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Impulse is a new memory system architecture that adds
two important features to a traditional memory controller.
First, Impulse supports application-specific optimizations
through configurable physical address remapping. By remap-
ping physical addresses, applications control how their data
is accessed and cached, improving their cache and bus uti-
lization. Second, Impulse supports prefetching at the mem-
ory controller, which can hide much of the latency of DRAM
accesses. Because it requires no modification to processor,
cache, or bus designs, Impulse can be adopted in conven-
tional systems.

In this paper we describe the design of the Impulse archi-
tecture, and show how an Impulse memory system can im-
prove the performance of memory-bound scientific applica-
tions. For instance, Impulse decreases the running time of the
NAS conjugate gradient benchmark by 67%. We expect that
Impulse will also benefit regularly strided, memory-bound
applications of commercial importance, such as database and
multimedia programs.

Keywords: irregular applications, memory systems, com-
puter architecture, memory bandwidth, hardware prefetching

1. Introduction

Since 1987, microprocessor performance has im-
proved at a rate of 55% per year; in contrast, DRAM
latencies have improved by only 7% per year, and
DRAM bandwidths by only 15–20% per year [14]. The
result is that the relative performance impact of mem-
ory accesses continues to grow. In addition, as instruc-
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tion issue rates increase, the demand for memory band-
width grows at least proportionately (possibly even su-
perlinearly) [7,18]. Many important applications (e.g.,
sparse matrix, database, signal processing, multime-
dia, and CAD applications) do not exhibit sufficient
locality of reference to make effective use of the on-
chip cache hierarchy. For such applications, the grow-
ing processor/memory performance gap makes it more
and more difficult to effectively exploit the tremendous
processing power of modern microprocessors. In the
Impulse project, we are attacking this problem by de-
signing and building a memory controller that is more
powerful than conventional ones.

The Impulse memory controller has two features
that are not present in current memory controllers.
First, the Impulse controller supports an optional, ex-
tra stage of address translation: data addresses can be
remappedwithout copying. This feature improves bus
and cache utilization by allowing applications to con-
trol how their data is accessed and cached. Second, the
Impulse controller supports prefetching at the memory
controller, which reduces the effective latency to mem-
ory. Prefetching at the memory controller helps hide
the latency of Impulse’s address translation, and is also
a useful optimization for non-remapped data.

Impulse introduces an optional level of address
translation at the memory controller. The key insight
that this feature exploits is that unused “physical” ad-
dresses can be translated to “real” physical addresses at
the memory controller. An unused physical address is
a legitimate address that is not backed by DRAM. For
example, in a conventional system with 4 GB of phys-
ical address space and only 1 GB of installed DRAM,
3 GB of the physical address space remains unused.
We call these unused addressesshadow addresses, and
they constitute ashadow address spacethat the Im-
pulse controller maps to physical memory. By giving
applications control (mediated by the OS) over the use
of shadow addresses, Impulse supports application-
specific optimizations that restructure data. Using Im-
pulse requires software modifications to applications
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Fig. 1. Using Impulse to remap the diagonal of a dense matrix into a dense cache line. The black boxes represent data on the diagonal, whereas
the gray boxes represent non-diagonal data.

(or compilers) and operating systems, but requires no
hardware modifications to processors, caches, or buses.

As a simple example of how Impulse’s memory
remapping can be used, consider a program that ac-
cesses the diagonal elements of a large, dense matrix
A. The physical layout of part of the data structureA
is shown on the right-hand side of Fig. 1. On a con-
ventional memory system, each time the processor ac-
cesses a new diagonal element (A[i][i] ), it requests
a full cache line of contiguous physical memory (typ-
ically 32–128 bytes of data on modern systems). The
program accesses only a single word of each of these
cache lines. Such an access is shown in the bottom half
of Fig. 1.

On an Impulse memory system, an application can
configure the memory controller to export a dense,
shadow-space alias that contains just the diagonal ele-
ments, and can have the OS map a new set of virtual
addresses to this shadow memory. The application can
then access the diagonal elements via the new virtual
alias. Such an access is shown in the top half of Fig. 1.
The details of how Impulse performs the remapping
are described in Section 2.1.

Remapping the array diagonal to a dense alias yields
several performance benefits. First, the program enjoys
a higher cache hit rate because several diagonal ele-
ments are loaded into the caches at once. Second, the
program consumes less bus bandwidth because non-
diagonal elements are not sent over the bus. Third,

the program makes more effective use of cache space
because the diagonal elements now have contiguous
shadow addresses. In general, Impulse’s flexibility al-
lows applications to customize addressing to fit their
needs.

The second important feature of the Impulse mem-
ory controller is that it supports prefetching. The con-
troller includes a small amount of SRAM to store data
prefetched from the DRAMs. For non-remapped data,
prefetching can reduce the latency of sequentially ac-
cessed data. We show that controller-based prefetching
of non-remapped data performs as well as a system that
uses simple L1 cache prefetching. For remapped data,
prefetching enables the controller to hide the costs as-
sociated with remapping (some remappings can re-
quire multiple DRAM accesses to fill a single cache
line). With both prefetching and remapping, an Im-
pulse controller significantly outperforms conventional
memory systems.

In recent years, a number of hardware mechanisms
have been proposed to address the problem of in-
creasing memory system overhead. For example, re-
searchers have evaluated the prospects of making the
processor cache configurable [34,35], adding compu-
tational power to the memory system [20,25,33], and
supporting stream buffers [19]. All of these mecha-
nisms promise significant performance improvements;
unfortunately, most require significant changes to pro-
cessors, caches, or memories, and thus have not been
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Fig. 2. Impulse memory controller organization.

adopted in mainstream systems. Impulse supports sim-
ilar optimizations, but its hardware modifications are
localized to the memory controller.

