (0, . . . , 0,N) and to pass from state
i to the next state σ−(i) in this decreasing sequence, there is a unique δi with entries in Z

satisfying |δi| = 0 and such that σ−(i) = i − δi. This way to order the n states is consistent
with the reverse lexicographic order. For instance, if N = 3, K = 4, there are

(
6
3

)
= 20 states

ordered in decreasing order as follows:

3000 > 2100 > 2010 > 2001 > 1200 > 1110 > 1101 > 1020 > 1011 > 1002
> 0300 > 0210 > 0201 > 0120 > 0111 > 0102 > 0030 > 0021 > 0012 > 0003.
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The way the digits are propagated from left to right is clear and the consecutive δi can easily
be obtained. Proceeding in this way to order states, P(i, i′) is a well-defined conventional
object (matrix).

From (3.1), the marginal transition matrix from i to I ′k = i
′
k is binomial bin(N,pk(i/N))

with:

P
(
i, i′k
)
=
(
N
i′k

)
pk

(
i
N

)(
1 − pk

(
i
N

))N−i′
k

. (3.3)

Given I = i, the kth component I ′
k
of the updated state is random with

Ei

(
I ′
k

N

)

= pk
(

i
N

)
, σ2

i

(
I ′
k

N

)

=
pk(i/N)

(
1 − pk(i/N)

)

N
, (3.4)

suggesting that, in the large N population limit, the deterministic evolutionary dynamics
should be recovered. Indeed, from (3.1), the Laplace-Stieltjes transform of the joint law of
I′t+1 | It = i reads

Ei

(
e−
∑K

k=1 λkI
′
k
/N
)
=

(
K∑

k=1

pk

(
i
N

)
e−λk/N

)N

∼
N↑∞

e−
∑K

k=1 λkpk(i/N). (3.5)

From the strong law of large numbers therefore, if ik := �Nxk	, k = 1, . . . , K, then, given
x = xk, k = 1, . . . , K,

I ′k
N

a.s.→
N↑∞

x′k = pk(x) (3.6)

which is (2.22): when the population under study is very large, random fluctuations as
modelled by (3.1) can be ignored so that the gene frequencies evolve deterministically.

3.1.2. Fixation Probabilities

Let el be theK-null vector except for its lth entry which is 1. The extremal pure states Sex
K,N :=

{iex
l

:=Nel, l = 1, . . . , K} are all absorbing for this Markov chain because pk(iexl /N) = δk,l and,
from (3.1), any additional fixed point which p could have on the boundary-faces of SK which
are not points does not give rise to an absorbing state for P . Under our assumptions on p,
the chain is not recurrent, rather it is transient. Depending on the initial condition, say i0, the
chain will necessarily end up in one of the extremal states iex

l
, with some fixation probability,

say πl(i0), which can be computed as follows. Let π l := πl(i), i ∈ SK,N be the harmonic
function of the Wright-Fisher Markov chain which is the smallest solution to the boundary
problem:

(I − P)π l = 0 if i ∈ SK,N \ Sex
K,N, π l = 1

(
i = iexl

)
if i ∈ Sex

K,N. (3.7)
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We also have

P(Iτ =Nel | I0 = i0) = πl(i0), (3.8)

where τ (< ∞ almost surely) is the random hitting time of Sex
K,N for It and the πl(i0)s are

normalized so as
∑

l πl(i0) = 1. Thus πl(i0) are the searched probabilities to end up in state iex
l

starting from state i0.
From (3.7), π l(i0) is known if i0 ∈ Sex

K,N . The remaining unknown restriction, say πQ
l
,

of π l = πl(i0) to the nonextremal states is easily seen to be

πQ
l
= (I −Q)−1piex

l
, i0 ∈ SK,N \ Sex

K,N. (3.9)

