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Abstract We exploit the standard tools and techniques of
the augmented version of the Bonora–Tonin superfield for-
malism to derive the off-shell nilpotent and absolutely anti-
commuting (anti-)Becchi–Rouet–Stora–Tyutin (BRST) and
(anti-)co-BRST symmetry transformations for the BRST-
invariant Lagrangian density of a self-dual bosonic system.
In the derivation of the full set of the above symmetry trans-
formations, we invoke the (dual-)horizontality conditions,
and (anti-)BRST- and (anti-)co-BRST-invariant restrictions
on the superfields that are defined on the (2, 2)-dimensional
supermanifold. The latter is parameterized by the bosonic
variable xμ (μ = 0, 1) and a pair of Grassmannian vari-
ables θ and θ̄ (with θ2 = θ̄2 = 0 and θ θ̄ + θ̄ θ = 0). The
dynamics of this system is such that, instead of the full (2, 2)-
dimensional superspace coordinates (xμ, θ, θ̄ ), we require
only the specific (1, 2)-dimensional super-subspace variables
(t, θ, θ̄ ) for its description. This is a novel observation in the
context of the superfield approach to the BRST formalism.
The application of the dual-horizontality condition, in the
derivation of a set of proper (anti-)co-BRST symmetries, is
also one of the new ingredients of our present endeavor where
we have exploited the augmented version of the superfield
approach to the BRST formalism.

1 Introduction

The model of a self-dual chiral boson is a widely studied
subject (see, e.g., [1–12]) because it finds its use in the
description of models of superstrings, quantum Hall effect,
W-gravities, and some of the two dimensional statistical sys-
tems. In a recent paper [13], this model has also been shown to
be a field-theoretical example for the Hodge theory because
this two (1 + 1)-dimensional (2D) system provides physi-
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cal realizations of the de Rham cohomological operators of
differential geometry in the language of its symmetry prop-
erties (and corresponding conserved charges). The purpose
of our present investigation is to apply the augmented ver-
sion of the Bonora–Tonin (BT)-superfield formalism [14–
19] to derive its proper nilpotent (anti-)Becchi–Rouet–Stora–
Tyutin (BRST) and (anti-)co-BRST symmetry transforma-
tions (which together lead to the derivation of a unique
bosonic symmetry transformation [13]). These symmetries
collectively lead to the physically conceivable realizations
of the cohomological operators.

The above superfield approach to the BRST formalism
is one of the geometrically intuitive methods that shed light
on the abstract mathematical properties associated with the
proper (anti-)BRST symmetries in the language of geometri-
cal objects on the supermanifold. Usually, within the frame-
work of this superfield approach, a given D-dimensional ordi-
nary gauge theory is generalized to a (D, 2)-dimensional
supermanifold where the superfields are defined correspond-
ing to the ordinary dynamical fields of a given ordinary gauge
theory. It is the (D, 2)-dimensional superspace coordinates1

Z M = (xμ, θ, θ̄ ) that characterize the (D, 2)-dimensional
supermanifold. The gauge-invariant restrictions on the super-
fields lead to the derivation of (anti-)BRST symmetry trans-
formations. On the other hand, the translational generators
(∂θ , ∂θ̄ ), along the Grassmannian directions (θ, θ̄ ), provide
the geometrical basis for the (anti-)BRST symmetries and
the corresponding conserved charges.

One of the decisive features of our present investigation is
the key observation that it is the super-subspace coordinates
that are good enough to define the super exterior derivative
and the supergauge connection in the description of the 2D
self-dual chiral bosonic system within the framework of the

1 In the definition of Z M = (xμ, θ, θ̄), the ordinary coordinates xμ

(with μ = 0, 1, 2, . . . , D − 1) are the bosonic variables of the D-
dimensional ordinary gauge theory and the pair of coordinates θ and θ̄

are the Grassmannian variables with their fermionic properties: θ2 =
θ̄2 = 0, θ θ̄ + θ̄ θ = 0.
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superfield formalism. In other words, even though we require
a (2, 2)-dimensional supermanifold to define the superfields
(corresponding to the 2D ordinary fields of the self-dual chi-
ral boson), the (dual-)horizontality conditions require (1, 2)-
dimensional super-subspace variables for their description
(see, e.g., Sects. 3, 6). This peculiarity arises because of
the fact that only one component of the “gauge” field (i.e.
λ = λ0 + λ1) is the dynamical as well as propagating field
and its orthogonal counterpart (λ0 − λ1) remains inert. This
is a novel observation in the superfield approach to a given
gauge theory (when the latter is discussed within the frame-
work of the BRST formalism). Stated explicitly, we note that
our superfields, corresponding to the 2D ordinary fields of
the chiral boson model, would be a function of the (2, 2)-
dimensional superspace variables Z M = (xμ, θ, θ̄ ). How-
ever, the super exterior derivative d̃ and the super 1-form con-
nection Ã(1) (which play important roles in the restrictions
on the appropriate superfields) would be defined in terms
of the (1, 2)-dimensional super-subspace variables (t, θ, θ̄ )