We simulated the impact of Impulse on two bench-
marks: the NAS conjugate gradient benchmark and
a dense matrix-matrix product kernel. Although we
evaluate only scientific kernels here, we expect that
Impulse will be useful for optimizing non-scientific
applications, as well. Some of the optimizations that
we describe are not conceptually new, but the Im-
pulse project is the first system that provides hard-
ware support for them in general-purpose computer
systems. For both benchmarks, the use of Impulse op-
timizations significantly improves performance com-
pared to a conventional memory controller. In partic-
ular, we find that a combination of address remapping
and controller-based prefetching improves the perfor-
mance of conjugate gradient by 67%.

2. Impulse architecture

To illustrate how the Impulse memory controller
works, we describe in detail how it can be used to opti-
mize the simple diagonal matrix example described in
Section 1. We describe the internal architecture of the
Impulse memory controller, and explain the kinds of
address remappings that it currently supports.

2.1. Using Impulse

Fig. 3 illustrates the address transformations that Im-
pulse performs to remap the diagonal of a dense ma-
trix. The top half of the figure illustrates how the diag-
onal elements are accessed on a conventional memory
system. The original dense matrix,A, occupies three
pages of the virtual address space. Accesses to the di-
agonal elements ofA are translated into accesses to
physical addresses at the processor. Each access to a di-
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Fig. 3. Using Impulse to remap memory: The translation on the top of the figure is the standard translation performed by an MMU. The
translation on the bottom of the figure is the translation performed on an Impulse system. The processor translates virtual aliases into what it
thinks are physical addresses; however, these physical addresses are reallyshadow addresses. The Impulse MC maps the shadow addresses into
pseudo-virtual addresses, and then to physical memory.

agonal element loads an entire cache line of data, wast-
ing bus bandwidth and cache capacity by loading the
adjacent, non-diagonal elements that won’t be used.

The bottom half of the figure illustrates how the di-
agonal elements ofA are accessed using Impulse. The
application reads from a data structure that the OS has
remapped to a shadow alias for the matrix diagonal.
When the processor issues the read for that alias over
the bus, the Impulse controller gathers the diagonal
data into a single cache line, and sends that data back
over the processor bus. Impulse supports prefetching of
remapped data within the controller so that the latency
of the gather can be hidden.

The operating system remaps the diagonal elements
to a new alias,diagonal , as follows:

(1) The application allocates a contiguous range of
virtual addresses large enough to map the di-
agonal elements ofA, and asks the OS to map
these virtual addresses through shadow memory
to the actual elements. This range of virtual ad-

dresses corresponds to the new variablediag-
onal . To improve L1 cache utilization, an ap-
plication can allocate virtual addresses with ap-
propriate alignment and offset characteristics.

(2) The OS allocates a contiguous range of shadow
addresses large enough to contain the diagonal
elements ofA. The operating system allocates
shadow addresses from a pool of physical ad-
dresses that do not correspond to real DRAM
addresses.

(3) The OS downloads to the memory controller
a function to map shadow addresses to off-
sets withinpseudo-virtual memory space, which
mirrors virtual space in its layout. This pseudo-
virtual space is necessary to be able to remap
data structures that are larger than a page. In
our example, the mapping function involves a
simplebaseandstride function – other remap-
ping functions supported by the current Impulse
model are described in Section 2.2.
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(4) The OS downloads to the memory controller a
set of page mappings for pseudo-virtual space
for A.

(5) The OS maps the virtual aliasdiagonal to
the newly allocated shadow memory, flushes the
original address from the caches, and returns.

Currently, we hand-modify application kernels to
perform the system calls to remap data, but we are ex-
ploring compiler algorithms to automate the process.
Both shadow addresses and virtual addresses are sys-
tem resources, so the operating system must manage
their allocation and mapping. We have implemented a
set of system calls that allow applications to use Im-
pulse without violating inter-process protection.

2.2. Hardware

The organization of the Impulse controller architec-
ture is depicted in Figure 2. The memory controller in-
cludes:

• a Shadow Descriptor Unitthat contains a small
number of shadow-space descriptors, SRAM buff-
ers to hold prefetched shadow data, and logic to
assemble sparse data retrieved from DRAM into
dense cache lines mapped in shadow space;
• aPage Table Unitthat contains a simple ALU and

Memory Controller TLB(MTLB) that map ad-
dresses in dense shadow space to pseudo-virtual
and then to physical addresses backed by DRAM,
along with a small number of buffers to hold
prefetched page table entries; and
• a Scheduling Unitthat contains circuitry that or-

ders and issues accesses to the DRAMs, along
with an SRAM Memory Controller Cache
(Mcache) to buffer non-shadow data.

Since the extra level of address translation is op-
tional, addresses appearing on the memory bus may be
to physical (backed by actual DRAM) or shadow mem-
ory space. Valid physical addresses pass untranslated
to the DRAM scheduler. The Page Table Unit uses the
corresponding shadow descriptor to turn shadow ad-
dresses into physical DRAM addresses. Currently, this
translation can take three forms, depending on how Im-
pulse is used to access a particular data structure: di-
rect, strided, or scatter/gather.

Direct mappingtranslates a shadow address directly
to a physical DRAM address. This mapping can be
used to recolor physical pages without copying [8] or
to construct superpages dynamically [30]. We discuss

no-copy page coloring further in Section 3.1.Strided
mappingcreates dense cache lines from array elements
that are not contiguous in physical memory. The map-
ping function maps an addresssoffsetin shadow space
to pseudo-virtual addresspvaddr + stride× soffset,
wherepvaddr is the starting address (assigned by the
OS) of the data structure’s pseudo-virtual image.Scat-
ter/gather mappinguses an indirection vectorivec to
translate an addresssoffsetin shadow space to pseudo-
virtual addresspvaddr+ stride× ivec[soffset]. Inves-
tigating support for other mappings is part of ongoing
work.

In order to keep the controller hardware simple and
fast, Impulse restricts the remappings. For example, in
order to avoid the necessity for a divider in the con-
troller, strided mappings must ensure that a strided ob-
ject has a size that is a power of two. Also, we assume
that an application (or compiler/OS) that uses Impulse
ensures data consistency through appropriate flushing
of the caches. Note that Impulse in no way affects the
virtual memory system – paging and address transla-
tion are handled by the OS and on-chip TLB just as in
a non-Impulse system.