In (3.9), Q is obtained from P after erasing the lines and columns corresponding to all the K
extremal states and piex

l
is the iex

l
-column of P where the entries corresponding to the extremal

states have been deleted.When dealing with the Wright-Fisher model, Q is a positive matrix
and also piex

l
> 0, therefore πl(i0) > 0 for all i0 ∈ SK,N \ Sex

K,N and this for each l: starting
from any state i0 which is not an extremal state, there is a positive probability to hit any of
the extremal states. Fixation of the state iexl means extinction of the remaining monomorphic
states. It would therefore be of interest to understand the structure of the setAl = {i0 : πl(i0) >∑

k /= l πk(i0)} = {i0 : πl(i0) > 1/2}, for each l, which is the stochastic version of the attraction
basin of iex

l
, especially when l is the label of the extremal state with largest fitness wk,k. If

i0 ∈ Al indeed, the probability to end up in iexl is larger than the probability to end up in any
other extremal state.

Unfortunately, the development of the inverse of I −Q in terms of its adjugate matrix
in (3.9) shows that these fixation probabilities have a very complex determinantal alternating
structure and the question of identifyingAl is very complex.

With π l being the solution (3.9) to the Dirichlet problem with boundary conditions
(3.7), the equilibrium measure of the chain therefore is

πeq(i0) :=
K∑

l=1

πl(i0)δiex
l
, (3.10)

which depends on i0. Necessarily, one allele will fixate and there is no polymorphic
equilibrium state even when dealing with diploid populations. Which allele and with what
probability will depend on the initial condition. Thanks to fluctuations, the picture therefore
looks very different from the one pertaining to the deterministic theory.

Of importance also is the time it takes to get extinct. It relies on similar techniques. For
instance, the expected overall fixation time α(i0) := Ei0(τ) solves the boundary problem:

(I − P)α = 1, i0 ∈ SK,N \ Sex
K,N,

α = 0, i0 ∈ Sex
K,N,

(3.11)

where α := α(i0), i0 ∈ SK,N . The restriction αQ of α to the nonextremal states therefore is

αQ = (I −Q)−11, i0 ∈ SK,N \ Sex
K,N. (3.12)
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3.1.3. Conditioning It on Nonfixation

There are four places where questions relative to conditioning on fixation are relevant in this
context. (Similar conditioning problems were considered in [11] in the context of the 2-alleles
Wright-Fisher diffusion).

(i) Consider the full fixation vectorπ l := πl(i0). Remove fromπ l the states i0 for which
πl(i0) = 0 only, keeping the one, iex

l
, for which πl(iexl ) = 1. The size of this vector, say πR

l
, is

nR =
(
N+K−1
K−1
)−K + 1. Let R be the corresponding nR ×nR-reduced transition matrix obtained

from P after erasing the lines and columns corresponding to all the K monomorphic states
except iex

l
. The Markov chain It conditioned to exit in the extremal state iex

l
only admits the

stochastic transition matrix:

Rl := D−1πR
l

RDπR
l
. (3.13)

It is obtained from R after a diagonal Doob transform based on πR
l . The chain governed by

Rl admits a unique absorbing state which is iex
l
. The entries of Rl are

Rl

(
i, i′
)
=
πR
l (i
′)

πR
l (i)

R
(
i, i′
)
, (3.14)

and for this new conditioned Markov chain, transitions to states i′ for which πR
l
(i′) > πR

l
(i)

are favored.
(ii) Let us now consider again the fully reduced transition matrix Q obtained from

P after erasing the lines and columns corresponding to all the K monomorphic states. The
matrix Q is substochastic and irreducible, withQ1 < 1. The law of the process corresponding
to It conditioned on avoiding the monomorphic states before t evolves as follows: with τ :=∧K
l=1τl being the time needed for first hitting one of the extremal states for It, let πt(i) = P(It =

i | τ > t). Then, with π t = πt(i), i ∈ SK,N \ Sex
K,N ,

π∗t+1 =
π∗tQ
π∗tQ1

(3.15)

is the nonlinear Master Equation governing its evolution [12]. The reduced state-space
dimension of this Markov chain is nQ =