[cf. (19) below].
It is the above cited novel feature that has propelled us

to pursue our present investigation within the framework of
our augmented version of the BT-superfield formalism so
that we could derive the (anti-)BRST and (anti-)co-BRST
symmetry transformations of this theory as well as provide
the geometrical interpretations for them. One of the key sig-
natures of a gauge theory is the existence of (anti-)BRST-
invariant Curci–Ferrari (CF) type restrictions [20] when this
gauge theory is discussed within the framework of the super-
field approach to the BRST formalism. For our 2D self-dual
chiral bosonic system, we find that the CF-type conditions
are trivial and they are found to be (anti-)BRST as well
as (anti-)co-BRST invariant, respectively [in the context of
(anti-)BRST and (anti-)co-BRST symmetries]. Ultimately, in
our present endeavor, we obtain the proper (i.e. nilpotent and
absolutely anticommuting) (anti-)BRST and (anti-)co-BRST
symmetries for the 2D system under consideration and pro-
vide the geometrical basis for the symmetries and conserved
charges. It is gratifying to state that we have checked that
our proposal for the Hodge-duality operation on the (1, 2)-
dimensional super-subspace differentials (and their wedge
products) turns out to be correct and it leads to the derivation
of proper (anti-)co-BRST symmetries and (anti-)co-BRST-
invariant CF-type condition. The latter is a decisive feature
of the BRST approach to a gauge theory.

As a background of our further discussions, we state a few
facts about the 2D self-dual chiral bosonic model. To start
with, the covariant version of the self-dual chiral bosonic
system is non-gauge invariant but, after the inclusion of
the Wess–Zumino term, it becomes a gauge-invariant theory
(see, e.g., Sect. 2). In other words, the inclusion of the Wess–
Zumino term converts the second-class constraints of the
original theory into their counterpart first-class constraints

(thereby rendering the theory gauge invariant). To corrob-
orate the above statements, let us begin with the Lorentz
covariant version of Lagrangian density (see e.g. [21]) of the
self-dual chiral boson in two (1 + 1) dimensions of space-
time2

L(0) = 1

2
∂μφ ∂μφ + λμ(εμν + ημν) ∂νφ, (1)

where the scalar field φ obeys the self-duality condition (i.e.
φ̇ = φ′) due to the following Euler–Lagrange (EL) equation
of motion:

(εμν + ημν) ∂νφ = 0 �⇒ φ̇ = φ′. (2)

The other covariant form of the EL equation of motion,

�φ + (εμν + ημν) ∂νλμ = 0, (3)

implies the masslessness condition �φ = 0 and the self-
duality condition λ̇ = λ′ where λ = λ0+λ1. Thus, it is clear
that there are two self-dual fields (i.e. φ̇ = φ′, λ̇ = λ′) in
our theory at the classical level. The non-Lorentz covariant
form of a single chiral boson was written in [8], which was
given in Lorentz covariant form in a couple of very interesting
papers [22,23]. It can be checked that, in the component form
[with ημν = diag (+1,−1) = ημν], we have the following
expression for this starting Lagrangian density (1):

L(0) = 1

2
(φ̇2 − φ′2)+ λ (φ̇ − φ′), (4)

which is normally used for the description of the self-dual
chiral boson.3 We re-emphasize that it is the combination
λ = λ0 + λ1 that participates in the description of the self-
dual chiral boson but its orthogonal counterpart (λ0 − λ1)
does not appear in the Lagrangian density. In our further
discussions, we shall focus only on (λ = λ0 + λ1) as the
propagating “gauge” field (see, e.g., [21] for details) and shall
completely ignore the non-propagating (λ0−λ1) component
(see Sect. 3 below) of the gauge field.

Our present investigation is essential on the following
counts. First, the self-dual chiral boson is an interesting
model, which is required in many physical systems of impor-
tance. Thus, anything novel about this model is interesting
in itself. We observe some novelties in the application of
the augmented version of superfield approach to the BRST
formalism for this system. As it turns out, we need only

2 We adopt here the convention and notations such that the 2D flat
Minkowski spacetime is endowed with a flat metric with signatures
(+1,−1) and the 2D Levi-Civita tensor is chosen to satisfy εμν εμν =
−2 !, εμν εμλ = − δλ

μ with ε01 = +1 = −ε01. The overdot and prime
on the fields, throughout the text, always correspond to the partial deriva-
tives w.r.t. time and space variables, respectively.
3 At this stage, this theory is non-gauge invariant. However, after the
inclusion of the Wess–Zumino term, it becomes gauge invariant (see,
e.g., Sect. 2 below).
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(1, 2)-dimensional super-subspace variables for its charac-
terization. Second, it was challenging for us to apply the
theoretical arsenal of the augmented version of the super-
field formalism to this system where only one component
(λ = λ0+λ1) of the gauge field couples with the matter field
and its orthogonal component remains in the background.
In our earlier applications of the superfield formalism (see,
e.g., [16–19]) to (non-)Abelian gauge theories, we have never
come across the peculiarity of the 2D chiral bosonic system
under consideration. Finally, it was very important for us to
apply and check the sanctity of the Hodge-duality operation
on the (2, 2)-dimensional supermanifold in the determina-
tion of (anti-)co-BRST symmetries that are present in the
theory. As it turns out for our present theory, we need only
(1, 2)-dimensional super-subspace variables (t, θ, θ̄ ) for its
description (and the Hodge duality is applied on these coor-
dinates only). We have accomplished all the above goals in
our present endeavor.