3. Impulse optimizations

In this section we describe how Impulse can be used
to optimize two scientific application kernels: sparse
matrix-vector multiply (SMVP) and dense matrix-
matrix product (DMMP). We apply two techniques
to optimize SMVP: vector-style scatter/gather at the
memory controller and no-copy physical page color-
ing. We apply a third optimization, no-copy tile remap-
ping, to DMMP.

3.1. Sparse matrix-vector product

Sparse matrix-vector product (SMVP) is an irregu-
lar computational kernel that is critical to many large
scientific algorithms. For example, most of the time
in conjugate gradient [3] or in the Spark98 earthquake
simulations [24] is spent performing SMVP.

To avoid wasting memory, sparse matrices are gen-
erally compacted so that only non-zero elements and
corresponding index arrays are stored. For example,
the Class A input matrix for the NAS conjugate gradi-
ent kernel (CG-A) is 14,000 by 14,000, and contains
only 2.19 million non-zeroes. Although sparse encod-
ings save tremendous amounts of memory, sparse ma-
trix codes tend to suffer from poor memory perfor-
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Fig. 4. Conjugate gradient’s sparse matrix-vector product. The matrixA is encoded using three dense arrays:DATA, ROWS, andCOLUMN. The
contents ofA are inDATA. ROWS[i] indicates where theith row begins inDATA. COLUMN[i] indicates which column ofA the element stored
in DATA[i] comes from.

mance because data must be accessed through indirec-
tion vectors. CG-A on an SGI Origin 2000 processor
(which has a 2-way, 32K L1 cache and a 2-way, 4MB
L2 cache) exhibited L1 and L2 cache hit rates of only
63% and 92%, respectively.

The inner loop of sparse matrix-product looks like:

for i := 1 to n do
sum := 0
for j := ROWS[i] to ROWS[i+1]-1 do

sum += DATA[j]*x[COLUMN[j]]
b[i] := sum

Code and data structures for SMVP are illustrated in
Fig. 4. Each iteration multiplies a row of the sparse ma-
trix Awith the dense vectorx . The accesses tox are in-
direct (via theCOLUMNindex vector) and sparse, mak-
ing this code perform poorly on conventional memory
systems. Wheneverx is accessed, a conventional mem-
ory system fetches a cache line of data, of which only
one element is used. The large sizes ofx , COLUMN,

andDATAand the sparse nature of accesses tox inhibit
data reuse in the L1 cache. Each element ofCOLUMN
or DATAis used only once, and almost every access to
x results in an L1 cache miss. A large L2 cache can
enable reuse ofx , if physical data layouts can be man-
aged to prevent L2 cache conflicts betweenA andx .
Unfortunately, conventional systems do not typically
provide mechanisms for managing physical layout.

Scatter/gather. The Impulse memory controller sup-
ports scatter/gather of physical addresses through in-
direction vectors. Vector machines such as the CDC
STAR-100 [15] provided scatter/gather capabilities in
hardware within the processor. Impulse allows conven-
tional CPUs to take advantage of scatter/gather func-
tionality by implementing the operations at the mem-
ory, which reduces memory traffic over the bus.

The CG code that an Impulse compiler would gen-
erate looks like:

setup x’, where x’[k] = x[COLUMN[k]]
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for i := 1 to n do
sum := 0
for j := ROWS[i] to ROWS[i+1]-1 do

sum += DATA[j] * x’[j]
b[i] := sum

The first line asks the operating system to (1) allo-
cate a new region of shadow space, (2) mapx’ to that
shadow region, and (3) instruct the memory controller
to map the elements of the shadow regionx’[k] to
the physical memory forx[COLUMN[k]] . After the
remapped array has been set up, the code accesses the
remapped version of the gathered structure (x’ ) rather
than the original structure (x ).

This optimization improves the performance of
SMVP in two ways. First, spatial locality is improved
in the L1 cache. Since the memory controller packs
the gathered elements into cache lines, each cache line
contain 100% useful data, rather than only one use-
ful element. Second, the processor issues fewer mem-
ory instructions, since the read of the indirection vector
COLUMNoccurs at the memory controller. Note that the
use of scatter/gather at the memory controller reduces
temporal locality in the L2 cache. The remapped ele-
ments ofx’ cannot be reused, since all of the elements
have different addresses.

Consider the inner loop of SMVP. Its cost is domi-
nated by three loads (toDATA[i] , COLUMN[i] , and
x[COLUMN[i]] ). Assume that the L1 cache has 32-
byte lines, and the L2 cache has 128-byte lines. Ta-
ble 1 illustrates the advantage of using Impulse scat-
ter/gather remapping. The table lists the memory refer-
ences over four iterations of the loop. The initial read
of DATA[i] hits in the L2 cache 75% of the time,
because an L2 cache line is four times larger than an
L1 cache line. The read ofCOLUMN[i] is similar: be-
cause the elements ofCOLUMNare single-word inte-
gers, elements will hit in the L1 cache.

The columns of Table 1 show the difference between
a conventional memory system and Impulse.Bestrep-
resents the best-case performance of a conventional
memory system, where the L2 cache is large enough
to holdx , and there are no L2 cache conflicts between
x and any other data.Worst represents the worst-case
performance of a conventional memory system, where
either the L2 cache is too small to hold a significant
fraction ofx , or x conflicts with other structures in the
L2 cache.x is not accessed directly in Impulse, and
therefore its best and worst cases are identical.