(
N+K−1
K−1
) − K and π t →

t↑∞
π∞ where π∞ is

the left Perron probability eigenvector of Q associated to the dominant Perron eigenvalue
ρQ < 1, namely, ρQπ∗∞ = π∗∞Q. (π∞ is called a Yaglom limit (see [13]) or a quasistationary
distribution). If the process is started using this limiting quasistationary distribution, it
remains in the same state over time and the fixation time τ is geometrically distributed with
success probability ρQ.

(iii)One can define another stochastic process It which admits the stochastic transition
matrix: Q := D−1Q1Q again defined on the reduced state-space. For each t, we have

Q
(
i, i′
)
= P
(
It+1 = i′ | It = i, τ > 1

)
, (3.16)
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and the conditioning on nonfixation occurs at each transition time. This process is an ergodic
Markov chain with invariant probability measure solving π∗eq = π∗eqQ. It has the following
closed-form determinantal expression (see [14, Section 6] and [15, page 1559]):

πeq(i) =

∣
∣
∣
∣
(
I −Q

)

[i,i]

∣
∣
∣
∣

∑
i

∣
∣
∣
∣
(
I −Q

)

[i,i]

∣
∣
∣
∣

, i ∈ SK,N \ Sex
K,N, (3.17)

where (I −Q)[i,i] is the submatrix resulting from the deletion of row i and column i of I −Q.
The question as to whether the process governed byQ is reversible or not arises. Defining the
transition matrix of the time-reversed process

←−
Q by

←−
Q
∗
= DπeqQD

−1
πeq
, (3.18)

it does not hold that
←−
Q = Q and so detailed balance does not hold. Indeed, Q is similar to

the transition matrix of an ergodic Wright-Fisher model and Wright-Fisher chains are not
reversible.

(iv) If we condition on nonfixation in the remote future (see [16] for additional details),
we get a Markov chain whose stochastic transition matrix is

Q̃ = ρ−1Q D
−1
ψ∞
QDψ∞ . (3.19)

Here ψ∞ is the positive right Perron eigenvector of Q associated to the Perron eigenvalue
ρQ < 1 satisfying ρQψ∞ = Qψ∞. This vector can be chosen so that

∑
k π∞,kψ∞,k = 1, where

π∞ is again the left Perron probability eigenvector of Q associated to ρQ < 1 (see [17]). With
π̃ t(·) = lims↑∞P(It = · | τ > t + s), we have π̃∗t+1 = π̃∗t Q̃. The process governed by Q̃ is
an ergodic Markov chain whose invariant probability measure is π̃∞ = π∞ ◦ ψ∞, the Schur
product of π∞ and ψ∞ with kth entry π̃∞,k = π∞,kψ∞,k.

For the last three conditionings, it is difficult to extract some information on the
limiting distribution, either π∞ or πeq or π̃∞, respectively. This is because it would suppose
to solve the eigenvalue problems explicitly which is out of reach, at least theoretically.
However, assuming a diploid population with a polymorphic equilibrium state xeq for p,
we expect that these distributions will present a global (local) maximum (minimum) near
xeq if xeq is stable (unstable). These limiting distributions should be more sharply peaked
around the extremum if we consider the conditioning (iv) compared to (ii) because, the latter
conditioning being more stringent than the former, it should charge more heavily the sample
paths that stay away from the monomorphic states.

Finally, we would like to stress that all these considerations are also relevant in
the context of another fundamental stochastic model arising in the context of evolutionary
genetics. We will give some elements of how to proceed with this model presenting very
different properties.
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3.2. The K-Alleles Moran Model

We now focus on the Moran model.