The contents of our present endeavor are organized as
follows. In Sect. 2, we discuss the bare essentials of the
(anti-)BRST symmetry transformations (and corresponding
conserved charges) for the self-dual chiral boson in the
Lagrangian formulation. Section 3 is devoted to the deriva-
tion of the above (anti-)BRST transformations using the aug-
mented version of the BT-superfield formalism. In Sect. 4, we
deal with the proof of the (anti-)BRST invariance of the super
Lagrangian density and capture the nilpotency and abso-
lute anticommutativity properties of the (anti-)BRST charges
within the framework of our superfield approach. Section 5
contains a brief synopsis of the (anti-)co-BRST symmetries
(and corresponding charges) of our present theory. We derive
these symmetries in Sect. 6 using the superfield formalism.
Section 7 deals with the (anti-)co-BRST invariance of the
Lagrangian density and nilpotency of the (anti-)co-BRST
charges within the framework of our superfield approach.
Finally, we make some concluding remarks and point out a
few future directions for further investigations in Sect. 8.

In Appendix A, we discuss the key differences between
the nilpotent (anti-)BRST and (anti-)co-BRST symmetries
and our Appendices B and C are devoted to the explicit com-
putations of (i) the dual-horizontality condition, and (ii) the
auxiliary variable B.

2 Preliminary: nilpotent (anti-)BRST symmetries
in Lagrangian formulation

Let us begin with the (2D) second-order Lagrangian density
(Lb) for the description of a single self-dual chiral boson
within the framework of BRST formalism. This effective
Lagrangian density of the 2D chiral boson (with the inclusion
of the Wess–Zumino term) is as follows (see, e.g., [13,24]
for details):

Lb = φ̇2

2
− v̇2

2
+ v̇ (v′ − φ′)+ λ

[
φ̇ − v̇ + v′ − φ′

]

− 1

2
(φ′ − v′)2 + B (λ̇− v − φ)

+ B2

2
− i ˙̄C Ċ + 2 i C̄ C,

≡ φ̇2

2
− 1

2

[
v̇ − (v′ − φ′)

]2 + λ
[
φ̇ − v̇ + v′ − φ′

]

+ B (λ̇− v − φ)+ B2

2
− i ˙̄C Ċ + 2 i C̄ C, (5)

where φ̇ = ∂φ/∂t, v̇ = ∂v/∂t, ˙̄C = ∂C̄/∂t, λ̇ = ∂λ/

∂t, etc, are the generalized “velocities” with respect to the
evolution parameter t , B is the Nakanashi–Lautrup auxil-
iary field, the fermionic (C2 = C̄2 = 0, C C̄ + C̄ C = 0)
(anti-)ghost fields (C̄)C are required for the validity of unitar-
ity in our theory and the notations φ′ = (∂φ/∂x), v′ = (∂v/

∂x) stand for the single space derivative on the 2D chiral
boson field φ and Wess–Zumino (WZ) field v, respectively.
We further note that B (λ̇ − v − φ) + 1

2 B2 = − 1
2 (λ̇ −

v − φ)2 is the gauge-fixing term for the gauge field λ(x)

where B = − (λ̇ − v − φ). The above Lagrangian den-
sity is the (anti-)BRST-invariant generalization of (4) and it
respects the following off-shell nilpotent and infinitesimal
(anti-)BRST symmetry transformations (s(a)b):

sabφ = −C̄, sabv = −C̄, sabλ = ˙̄C, sabC̄ = 0,

sabC = − i B, sab B = 0,

sbφ = −C, sbv = −C, sbλ = Ċ, sbC̄ = + i B,

sbC = 0, sb B = 0. (6)

In fact, it can be explicitly checked that the (anti-)BRST-
invariant Lagrangian density (5) transforms, under s(a)b, to
the total time derivatives as

sb Lb = ∂

∂t

[
B Ċ

]
, sab Lb = ∂

∂t

[
B ˙̄C]

. (7)

Thus, the action integral S = ∫
dx

∫
dt Lb remains invariant

under the above (anti-)BRST transformations. Further, it is
straightforward to note that the above (anti-)BRST symmetry
transformations (6) are off-shell nilpotent (s2

b = s2
ab = 0)

and absolutely anticommuting (sb sab+ sab sb = 0) in nature
without any use of the Euler–Lagrange (EL) equations of
motion:

Ḃ = φ̇ − v̇ + v′ − φ′, B = v + φ − λ̇, C̈ + 2C = 0,

−B = φ̈ + λ̇− v̇′ − λ′ − (φ′′ − v′′), ¨̄C + 2 C̄ = 0,

B = v̈ − 2 v̇′ + φ̇′ + λ̇− λ′ − (φ′′ − v′′), (8)

which emerge from the Lagrangian density (5). The off-shoot
of the above equations is the observation that B̈ + 2B = 0,
because (−2B) = φ̈ − v̈ + v̇′ − φ̇′, which is equal to B̈
(as is evident from the first entry of the above equations:
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Ḃ = φ̇ − v̇ + v′ − φ′). We shall see, later on, that this rela-
tion is something like the Curci–Ferrari type restriction [20]
because it plays an important role in proving the anticommu-
tativity property.

By exploiting the standard tricks and techniques of
Noether’s theorem, it can be checked that the conserved
(Q̇(a)b = 0), nilpotent (Q2

(a)b = 0), and absolutely anti-

commuting (Qb Qab+ Qab Qb = 0) (anti-)BRST charges:4

Qb =
∫

dx
[
BĊ − (φ̇ − v̇ + v′ − φ′) C

]

≡
∫

dx
[
B Ċ − Ḃ C

]
,

Qab =
∫

dx
[
B ˙̄C − (φ̇ − v̇ + v′ − φ′) C̄

]

≡
∫

dx
[
B ˙̄C − Ḃ C̄

]
(9)

are the generators of the (anti-)BRST symmetry transforma-
tions (6). Using this property, it is straightforward to prove
the following relationships:

sb Qb = −i {Qb, Qb} = 0,

sab Qab = −i {Qab, Qab} = 0,

sb Qab = −i {Qab, Qb} = 0,

sab Qb = −i {Qb, Qab} = 0, (10)

which demonstrate the nilpotency and absolute anticommu-
tativity property of the conserved (anti-)BRST charges Q(a)b.
In the proof of the conservation of the charges Q(a)b, one has
to exploit the off-shoot of the equation of motion (8), which
shows that B̈ + 2B = 0. In the forthcoming two subse-
quent sections, we shall capture these properties within the
framework of our augmented version of the BT-superfield
approach.

We end this section with the remark that there exist global
infinitesimal ghost-scale symmetry transformations5 sg C =
C, sg C̄ = − C̄, sg
 = 0, (
 = φ, v, λ) in the theory
which are generated by the Noether conserved ghost charge

Qg = −i
∫

dx
[
(C ˙̄C + C̄ Ċ)

]
. It is elementary to check that

the ghost charge Qg satisfies the following algebra with the
nilpotent and conserved (anti-)BRST charges:

i
[
Qg, Qb

] = Qb, i
[
Qg, Qab

] = − Qab. (11)

4 Our expressions for the off-shell nilpotent (anti-)BRST charges match
with [24] but we have a slight difference from the corresponding expres-
sions quoted in [13] at the conceptual level.
5 To be precise, the fields of our present theory transform as 
 →
e0 � 
, C → e1� C, C̄ → e−1� C̄ where � is a global scale infinites-
imal transformation parameter and the generic field 
 = φ, v, λ. The
numerals in the exponents denote the ghost number of the fields. We set
� = 1 to obtain the simpler form of the infinitesimal version of these
transformations as: sgC = C, sgC̄ = −C̄, sg
 = 0, and the algebra
sg Qb = −i[Qb, Qg] = +Qb, sg Qab = −i[Qab, Qg] = −Qab.

The above algebra, together with the algebra quoted in
(10), obeys the standard BRST algebra amongst the nilpotent
(anti-)BRST charges Q(a)b and the ghost charge Qg , namely

{Q(a)b, Q(a)b} = Q2
(a)b = 0, {Qb, Qab} = 0,

i
[
Qg, Qb

] = Qb, i
[
Qg, Qab

] = − Qab, (12)

which establishes that the ghost number of the BRST charge
is (+1) and that of the anti-BRST charge is (−1) and the
(anti-)BRST charges are nilpotent of order two. We further
note that one can derive the on-shell nilpotent (anti-)BRST
symmetry transformations from (6) by replacing B = − (λ̇−
v − φ). These symmetry transformations are:

sabφ = −C̄, sab v = −C̄, sabλ = ˙̄C,

sab C̄ = 0, sab C = + i (λ̇− v − φ),

sb φ = −C, sb v = −C, sb λ = Ċ,

sb C = 0, sb C̄ = − i (λ̇− v − φ). (13)

For the sake of brevity, we have adopted the same notations
for the off-shell as well as on-shell (anti-)BRST symmetry
transformations. We further observe that

s2
ab C = − i

[ ¨̄C + 2 C̄
]
, s2

b C̄ = + i
[

C̈ + 2 C
]
. (14)