As Table 1 shows, scatter/gather remapping on Im-
pulse can eliminate four L2 accesses from the best

Table 1

Simple performance comparison of conventional memory systems (best and worst cases) and
Impulse for scatter/gather remapping of sparse matrix-vector product. The inner loop has been
unrolled four times, and the analysis assumes a 32-byte L1 cache and a 128-byte L2 cache. On a
conventional memory system, three reads are performed in each iteration; on Impulse, only two
reads are performed in each iteration. The miss that occurs in the starred entry is more expensive
on Impulse, because it requires a gather at the memory controller

Conventional Impulse

Value loaded Behavior Value loaded Behavior

Best Worst

DATA[i] .75 L2 .75 L2 DATA[i] .75 L2

COLUMN[i] .5 L1, .375 L2 .5 L1, .375 L2 – —

x[COLUMN[i]] L2 miss – —

– – – x’[i] .75 L2*

DATA[i+1] L1 L1 DATA[i+1] L1

COLUMN[i+1] L1 L1 – —

x[COLUMN[i+1]] L2 miss – —

– – – x’[i+1] L1

DATA[i+2] L1 L1 DATA[i+2] L1

COLUMN[i+2] L1 L1 – —

x[COLUMN[i+2]] L2 miss – —

– – – x’[i+2] L1

DATA[i+3] L1 L1 DATA[i+3] L1

COLUMN[i+3] L1 L1 – —

x[COLUMN[i+3]] L2 miss – —

– – – x’[i+3] L1
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case for a conventional system. In place of these four
accesses, Impulse incurs the miss marked in the ta-
ble with an asterisk, which is the gathered access to
x’ . Impulse performs the gathered access by reading
COLUMN[i] from DRAM at the controller, and then
readingx[COLUMN[i]] . Compared to the worst case
for a conventional system, Impulse eliminates four
misses to main memory. If we assume that software
pipelining and prefetching hide cold misses to linearly
accessed data, the misses toDATA[i] , COLUMN[i] ,
andx’[i] can be overlapped with processor activity.
As a result, using Impulse will allow the processor to
perform floating point operations as fast as the mem-
ory system can supply two streams of dense data (x’
andDATA) with good L1 cache performance. In con-
trast, the conventional system makes sparse accesses
to x[COLUMN[i]] , and will incur frequent L1 cache
misses.

Page recoloring. The Impulse memory controller
supports dynamic physical page recoloring through di-
rect remapping of physical pages. Physical page re-
coloring changes the physical addresses of pages so
that reusable data is mapped to a different part of a
physically-addressed cache from non-reused data. By
performing page recoloring, conflict misses can be
eliminated. On a conventional machine, physical page
recoloring is expensive. The cost is in copying: the
only way to change the physical address of data is to
copy the data between physical pages. Impulse allows
pages to be recoloredwithout copying. Virtual page re-
coloring has been explored by other authors [5].

For SMVP, thex vector is reused within an iteration,
while elements of theDATA, ROW, andCOLUMNvec-
tors are used only once in each iteration. As an alter-
native to scatter/gather ofx at the memory controller,
Impulse can be used to physically recolor pages so that
x does not conflict with the other data structures in the
L2 cache. For example, in the CG-A benchmark,x is
over 100K bytes: it would not fit in most L1 caches,
but would fit in many L2 caches. Impulse can remap
x to pages that occupy most of the physically-indexed
L2 cache, and can remapDATA, ROWS, andCOLUMNS
to a small number of pages that do not conflict with
x . In effect, we can use a small part of the L2 cache
as a set of virtual stream buffers forDATA, ROWS, and
COLUMNS[23]. The resulting performance should ap-
proach that of the column labeledBestin Table 1.

3.2. Tiled matrix algorithms

Dense matrix algorithms form an important class
of scientific kernels. For example, LU decomposition

and dense Cholesky factorization are dense matrix
computational kernels. Such algorithms aretiled (or
blocked) in order to increase their efficiency. That is,
the iterations of tiled algorithms are reordered to im-
prove their memory performance. The difficulty with
using tiled algorithms lies in choosing an appropri-
ate tile size [21]. Because tiles are non-contiguous in
the virtual address space, it is difficult to keep them
from conflicting with each other or with themselves in
cache. To avoid conflicts, either tile sizes must be kept
small, which makes inefficient use of the cache, or tiles
must be copied into non-conflicting regions of mem-
ory, which is expensive.

Impulse provides an alternative method of removing
cache conflicts for tiles. We use the simplest tiled al-
gorithm, dense matrix-matrix product (DMMP), as an
example of how Impulse can improve the behavior of
tiled matrix algorithms. Assume that we want to com-
puteC = A × B. We want to keep the current tile of
theC matrix in the L1 cache as we compute it. In addi-
tion, since the same row of theA matrix is used multi-
ple times to compute a row of theC matrix, we would
like to keep the active row ofA in the L2 cache.

Impulse allows base-stride remapping of the tiles
from non-contiguous portions of memory into contigu-
ous tiles of shadow space. As a result, Impulse makes
it easy for the OS to virtually remap the tiles, since the
physical footprint of a tile will match its size. If we use
the OS to remap the virtual address of a matrix tile to
its new shadow alias, we can then eliminate interfer-
ence in a virtually-indexed L1 cache. First, we divide
the L1 cache into three segments. In each segment we
keep a tile: the current output tile fromC, and the in-
put tiles fromA andB. When we finish with one tile,
we use Impulse to remap the virtual tile to the next
physical tile. In order to maintain cache consistency,
we must purge theA andB tiles and flush theC tiles
from the caches whenever they are remapped. As Sec-
tion 4.2 shows, these costs are minor.

4. Performance

We have performed a preliminary simulation study
of Impulse using the Paint simulator [29]. We model
a variation of a 120 MHz, single-issue, HP PA-RISC
1.1 processor running a BSD-based microkernel, and
a 120 MHz HP Runway bus. In addition, we model
a synthetic four-way superscalar version of the same
processor. The 32K L1 data cache in both mod-
els is non-blocking, single-cycle, write-back, write-
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around, virtually indexed, physically tagged, and direct
mapped with 32-byte lines. The 256K L2 data cache
is non-blocking, write-allocate, write-back, physically
indexed and tagged, and 2-way set-associative, with
128-byte lines. Since Impulse is only intended to im-
prove data cache performance, instruction caching is
assumed to be perfect. A hit in the L1 cache has a
minimum latency of one cycle; a hit in the L2 cache,
seven cycles; an access to memory, 44–46 cycles. The
TLBs are unified I/D, single-cycle, and fully associa-
tive, with a not-recently-used replacement policy. In
addition to the main TLB, a single-entry micro-ITLB
holding the most recent instruction translation is also
modeled. Kernel code and data structures are mapped
using a singleblock TLBentry that is not subject to
replacement.