3.2.1. The Multiallelic Moran Model

Let α, β ∈ {1, . . . , K}. In the Moran version of the stochastic evolution, given It = I = i,
the only accessible values of I′ are the neighboring states: i′

α,β
:= i + dα,β where d∗

α,β
:=

(0, . . . , 0,−1, 0, . . . , 1, 0, . . . , 0).Here −1 is in position α and 1 in position β /=α corresponding to
the transfer of an individual from the box α (if nonempty) to the box β.With n(i)=#{k : ik > 0}
being the number of nonempty entries of i, there are n(i)(K − 1) ≤ K(K − 1) accessible states
from i. The Moran stochastic evolutionary dynamics is now given by a Markov chain whose
one-step transition matrix P from states I = i to I′ = i′ is

P
(
It+1 = i′ | It = i

)
= 0 if i′ /= i′α,β,

P

(
It+1 = i′α,β | It = i

)
=: P
(
i, i′α,β
)
=
iα
N
pβ

(
i
N

)
,

(3.20)

where p = (pβ(i/N), β = 1, . . . , K) is given either by (2.4) in the haploid case or by (2.22) in
the diploid case.

Summing P(i, i′
α,β

) over α, β, β /=α in (3.20), we get the holding probability

P(It+1 = i | It = i) = 1 −
∑

α,β:β /=α

iα
N
pβ

(
i
N

)
=
∑

α

iα
N
pα

(
i
N

)
, (3.21)

completing the characterization of the K-alleles Moran model. Under our assumptions on
p, the holding probabilities are equal to 1 only for the extremal states i ∈ Sex

K,N which are
therefore the only absorbing states of the Moran chain, just like for the Wright-Fisher model.
The drift at state i is

E(It+1 − It | It = i) =
∑

α

iα
N

∑

β /=α

pβ

(
i
N

)
dα,β. (3.22)

Let us compute the Laplace-Stieltjes Transform of I′ in the context of a Moran model.
Omitting the argument i/N in pβ(i/N),we get the factorized form:

Ei

(
e−
∑

k λkI
′
k

)
=
∑

α,β:α/= β

e
−∑k λki

′
α,β

(k)
P
(
i, i′α,β
)
+ e−

∑
k λkik
∑

β

iβ

N
pβ

= e−
∑

k λkik

⎛

⎝
∑

α,β:α/= β

e−
∑

k λkdα,β(k)P
(
i, i′α,β
)
+
∑

β

iβ

N
pβ

⎞

⎠

= e−
∑

k λkik

⎛

⎝
∑

α,β:α/= β

e−(λβ−λα)
iα
N
pβ +
∑

β

iβ

N
pβ

⎞

⎠
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= e−
∑

k λkik

⎛

⎝
∑

β

e−λβpβ
∑

α/= β

iα
N
eλα +

∑

β

iβ

N
pβ

⎞

⎠

= e−
∑

k λkik

⎛

⎝
∑

β

e−λβpβ

(
∑

α

iα
N
eλα − iβ

N
eλβ

)

+
∑

β

iβ

N
pβ

⎞

⎠

=
(
e−
∑

k λkik
)(∑

α

iα
N
eλα

)⎛

⎝
∑

β

e−λβpβ

⎞

⎠.

(3.23)

Putting λl = 0 if l /= k, the kth marginal reads

Ei

(
e−λkI

′
k

)
= e−λkik

(
1 − ik

N
+ eλk

ik
N

)(
1 − pk + e−λkpk

)
(3.24)

showing that Ik(t) is of the random walk type. Indeed, we get Pi(I ′k = i′
k
) = 0 if i′

k /= ik ± 1 or
i′k /= ik and

Pi
(
I ′k = ik

)
=
(
1 − ik

N

)
(
1 − pk

)
+
ik
N
pk,

Pi
(
I ′k = ik + 1

)
=
(
1 − ik

N

)
pk =

∑

l /= k

P
(
i, i′l,k
)
,

Pi
(
I ′k = ik − 1

)
=
ik
N

(
1 − pk

)
=
∑

l /= k

P
(
i, i′k,l
)
.