The terms of the r.h.s. of the above transformations are
zero on-shell where the equations of motion ¨̄C + 2 C̄ =
0, C̈ + 2 C = 0 are valid. Similarly, we point out that
the absolute anticommutativity property of (13) is satisfied
if and only if (8) are taken into account. The above on-shell
nilpotent symmetry transformations are true symmetry trans-
formations for the following Lagrangian density (without the
presence of the Nakanishi–Lautrup field B):

L(0)
b =

φ̇2

2
− v̇2

2
+ v̇ (v′ − φ′)+ λ

[
φ̇ − v̇ + v′ − φ′

]

− 1

2
(φ′ − v′)2 − 1

2
(λ̇− v − φ)2 − i ˙̄C Ċ

+ 2 i C̄ C, (15)

because we have the following transformations:

sb L(0)
b = −

∂

∂t

[
(λ̇− v − φ) Ċ],

sab L(0)
b = −

∂

∂t

[
(λ̇− v − φ) ˙̄C]. (16)

The above observations demonstrate that the action integral
S = ∫

d2x L(0)
b remains invariant under the on-shell nilpotent

symmetry transformations (13). The expressions for the on-
shell nilpotent conserved charges Q(a)b can be derived from
(9) by the replacements B = − (λ̇ − v − φ) ≡ − 1

2 [(φ̈ −
v̈) − (φ̇′ − v̇′)] and Ḃ = (φ̇ − v̇) − (φ′ − v′). The stage
is now set to discuss the original theory (1) at the quantum
level. In this connection, we note that our original theory
(1) has been modified due to the presence of the WZ field
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v. Within the framework of BRST formalism, the physical
state |phys > of the theory is defined as Q(a)b |phys >= 0
at the quantum level. Using the expressions for Q(a)b from
(9), it is clear that B |phys >= 0, Ḃ |phys >= 0, due to
the fact that the (anti-)ghost fields are decoupled from the
rest of the theory and they themselves do not produce any
physically meaningful constraints on the theory. From the EL
equations of motion (8), it is clear that the above conditions
imply that [(φ̇− v̇)− (φ′ − v′)] |phys >= 0 and [(φ̈− v̈)−
(φ̇′ − v̇′)] |phys >= 0. With the redefinition φ̃ = (φ − v),
it is evident that, ultimately, we have the conditions on the

physical state (
˙̃
φ− φ̃′) |phys >= 0 and d

dt (
˙̃
φ− φ̃′) |phys >

= 0, which imply the self-duality condition and its time-
evolution invariance.6 Thus, at the quantum level, in reality,
there exists only a single self-dual chiral boson φ and the
duality condition λ̇ = λ′ does not appear at the quantum
level in any physically meaningful limit.

We shall concentrate on the Lagrangian density (15) for
our further discussions on the (anti-)dual-BRST symmetry
transformations (Sect. 5).

3 (Anti-)BRST symmetries: superfield formalism

To derive the (anti-)BRST symmetry transformations (6)
within the framework of the augmented superfield formal-
ism, first of all, we generalize the basic variables of the 2D
theory onto the (2, 2)-dimensional supermanifold as follows:

φ(x) −→ �̃(x, θ, θ̄ ), v(x) −→ Ṽ (x, θ, θ̄ ),

C(x) −→ F(x, θ, θ̄ ), C̄(x) −→ F̄(x, θ, θ̄ ),

λ(x) −→ λ̃(x, θ, θ̄ ), (17)

where Z M = (xμ, θ, θ̄ ) is the superspace coordinate that
parameterizes the above (2, 2)-dimensional superfield where,
in the spacetime bosonic pair (x, t), t is the bosonic (evolu-
tion) parameter of the theory and the set (θ, θ̄ ) is a pair of
Grassmannian variables (with θ2 = θ̄2 = 0 and θ θ̄ + θ̄ θ =
0). The gauge variable of the 2D effective theory is λ(x) [i.e.
λ(x) = λ0(x)+λ1(x)] which couples with the chiral bosonic
field φ(x) and its orthogonal counterpart [λ0(x) − λ1(x)]
remains inert in our whole discussion. Thus, we define the
appropriate 1-form gauge connection as

A(1) = dxμ λμ ≡ 1

2
(dx0 + dx1) (λ0 + λ1)

+ 1

2
(dx0 − dx1) (λ0 − λ1)

≡ dx+ (λ0 + λ1)+ dx− (λ0 − λ1) ≡ dt λ, (18)

6 The WZ field v is introduced by hand (i.e. φ −→ φ−v, λ −→ λ+v̇)
to convert the Lagrangian density (4) into (5) (modulo the gauge-fixing
and FP ghost terms). The redefinition of φ gets rid of the WZ field v

from our theory at the quantum level.

where we have ignored the dx− component because of our
preceding discussions and have identified the dx+ compo-
nent with the differential dt that corresponds to the evolution
parameter of our theory. The exterior derivative d = dt ∂t