The simulated Impulse memory controller (described
in Section 2.2) is based on the HP memory con-
troller [17] used in servers and high-end workstations.
We model eight shadow descriptors, each of which is
associated with a 512-byte SRAM buffer. The con-
troller prefetches the corresponding shadow data into
these fully associative buffers of four 128-byte lines.
A 4K SRAM Mcache holds prefetched, non-shadow
data within the Scheduler Unit. The Mcache is four-
way set associative with 32 lines of 128 bytes. The
MTLB is two-way associative, has 128 eight-byte en-
tries (the same size as the entries in the kernel’s
page table), and includes two 128-bit buffers used to
prefetched consecutive lines of page table entries on
an MTLB miss. Prefetched page table entries are also
stored in the Mcache. If an MTLB miss hits in the
buffers, the required entry can be transferred into the
MTLB in one cycle. Otherwise the MTLB initiates an
Mcache access, and if that misses, it initiates a DRAM
access to retrieve the entry.

References to shadow addresses incur a minimum
three-cycle delay, with complex mapping functions
causing larger delays. Prefetching within the memory
controller reduces the impact of the extra translation
overhead. To keep the remapping circuitry simple and
fast, we require that all remapped data structures be
page-aligned and that various dimensions of data struc-
tures used in strided mappings be powers of two in
size. This avoids including a divider in Impulse. We
implemented the Impulse system calls within Paint’s
microkernel such that applications can use Impulse
without violating interprocess protection.

The memory system modeled contains four DRAM
buses and 16 banks of SDRAM, and has a total mem-
ory latency of 44–46 cycles, broken down as follows:

• L1 cache latency is one cycle,
• L2 cache latency is six cycles,
• address latency on system bus is one cycle,
• memory controller latency is two cycles,
• DRAM access latency is 24 cycles,
• DRAM demultiplexer latency is two cycles,
• bus arbitration latency is zero to two cycles, and
• latency for returning data is eight cycles.

In our experiments we measure the performance
benefits of using Impulse to remap physical addresses,
as described in Section 3. We also measure the bene-
fits of using Impulse to prefetch data. When prefetch-
ing is turned on for Impulse, both shadow and non-
shadow accesses are prefetched. As a point of com-
parison, we evaluate controller prefetching against a
form of processor-side prefetching: hardware next-
line prefetching into the L1 cache, such as that used
in the HP PA 7200 [9]. Our results show that con-
troller prefetching is competitive with this simple form
of processor-side prefetching. Finally, we modify our
simulator to approximate a four-way superscalar pro-
cessor so that we can estimate the speedups that Im-
pulse should provide on a more modern architecture.

4.1. Sparse matrix-vector product

Table 2 illustrates the performance of the NAS Class
A Conjugate Gradient (CG-A) benchmark on various
configurations of an Impulse system. In the follow-
ing two sections we evaluate the performance of scat-
ter/gather remapping and page recoloring, respectively.
Note that our calculation of “L2 cache hit ratio” uses
the total number of loads (not the total number of L2
cache accesses) as the divisor to make it easier to com-
pare the effects of the L1 and L2 caches on memory
accesses.

Scatter/gather. The first and second parts of Table 2
show that scatter/gather remapping on CG-A improves
performance significantly. Without prefetching, Im-
pulse improves performance by 1.33, largely due to the
increase in the L1 cache hit ratio. Each main-memory
access for the remapped vectorx’ now loads the cache
with several useful elements from the originalx , in-
creasing the cache hit rate. In addition, scatter/gather
reduces the total number of loads issued, since loads of
the indirection vector occur at the memory controller.
This reduction more than compensates for the scat-
ter/gather’s increase in the average cost of a load, and
accounts for almost one-third of the cycles saved in this
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Table 2

Simulated results for the NAS Class A conjugate gradient bench-
mark, with various memory system configurations. Times are in
billions of cycles; the hit ratios are the number of loads that hit in
the corresponding level of the memory hierarchy divided by total
loads; the average load time is the average number of cycles that
a load takes; the speedup is the “Conventional, no prefetch” time
divided by the time for the system being compared

Standard Prefetching

Impulse L1 cache both

Conventional memory system

Time 2.81 2.69 2.51 2.49

L1 hit ratio 64.6% 64.6% 67.7% 67.7%

L2 hit ratio 29.9% 29.9% 30.4% 30.4%

mem hit ratio 5.5% 5.5% 1.9% 1.9%

avg load time 4.75 4.38 3.56 3.54

speedup — 1.04 1.12 1.13

Impulse with scatter/gather remapping

Time 2.11 1.68 1.51 1.44

L1 hit ratio 88.0% 88.0% 94.7% 94.7%

L2 hit ratio 4.4% 4.4% 4.3% 4.3%

mem hit ratio 7.6% 7.6% 1.0% 1.0%

avg load time 5.24 3.54 2.19 2.04

speedup 1.33 1.67 1.86 1.95

Impulse with page recoloring

Time 2.70 2.57 2.39 2.37

L1 hit ratio 64.7% 64.7% 67.7% 67.7%

L2 hit ratio 30.9% 31.0% 31.3% 31.3%

mem hit ratio 4.4% 4.3% 1.0% 1.0%

avg load time 4.47 4.05 3.28 3.26

speedup 1.04 1.09 1.18 1.19

instance. The drop in the L2 cache hit ratio does not
negatively impact performance.

The combination of scatter/gather remapping and
prefetching is even more effective, speeding up execu-
tion time by a factor of 1.67. With prefetching, the av-
erage time for a load drops from 5.24 cycles to 3.53
cycles. Even though the cache hit ratios do not change,
CG-A runs significantly faster because Impulse hides
the latency of the memory system.