(3.25)

We have

Ei

(
I ′k
N

)

=
ik
N

+
1
N

(
pk − ik

N

)
; σ2

i

(
I ′k
N

)

=
1
N2

(
ik
N

(
1 − ik

N

)
+ pk
(
1 − pk

)
)
. (3.26)

There is only a small correction (of orderN−1) of the updated mean to its current value and
fluctuations around themean are small too (of orderN−1). The evolution process is very slow.

3.2.2. Fixation Probabilities

As a random walk model, the Moran model has a much simpler transition matrix P of the
Jacobi type. The equilibrium measure of the chain again is

πeq :=
K∑

l=1

πl(i0)δiex
l
, (3.27)
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where π l again solves the Dirichlet problem (3.7) but with this new simpler Jacobi P . For
the Moran model, the explicit expression (3.9) of the fixation probability simplifies a little bit
because piex

l
(i)/= 0 only for theK − 1 neighboring states of iex

l
that is {i : i+dα,β = iex

l
} for some

dα,β.
When K = 2 (2 alleles), the random walk transition probabilities (p1 + p2 = 1)

P

(
It+1 = i′1,2 | It = i

)
=: P

(

i, i +

(−1
1

))

=
i1
N
p2

(
i
N

)
,

P

(
It+1 = i′2,1 | It = i

)
=: P

(

i, i +

(
1

−1

))

=
i2
N
p1

(
i
N

)
(3.28)

are the probabilities that the first component It,1 of It moves down and up by one unit,
respectively. In this case, the Dirichlet problem giving the fixation probabilities solves
explicitly. With φ(i0) = 1 +

∑i0−1
i=1
∏i

i1=1(i1p2(i/N)/i2p1(i/N)) (φ(0) = 0) being the harmonic
function of the 2-alleles chain, we easily get that

π1(i0,N − i0) =
φ(i0)
φ(N)

(3.29)

is the probability that the extremal state iex1 = (N, 0) is reached given i0 = (i0,N − i0).
Assuming a model with multiplicative fitnesses: pα(i/N) = (iα/N)(wα/ω(i/N)), then φ
takes the simple form (i1 + i2 =N)

φ(i0) = 1 +
i0−1∑

i=1

i∏

i1=1

i1p2(i/N)
i2p1(i/N)

= 1 +
i0−1∑

i=1

(
w2

w1

)i
(3.30)

showing (see [1, page 109]) that

π1(i0,N − i0) = 1 − (w2/w1)
i0

1 − (w2/w1)
N
. (3.31)

Assuming w1 = 1 + s/N and w2 = 1, putting i0 = [Nx0], for largeN, we get [18]

π1(Nx0,N − i0) ∼ 1 − e−sx0
1 − e−s . (3.32)

In the general fitness case

φ(i0) = 1 +
i0−1∑

i=1

i∏

i1=1

i1p2(i/N)
i2p1(i/N)

= 1 +
i0−1∑

i=1

i∏

i1=1

(Wi/N)2
(Wi/N)1

, (3.33)
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where, as usual, (Wi/N)k =
∑2

l=1wk,lil/N, k, l = 1, 2, leading to

(
Wi
N

)

1
= w1,2 +

(w1,1 −w1,2)i1
N

,

(
Wi
N

)

2
= w2,2 +

(w2,1 −w2,2)i1
N

.