(with d2 = 0) has been taken in our theory because of
the above arguments. It is evident that d A(1) = 0 due to
(dt ∧ dt) = 0. These 1-forms of geometrical interest can be
generalized onto our chosen (2, 2)-dimensional supermani-
fold as

d −→ d̃ = dZ M∂M ≡ dt ∂t + dθ ∂θ + dθ̄ ∂θ̄ , d̃2 = 0,

A(1) −→ Ã(1) = dZ M AM

≡ dt λ̃(x, θ, θ̄ )+ dθ F̄(x, θ, θ̄ )+ dθ̄ F(x, θ, θ̄ ), (19)

where ∂M = ∂/∂ Z M ≡ (∂t , ∂θ , ∂θ̄ ) corresponds to the set of
super-subspace partial derivatives corresponding to the (1, 2)-
dimensional super-subspace coordinates (t, θ, θ̄ ) and AM ≡
(λ̃ (x, θ, θ̄ ), F(x, θ, θ̄ ), F̄(x, θ, θ̄ )) is the vector super-
multiplet of superfields defined on the (2, 2)-dimensional
supermanifold, which is parametrized by (x+, x−, θ, θ̄ ) =
(t, x, θ, θ̄ ) in explicit components of the spacetime variables
(t, x) and Grassmannian variables (θ, θ̄ ). We re-emphasize
that the dynamics of our problem is such that we require only
the superspace coordinates (t, θ, θ̄ ). This is precisely the rea-
son that we have the kind of generalizations (19), which are
confined to (1, 2)-dimensional super-submanifold only.

The superfields (17) can be expanded along the full Grass-
mannian directions (i.e., 1, θ, θ̄ , θ θ̄ ) of the full (2, 2)-
dimensional supermanifold as

Ṽ (x, θ, θ̄ ) = v(x)+ i θ F̄2(x)+ i θ̄ f2(x)+ i θ θ̄ b2(x),

�̃(x, θ, θ̄ ) = φ(x)+ i θ F̄1(x)+ i θ̄ f1(x)+ i θ θ̄ b1(x),

F(x, θ, θ̄ ) = C(x)+ i θ B̄1(x)+ i θ̄ B1(x)+ i θ θ̄ s(x),

F̄(x, θ, θ̄ ) = C̄(x)+ i θ B̄2(x)+ i θ̄ B2(x)+ i θ θ̄ s̄(x),

λ̃(x, θ, θ̄ ) = λ(x)+ θ R̄(x)+ θ̄ R(x)+ i θ θ̄ S(x), (20)

where the secondary variables (R, R̄, s, s̄, f1, F̄1, f2, F̄2) on
the r.h.s. are fermionic and (S, B1, B̄1, B2, B̄2, b1, b2) are the
bosonic secondary fields, respectively. It is obvious that we
have the basic fields of the effective theory (λ, φ, v, C, C̄),
which are the limiting cases when we put θ = θ̄ = 0. We shall
derive the secondary fields in terms of the basic fields (as well
as auxiliary fields) of the effective 2D theory by exploiting
some physically motivated restrictions. First of all, let us
exploit the horizontality condition (HC) which requires that

d̃ Ã(1) = dA(1) = 0, (21)

where the explicit form of the l.h.s. (i.e. d̃ Ã(1)) is

(dt ∧ dθ)
[
∂t F̄ − ∂θ λ̃

]+ (dt ∧ dθ̄ )
[
∂t F − ∂θ̄ λ̃

]

− (dθ ∧ dθ̄ )
[
∂θ F − ∂θ̄ F̄

]− (dθ ∧ dθ) ∂θ F̄

− (dθ̄ ∧ dθ̄ ) ∂θ̄ F. (22)
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Setting the coefficients of the differentials (dt ∧ dθ), (dt ∧
dθ̄ ), (dθ ∧ dθ), (dθ ∧ dθ̄ ), (dθ̄ ∧ dθ̄ ) equal to zero, we get
the following relationships amongst the secondary fields and
basic (as well as auxiliary) fields of our present theory:

B̄1 + B2 = 0, B1 = B̄2 = 0, s = 0,

R = Ċ, R̄ = ˙̄C, S = Ḃ, s̄ = 0, (23)

where we have used the expansions from (20). It is essential
to point out that when we put the coefficients of (dθ ∧ dθ̄ )
equal to zero, we obtain the Curci–Ferrari type of restriction
B̄1 + B2 = 0, which is trivial for our simple theory. If we
choose B2 = B and B̄1 = −B, we obtain the following
explicit expansions for the superfields (20):

λ̃(h)(x, θ, θ̄ ) = λ+ θ ˙̄C + θ̄ Ċ + θ θ̄ (i Ḃ)

≡ λ+ θ (sab λ)+ θ̄ (sb λ)+ θ θ̄ (sb sab λ),

F (h)(x, θ, θ̄ ) = C + θ (−i B)+ θ̄ (0)+ θ θ̄ (0)