We introduced controller-based prefetching to Im-
pulse primarily to hide the latency of scatter/gather op-
erations, but it has proved useful on its own. With-
out scatter/gather support, controller-based prefetch-
ing improves performance by 4%, compared to the
12% performance improvement that can be achieved
for this benchmark by performing a simple one-block-
ahead prefetching mechanism at the L1 cache. How-
ever, controller-based prefetching requires no changes
to the processor core, and thus can benefit processors
with no integrated hardware prefetching.

Page recoloring. The first and third sections of Ta-
ble 2 show that page recoloring improves performance
on CG-A. We color the vectorsx , DATA, andCOL-
UMNso that they do not conflict in the L2 cache. The
multiplicand vectorx is heavily reused during SMVP,
so we color it to occupy the first half of the L2 cache.
To keep the largeDATAandCOLUMNstructures from
conflicting, we divide the second half of the L2 cache
into two, and then colorDATAandCOLUMNso they
each occupy one section.

Page recoloring consistently reduces the cost of
memory accesses. Without prefetching, recoloring
speeds execution time by a factor of 1.04. With the
addition of prefetching at the controller, the speedup
increases to 1.09. The effects of controller prefetch-
ing compared to L1 cache prefetching are similar to
those with scatter/gather. Controller prefetching alone
is about half as effective as either L1 cache prefetching
or the combination of the two. Although the speedups
for page recoloring are more modest than scatter/gather
remapping, this optimization is nonetheless worth-
while. In addition, page recoloring benefits a much
wider range of applications than scatter/gather (or any
other fine-grained type of remapping).

4.2. Dense matrix-matrix product

This section examines the performance benefits of
tile remapping for DMMP, and compares the results
to software tile copying. Impulse’s alignment restric-
tions require that remapped tiles be aligned to L2 cache
line boundaries, which adds the following constraints
to our matrices:

• Tile sizes must be a multiple of a cache line. In our
experiments, this size is 128 bytes. This constraint
is not overly limiting, especially since it makes
the most efficient use of cache space.
• Arrays must be padded so that tiles are aligned

to 128 bytes. Compilers can easily support this
constraint: similar padding techniques have been
explored in the context of vector processors [6].

Table 3 illustrates the results of our tiling experi-
ments. The baseline is the conventional no-copy tiling.
Software tile copying and tile remapping both outper-
form the baseline code by more than 95%, unsurpris-
ingly. The improvement in performance is primarily
due to the difference in caching behavior: both copy-
ing and remapping more than double the L1 cache hit
rate, giving rise to an average memory access time
of approximately one cycle. Impulse tile remapping is
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Table 3

Simulated results for tiled dense matrix-matrix product. Times are
in billions of cycles; the hit ratios are the number of loads that hit
in the corresponding level of the memory hierarchy divided by total
loads; the average load time is the average number of cycles that
a load takes; the speedup is the “Conventional, no prefetch” time
divided by the time for the system being compared. The matrices are
512× 512, with 32× 32 tiles

Standard Prefetching

Impulse L1 cache both

Conventional memory system

Time 2.57 2.51 2.58 2.52

L1 hit ratio 49.0% 49.0% 48.9% 48.9%

L2 hit ratio 43.0% 43.0% 43.4% 43.5%

mem hit ratio 8.0% 8.0% 7.7% 7.6%

avg load time 6.37 6.18 6.44 6.22

speedup — 1.02 1.00 1.02

Conventional memory system with software tile copying

Time 1.32 1.32 1.32 1.32

L1 hit ratio 98.5% 98.5% 98.5% 98.5%

L2 hit ratio 1.3% 1.3% 1.4% 1.4%

mem hit ratio 0.2% 0.2% 0.1% 0.1%

avg load time 1.09 1.08 1.06 1.06

speedup 1.95 1.95 1.95 1.95

Impulse with tile remapping

Time 1.30 1.29 1.30 1.28

L1 hit ratio 99.4% 99.4% 99.4% 99.6%

L2 hit ratio 0.4% 0.4% 0.4% 0.4%

mem hit ratio 0.2% 0.2% 0.2% 0.0%

avg load time 1.09 1.07 1.09 1.03

speedup 1.98 1.99 1.98 2.01

slightly faster than tile copying, even when the over-
heads of the Impulse system calls and the associated
cache flushes are taken into account.

This comparison between conventional and Impulse
copying schemes is conservative for several reasons.
Copying works particularly well on DMMP: the num-
ber of operations performed on a tile of size O(n2) is
O(n3), making the overhead of physical copying rela-
tively low. For algorithms where the reuse of the data
is lower, the relative overhead of copying is greater.
Likewise, as caches (and therefore tiles) grow larger,
the cost of copying grows, whereas the (low) cost
of Impulse’s tile remapping remains fixed. In addi-
tion, our physical copying experiment avoids cross-
interference between active tiles in both the L1 and L2
caches. Other authors have found that the performance
of copying can vary greatly with matrix size, tile size,
and cache size [31], but Impulse should be insensitive
to cross-interference between tiles.

All forms of prefetching performed approximately
equally for this application. The effectiveness of copy-
ing and tile remapping diminish the effects of prefetch-
ing. When the tiling optimizations are not being used,
controller prefetching improves performance by about
2%. In contrast, L1 cache prefetching actually hurts
performance slightly, due to the very low hit rate in the
L1 cache and to the contention that prefetching intro-
duces at the L2 cache.

4.3. Impact of superscalar processors

To measure the expected performance benefit of us-
ing Impulse on more modern processors, we modified
our simulator to approximate a four-way superscalar
machine. We do not change Paint’s PA-RISC processor
model, but we approximate a quad-issue superscalar
machine by issuing up to four instructions each cycle
(without checking dependencies). We leave the cache
and bus models unchanged, thereby enforcing realis-
tic limits on the rate of memory requests. While this
model is unrealistic for gathering processor microar-
chitecture statistics, it stresses the memory system in a
manner similar to a real superscalar processor [26].