(3.34)

This 2-alleles exact solution can be used in the full diploid K-alleles Moran case with
multiplicative fitnesses. Indeed, from this, with i0 = (i1, . . . , iK), the fixation probability of Al

can be conjectured to be approximated qualitatively by

πl
(
iexl
)
= 1, πl(i0) =

1 −
(
(
∑

k /= l ikwk/(N − il))/wl

)il

1 −
(
(
∑

k /= l ikwk/(N − il))/wl

)N if i0 /= iexl . (3.35)

This can be justified as follows: mark one particular box with size il, corresponding to the
allele Al with fitness wl. Then clump the K − 1 remaining boxes into a single box with size
N − il, corresponding to a fictitious allele with average fitness

∑
k /= l ikwk/(N − il). We are

left with a 2-alleles Moran multiplicative fitness model for which (from the 2-alleles exact
solution) the fixation probability of Al is given by (3.35). This formula constitutes sort of a
mean field approximation to the full Dirichlet problem associated to the Moran model.

Assuming wk ∼ 1 + sk/N, a Kimura-like approximation of (3.35)would lead for large
N to

πl(Nx0) ∼ 1 − e(xl/(1−xl))
∑

k /= l xksk

1 − e(1/(1−xl))
∑

k /= l xksk
, (3.36)

where x0 = (x1, . . . , xK) is now a point of the continuous K-simplex different from the l-unit
vector el := (0, . . . , 0, 1, 0, . . . , 0).

From (3.35), when the fitness of allele Al is large (small), compared to the average
fitness of the remaining alleles, then the fixation probability of Al gets close to 1 (resp., to 0).
Note also that the larger il is, the larger the fixation probability is.

As required also, for all k /= l, πl(iexk ) = (1 − (wk/wl)
0)/(1 − (wk/wl)

N) = 0. As another
particular initial configuration case, suppose that we start from the 2-alleles type state: i0 =:
i0(k, l) = (0, . . . , 0,N − 1, 0, . . . , 0, 1, 0, . . . , 0) where the 1 is in position l (i.e., il = 1) and the
entryN − 1 in position k /= l (i.e., ik = N − 1). Although for this choice of the initial state, the
fixation of Ak is very likely, there still is a positive probability that allele Al gets fixed which
is seen to be from (3.35):

πl(i0(k, l)) =
1 −wk/wl

1 − (wk/wl)
N
, (3.37)

depending only on the relative fitnesses of Al and Ak (see [19, 20] for a similar expression).
AsN gets large, this probability gets close to 1−wk/wl ifwk < wl and close to (wl/wk)

N−1 ∼ 0
if wk > wl.
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Conversely, assuming the 2-alleles type state i0 to be defined by il =N − 1 and ik = 1,

πl(i0) =
1 − (wk/wl)

N−1

1 − (wk/wl)
N

, (3.38)

which, as required, gets close to 1 asN gets large if wk < wl and close to wl/wk if wk > wl.

3.2.3. Conditioning It on Nonfixation

The conditioning developments discussed for theWright-Fishermodel are also relevant in the
Moran model context substituting the P of Moran for the P of Wright-Fisher. Let us revisit
condition (iii).

(iii) With Q being now the reduced substochastic matrix of the full Moran transition
matrix defined in (3.20), consider the stochastic process It with stochastic transition matrix:
Q := D−1Q1Q defined on the reduced state-space with dimension nQ. The process It is again an

ergodic Markov chain with invariant probability measure solving π∗eq = π∗eqQ.With
←−
Q being

the transition matrix of the time-reversed process it now holds that
←−
Q = Q and so detailed

balance holds when dealing with the Moran case (see also [21]). This will be proved if we
can exhibit an equilibrium probability measure πeq such that

πeq(i)Q
(
i, i′
)
= Q
(
i′, i
)
πeq
(
i′
)
, (3.39)

for all neighboring state i′ = i + di of i.
With j = (j1, . . . , jK) any terminal state, suppose that we want to use (3.39) to compute

πeq(j) starting from the smallest available state in the system which is j0 = (0, . . . , 0, 1,N − 1).
This is possible because πeq(j)may be represented as

πeq(j) = πeq(j0)
j−dK,1∏

i=j0

Q(i, i′)

Q(i′, i)
, (3.40)

where πeq(j0) can be chosen so that
∑

j πeq(j) = 1. Let us give some details.
(i) Note first, by reversing path, that for two consecutive states (i, i′), the ratio