≡ C + θ (sabC)+ θ̄ sb (C)+ θ θ̄ (sb sab C),

F̄ (h)(x, θ, θ̄ ) = C̄ + θ (0)+ θ̄ (i B)+ θ θ̄ (0)

≡ C̄ + θ (sab C̄)+ θ̄ (sbC̄)+ θ θ̄ (sb sab C̄),

(24)

where the superscript (h) stands for the expansion of the
superfields after the application of HC. A close look at (24)
establishes that we have already derived the following:

sb λ = Ċ, sab λ = ˙̄C, sb sab λ = i Ḃ,

sb C = 0, sab C = −i B, sb sab C = 0,

sb C̄ = i B, sab C̄ = 0, sb sab C̄ = 0. (25)

The requirement of nilpotency, in the above, implies that
sb B = 0 and sab B = 0.

To obtain the off-shell nilpotent and absolutely anticom-
muting (anti-)BRST symmetry transformations for φ(t) and
v(t) variables, we have to exploit the key ideas of the
augmented version of the BT-superfield formalism [16–19]
where we demand that all the (anti-)BRST-invariant quan-
tities should remain independent of the “soul” coordinates
(i.e., θ and θ̄ ) when they are generalized to the superman-
ifold. Thus, we invoke the following (anti-)BRST-invariant
restrictions on the (super)fields:

λ̃(h)(x, θ, θ̄ )+ ˙̃�(x, θ, θ̄ ) = λ(x)+ φ̇(x),

λ̃(h)(x, θ, θ̄ )+ ˙̃V (x, θ, θ̄ ) = λ(x)+ v̇(x), (26)

which have been taken due to our observations that s(a)b
[
λ(x)

+ φ̇(x)
]= 0 and s(a)b

[
λ(x) + v̇(x)

]= 0. We note that the
(anti-)BRST-invariant restrictions (26) and HC are inter-
twined together because the expansion for λ̃(h)(x, θ, θ̄ ) has
to be taken from (24), which has been derived after the appli-
cation of the HC [i.e. d̃ Ã(1) = dA(1) = 0] in our theory.

Explicit substitution of (20) and (24) into (26) leads to the
following relationships:

f1 = iC, F̄1 = i C̄, b1 = − B,

f2 = iC, F̄2 = i C̄, b2 = − B. (27)

Thus, we have already obtained the expressions for the sec-
ondary fields in terms of the basic fields and auxiliary field
(B). Finally, we have the following expansions:

�̃(b)(x, θ, θ̄ ) = φ + θ (− C̄)+ θ̄ (−C)+ θ θ̄ (− i B)

≡ φ + θ (sab φ)+ θ̄ (sb φ)+ θ θ̄ (sb sab φ),

Ṽ (b)(x, θ, θ̄ ) = v + θ (− C̄)+ θ̄ (−C)+ θ θ̄ (− i B)

≡ v + θ (sab v)+ θ̄ (sb v)+ θ θ̄ (sb sab v),

(28)

where the superscript (b) stands for the expansions of
the supervariables after the application of the nilpotent
(anti-)BRST-invariant restrictions.

A close look at the above expansions yield the following
(anti-)BRST symmetry transformations for the fields φ(t)
and v(t):

sb φ = −C, sab φ = − C̄, sb sab φ = − i B,

sb v = −C, sab v = − C̄, sb sab v = − i B. (29)

We draw the conclusion that we have already derived the
full set of off-shell nilpotent and absolutely anticommuting
(anti-)BRST symmetry transformations7 for the chiral boso-
nic system within the framework of the superfield approach
to the BRST formalism ([f. (25), (29)]. We would like to close
this section with the remark that there is a mapping between
(anti-)BRST symmetry transformations and the translational
generators along the Grassmannian directions of the full (2,
2)-dimensional supermanifold as can be seen from the fol-
lowing relationships:

∂

∂θ
�(h,b)(x, θ, θ̄ ) |θ̄=0 = sab ω(x),

∂

∂θ̄
�(h,b)(x, θ, θ̄ ) |θ=0 = sb ω(x), (30)

where �(h,b)(x, θ, θ̄ ) is the generic superfield [obtained after
the application of the HC and (anti-)BRST invariant restric-
tions] and ω(x) is the generic field of the effective 2D system.
It is evident that the nilpotency and absolute anticommuta-
tivity properties of the (anti-)BRST transformations s(a)b are
intimately connected with such kinds of properties associ-
ated with the Grassmannian translational generators ∂θ and
∂θ̄ (i.e. ∂θ

2 = ∂θ̄
2 = 0, ∂θ ∂θ̄ + ∂θ̄ ∂θ = 0).