Tables 4 and 5 summarize the results of running CG-
A and DMMP on Impulse. The numbers in those two
tables correspond directly to those in Tables 2 and 3,
respectively. Note that even though the synthetic super-
scalar processor is nominally four times faster than the
single-issue processor, it is less than 1.5 faster on our
memory-bound benchmarks. As expected, the hit ra-
tios on the superscalar are essentially the same as those
on the single-issue processor.

Since the performance of our benchmarks is dom-
inated by memory latency, Impulse delivers greater
speedups on the superscalar processor. For example,
the speedup for scatter/gather remapping using Im-
pulse is 1.40, compared with 1.33 on the single-issue
processor. Similarly, the speedup for CG-A with page
recoloring is 1.07 (vs. 1.04 for the single-issue ma-
chine), and the speedup for DMMP with tile remap-
ping is 3.41 (vs. 1.98 for the single-issue machine).

The speedup due to using Impulse’s controller-based
prefetching increases with issue width: 1.96 vs. 1.67
for CG-A using scatter/gather, and 1.14 vs. 1.09 for
CG-A using page recoloring. The performance benefits
of prefetching on the non-memory-bound versions of
DMMP (the two tiled versions) are negligible: the raw
execution times for this benchmark are nearly identi-
cal.
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Table 4

Simulated results for the NAS Class A conjugate gradient bench-
mark, with various memory system configurations and a synthetic
four-way superscalar. Times are in billions of cycles; the hit ratios
are the number of loads that hit in the corresponding level of the
memory hierarchy divided by total loads; the average load time
is the average number of cycles that a load takes; the speedup is
the “Conventional, no prefetch” time divided by the time for the
system being compared

Standard Prefetching

Impulse L1 cache both

Conventional memory system

Time 2.06 1.94 1.84 1.83

L1 hit ratio 64.7% 64.7% 67.6% 67.6%

L2 hit ratio 29.9% 29.9% 30.5% 30.4%

mem hit ratio 5.4% 5.4% 1.9% 2.0%

avg load time 4.73 4.35 3.74 3.72

speedup — 1.06 1.12 1.13

Impulse with scatter/gather remapping

Time 1.47 1.05 1.17 0.93

L1 hit ratio 88.1% 88.0% 94.7% 94.7%

L2 hit ratio 4.4% 4.4% 4.4% 4.4%

mem hit ratio 7.5% 7.6% 0.9% 0.9%

avg load time 5.13 3.44 2.11 1.95

speedup 1.40 1.96 1.76 2.22

Impulse with page recoloring

Time 1.94 1.82 1.75 1.75

L1 hit ratio 64.8% 64.7% 67.7% 67.7%

L2 hit ratio 30.9% 31.0% 31.0% 30.9%

mem hit ratio 4.3% 4.3% 1.3% 1.4%

avg load time 4.38 4.00 3.50 3.49

speedup 1.07 1.14 1.18 1.18

The performance benefits of L1 cache prefetching
do not increase with instruction issue width for CG-
A. With L1 prefetching, a miss to main memory takes
63 cycles to satisfy; with Impulse prefetching, a miss
takes only 33 cycles. Even though the average time for
a load is less with L1 prefetching (since the L1 hit rate
is higher), those loads that go to memory cannot be
hidden as effectively by the processor. As a result, Im-
pulse prefetching outperforms L1 prefetching by 11%.

5. Related work

A number of projects have proposed modifications
to conventional CPU or DRAM designs to improve
memory system performance, including supporting
massive multithreading [2], moving processing power
on to DRAM chips [20], or developing configurable ar-
chitectures [35]. While these projects show promise, it

Table 5

Simulated results for tiled matrix-matrix product on a synthetic
four-way superscalar. Times are in billions of cycles; the hit ratios
are the number of loads that hit in the corresponding level of the
memory hierarchy divided by total loads; the average load time
is the average number of cycles that a load takes; the speedup is
the “Conventional, no prefetch” time divided by the time for the
system being compared. The matrices are 512 by 512, with 32 by
32 tiles

Standard Prefetching

Impulse L1 cache both

Conventional memory system

Time 2.01 1.96 2.10 2.04

L1 hit ratio 49.0% 49.0% 48.9% 48.9%

L2 hit ratio 43.0% 43.0% 43.4% 43.4%

mem hit ratio 8.0% 8.0% 7.7% 7.7%

avg load time 6.46 6.27 6.81 6.61

speedup — 1.03 0.96 0.99

Conventional memory system with software tile copying

Time 0.60 0.60 0.59 0.59

L1 hit ratio 98.5% 98.5% 98.5% 98.5%

L2 hit ratio 1.3% 1.3% 1.4% 1.4%

mem hit ratio 0.2% 0.2% 0.1% 0.1%

avg load time 1.09 1.08 1.07 1.07

speedup 3.35 3.35 3.41 3.41

Impulse with tile remapping

Time 0.59 0.59 0.59 0.58

L1 hit ratio 99.4% 99.4% 99.5% 99.6%

L2 hit ratio 0.4% 0.4% 0.3% 0.3%

mem hit ratio 0.2% 0.2% 0.2% 0.1%

avg load time 1.09 1.07 1.09 1.03

speedup 3.41 3.41 3.41 3.47

is now almost impossible to prototype non-traditional
CPU or cache designs that can perform as well as
commodity processors. In addition, the performance of
processor-in-memory approaches are handicapped by
the optimization of DRAM processes for capacity (to
increase bit density) rather than speed.

The Morph architecture [35] is almost entirely con-
figurable: programmable logic is embedded in virtually
every datapath in the system, enabling optimizations
similar to those described here. The primary difference
between Impulse and Morph is that Impulse is a sim-
pler design that can be profitably exploited by current
processor architectures.