Q(i, i′)/Q(i′, i) can be computed. We have

Q(i, i′)

Q(i′, i)
=

(Q1)i′
(Q1)i

Q(i, i′)
Q(i′, i)

, (3.41)

where i′ = i + di for some di of the form dk,l and therefore

Q
(
i, i′
)
=
ik
N
pl

(
i
N

)
, Q

(
i′, i
)
= Q
(
i′, i′ + dl,k

)
=
il + 1
N

pk

(
i + dk,l
N

)
. (3.42)
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Clearly, from such a structure of the entries of Q, for each possible transition i → i′, the ratio
Q(i, i′)/Q(i′, i) will only depend separately on a ratio involving the terminal and the initial
states i′ and i (the detailed balance condition holds).

(ii) Second, the sequence of i-s in (3.40) is governed by the following path starting
from j0 and ending up in the target state j: we can use the following sequence of dk,ls:

(
dK,K−1

jK−1−1· · · dK,K−1
)(

dK,K−2
jK−2· · · dK,K−1

)
· · ·
(
dK,1

j1· · · dK,1
)
, (3.43)

filling up successively the entries of j to the left of the last entry of j0 by using the N − 1
individuals of the reservoir state j0 = (0, . . . , 0, 1,N −1). By doing so, each intermediate state i
is separated from the next i′ by some clearly identified di, and after evaluating the probability
ratio Q(i, i′)/Q(i′, i) for each consecutive states of this sequence, we are done. Because there
exists a probability distribution πeq(j) such that the reversibility identity (3.39) holds, then
this Moran process is reversible with (3.40) as its stationary distribution. Using (3.42), this
constitutes an exact explicit product-form formula.

4. Concluding Remarks

This paper studies a classical population genetic model describing a one-locus multiallelic
population subject to natural selection, random mating and then random genetic drifts as
from the Wright-Fisher and Moran models. Although the two-alleles version of this model
is fairly well studied and understood, this is not so much the case of the multiallelic one,
especially in the discrete-time context which we adopt here. Let us summarize our results
emphasizing that the ones which we believe are new.

Considering first the deterministic updating mechanisms driven by selection, we
underline that it has the form of a nonlinear Master equation suggesting that it is possible
to construct an underlying Markov process governed by this Master equation. We briefly and
intuitively supply such a construction.

In the diploid context, we pay attention on a class of fitness matrices that leads to
polymorphism. Would the equilibrium polymorphic state be unstable, we suggest that the
class of potential matrices constitute a large such admissible class of fitness matrices. It
contains the class of strictly ultrametric matrices which therefore deserves some interest. To
the best of our knowledge, there is no discussion of such fitness models in the population
genetics context. Would the polymorphic state be stable, we derive a related class of fitness
matrices leading to a definite-negative mean fitness quadratic form. Some simple examples
are supplied and detailed.

The last section is devoted to the stochastic version of these considerations taking
into account an additional important driving source of evolution, namely, the random
genetic drift. When driven by selection only and in particular in the absence of mutations,
the multiallelic Wright-Fisher model is a transient Markov chain whose absorbing states
are the monomorphic states. We give an expression for the fixation probabilities for this
process. Then, we develop four conditioning problems: conditioning on fixating in a given
monomorphic state, conditioning on avoiding the extremal states before the current instant,
conditioning on nonfixation at each transition time, and conditioning on avoiding the
extremal states in the remote future. Finally we run into similar considerations but for the
Moran model. When dealing with the fixation probabilities in this Moran context, we suggest
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a mean-field approximation of these probabilities which is based on a well-known explicit
formula for the 2-alleles case. It concerns the case of multiplicative fitnesses only. Finally, we
consider the Moran model conditioned on nonfixation at each transition time. We exploit
the reversible character of this process to derive an explicit product formula for its invariant
probability measure.
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