The RADram project at UC Davis is building a
memory system that lets the memory perform com-
putation [25]. RADram is a PIM, orprocessor-in-
memory, project similar to IRAM [20]. The RAW
project at MIT [33] is an even more radical idea, where
each IRAM element is almost entirely reconfigurable.
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In contrast to these projects, Impulse does not seek to
put an entire processor in memory, since DRAM pro-
cesses are substantially slower than logic processes.

Many others have investigated memory hierarchies
that incorporate stream buffers. Most of these fo-
cus on non-programmable buffers to perform hard-
ware prefetching of consecutive cache lines, such as
the prefetch buffers introduced by Jouppi [19]. Even
though such stream buffers are intended to be trans-
parent to the programmer, careful coding is required
to ensure good memory performance. Palacharla and
Kessler [27] investigate the use of similar stream
buffers to replace the L2 cache, and Farkas et al. [12]
identify performance trends and relationships among
the various components of the memory hierarchy (in-
cluding stream buffers) in a dynamically scheduled
processor. Both studies find that dynamically reactive
stream buffers can yield significant performance in-
creases. All of these mechanisms prefetch cache lines
speculatively, so they may bring unneeded data into
the processor cache(s). This increases memory system
bandwidth requirements, and decreases effective band-
width. Farkas et al. mitigate this problem by imple-
menting an incremental prefetching technique that re-
duces stream buffer bandwidth consumption by 50%
without decreasing performance.

In contrast, systems that prefetch within the mem-
ory controller itself never waste bus bandwidth fetch-
ing unneeded data onto the processor chip. The Dy-
namic Access Ordering systems studied by McKee et
al. [22] and Hong et al. [16] combine programmable
stream buffers and prefetching within the memory con-
troller with intelligent DRAM scheduling. For vec-
tor or streaming applications with predictable mem-
ory reference patterns, these systems dynamically re-
order stream accesses to improve bus utilization, to
exploit parallelism in the memory system (e.g., from
multi-bank memories or sophisticated command inter-
faces), and to increase locality of reference with re-
spect to the DRAM page buffers. In the same vein, Cor-
bal et al. [11] propose aCommand Vector Memory Sys-
tem that exploits parallelism and locality of reference
to improve effective bandwidth for vector accesses on
out-of-order vector processors with SDRAM memo-
ries. For SRAM memory systems, Valero et al. [32]
show how reordering of strided accesses can be used to
eliminate bank conflicts on a vector machine.

The Impulse DRAM scheduler that we are design-
ing has similar goals to these other studies of dynamic
access ordering. With Impulse, though, the set of ad-
dresses to be reordered will be more complex: for ex-

ample, the set of physical addresses that is generated
for scatter/gather is much more irregular than strided
vector accesses.

The Imagine media processor is a stream-based ar-
chitecture with a bandwidth-efficient stream register
file [28]. The streaming model of computation ex-
poses parallelism and locality in applications, which
makes such systems an attractive domain for intelligent
DRAM scheduling.

A great deal of research has gone into prefetch-
ing into cache. For example, Chen and Baer [10] de-
scribe how a prefetching cache can outperform a non-
blocking cache. Fu and Patel [13] use cache prefetch-
ing to improve memory hierarchy performance on vec-
tor machines, which is somewhat related to Impulse’s
scatter/gather optimization. Cache prefetching is or-
thogonal to Impulse’s controller-based prefetching. In
addition, our results show that controller prefetching
can outperform simple forms of cache prefetching.

Yamada [34] proposed instruction set changes to
support combined relocation and prefetching into the
L1 cache. Relocation is done at the processor in this
system, and thus no bus bandwidth is saved. In addi-
tion, because relocation is done on virtual addresses,
the L2 cache utilization cannot be improved. With Im-
pulse, the L2 cache utilization increases directly, and
the operating system can then be used to improve L1
cache utilization.

Alexander and Kedem [1] describe a memory-based
prefetching scheme that can significantly improve the
performance of some applications. They use a predic-
tion table to store up to four possible “next-access” pre-
dictions for any given memory address. When an ad-
dress is accessed, the targets of the associated predic-
tions are prefetched into SRAM buffers.

6. Conclusions

The Impulse project attacks the memory bottleneck
by designing and building a smarter memory con-
troller. Impulse requires no modifications to the CPU,
caches, or DRAMs, and it has two forms of “smarts”:

• The controller supports application-specific phys-
ical address remapping. This paper demonstrates
how several simple remapping functions can be
used in different ways to improve the performance
of two important scientific application kernels.
• The controller supports prefetching at the mem-

ory. Our results demonstrate that controller-based
prefetching often performs as well as simple next-
line prefetching in the L1 cache.
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The combination of these features can result in sub-
stantial program speedups: using scatter/gather remap-
ping and prefetching improves performance on the
NAS conjugate gradient benchmark by 67%. Impulse’s
performance impact should be even greater on super-
scalar machines, where memory becomes a bigger bot-
tleneck, and where non-memory instructions are effec-
tively cheaper.

Flexible remapping support in the Impulse con-
troller can be used to implement a variety of op-
timizations. In previous work [30], we showed that
the Impulse memory remappings can be used to dy-
namically build superpages and thereby reduce the
frequency of TLB faults. Impulse creates superpages
from non-contiguous user pages. Our simulations show
that this optimization improves the performance of five
SPECint95 benchmark programs by 5–20%.

Although this simulation study focuses on two sci-
entific kernels, the optimizations that we describe
should be applicable across a variety of memory-bound
applications. In particular, Impulse should be useful
in improving system-wide performance. For exam-
ple, Impulse can speed up messaging and interpro-
cess communication (IPC). Impulse’s support for scat-
ter/gather can remove the software overhead of gather-
ing IPC message data from multiple user buffers and
protocol headers. The ability to use Impulse to con-
struct contiguous shadow pages from non-contiguous
pages means that network interfaces need not perform
complex and expensive address translations. Finally,
fast local IPC mechanisms like LRPC [4] use shared
memory to map buffers into sender and receiver ad-
dress spaces, and Impulse could be used to support
fast, no-copy scatter/gather into shared shadow address
spaces.
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