7 The on-shell nilpotent version of the (anti-)BRST symmetry transfor-
mations can be also derived from the superfield approach if we replace
the Nakanishi–Lautrup field by−(λ̇− v−φ) [i.e. B = −(λ̇− v−φ)].
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4 (Anti-)BRST invariance, nilpotency, and
anticommutativity: superfield approach

In this section, we provide the geometrical basis for the exis-
tence of the nilpotency and absolute anticommutativity prop-
erties of the (anti-)BRST charges and the (anti-)BRST invari-
ance of the Lagrangian density (5) (and the corresponding
action) within the framework of the superfield formalism.
Let us begin with the (anti-)BRST invariance of the action
integral S = ∫

dx
∫

dt Lb, illustrated in (7). Having obtained
the expressions in (24) and (28), it can readily be seen that
the Lagrangian density (5) can be generalized to the (2, 2)-
dimensional supermanifold in the following manner:

Lb −→ L̃b = 1

2

[ ˙̃
�(b) ˙̃�(b) − ˙̃V (b) ˙̃V (b)

]

+ ˙̃V (b)
[
Ṽ ′(b) − �̃′(b)

]− 1

2

[
�̃′(b) − Ṽ ′(b)

]2

+ λ̃(h)
[ ˙̃
�(b) − ˙̃V (b) + Ṽ ′(b) − �̃′(b)

]

+ B(x)
[ ˙̃
λ(h) − Ṽ (b) − �̃(b)

]+ B2(x)

2

− i ˙̄F (h) Ḟ (h) + 2 i F̄ (h) F (h), (31)

where it is elementary to check that we have

Ṽ ′(b)(x, θ, θ̄ )− �̃′(b)(x, θ, θ̄ ) = v′(x)− φ′(x),

˙̃
�(b)(x, θ, θ̄ )− ˙̃V (b)(x, θ, θ̄ )+ Ṽ ′(b)(x, θ, θ̄ )

− �̃′(b)(x, θ, θ̄ ) = φ̇(x)− v̇(x)+ v′(x)− φ′(x). (32)

Now, it is straightforward to observe that

∂

∂θ̄
L̃b| θ=0 = ∂

∂t

[
B Ċ

]
,

∂

∂θ
L̃b| θ̄=0 =

∂

∂t

[
B ˙̄C]

, (33)

which matches with (7) obtained in Sect. 2. It is worthwhile
to mention that, in the above computation, we have first cal-
culated all the θ and θ̄ dependent terms separately and then
we have taken the derivatives with respect to θ̄ and θ .

In view of the mapping (30), it is self-evident that we have
obtained the following:

∂

∂θ̄
L̃b| θ=0 ←→ sb Lb,

∂

∂θ
L̃b| θ̄=0 ←→ sab Lb. (34)

Geometrically, we have the following interpretation. The
BRST and anti-BRST invariance of the Lagrangian density
in the ordinary space can be explained by the shift transfor-
mations of the super Lagrangian density along the θ̄ and θ

directions of the supermanifold, respectively, such that the
outcome is a total spacetime derivative in the ordinary space.
In other words, the physical (anti-)BRST invariance can be
mathematically stated as the observation that the operation
of the derivative w.r.t. Grassmannian variables (i.e. ∂θ̄ and

∂θ ) on the super Lagrangian density (31) produces the total
time derivatives in the ordinary space.

Now we dwell on the proof of the nilpotency and anti-
commutativity of the (anti-)BRST charges within the frame-
work of superfield formulation. First of all, it can be clearly
checked that the (anti-)BRST charges can be expressed in
terms of the expansions (24) and (28) in the following two
equivalent forms:

Qab =
∫

dx
[ ∂

∂θ

[
i (F̄ (h) Ḟ (h) + F (h) ˙̄F (h))

]| θ̄=0

]

≡
∫

dx
[ ∫

dθ
[
i (F̄ (h) Ḟ (h) + F (h) ˙̄F (h))

]| θ̄=0

]
,

Qb =
∫

dx
[ ∂

∂θ̄

[− i (F̄ (h) Ḟ (h) + F (h) ˙̄F (h))
]| θ=0

]

≡
∫

dx
[ ∫

d θ̄
[− i (F̄ (h) Ḟ (h) + F (h) ˙̄F (h))

]| θ=0

]
.

(35)

In view of the mappings (30), (35) can be translated into
the ordinary space in terms of the (anti-)BRST symmetry
transformations as

Qab =
∫

dx sab

[
i (C̄ Ċ + C ˙̄C)

]
,

Qb =
∫

dx sb

[
− i (C̄ Ċ + C ˙̄C)

]
. (36)

It is now elementary to prove that ∂θ Qab = 0, ∂θ̄ Qb = 0 and
sab Qab = 0, sb Qb = 0 [cf. (35), (36)]. These relationships
provide a connection between the nilpotency property associ-
ated with ∂θ

2 = ∂θ̄
2 = 0 and s2

(a)b = 0. Furthermore, the def-
inition of generators in terms of conserved charges sb Qb =
− i {Qb, Qb} = 0 and sab Qab = − i {Qab, Qab} = 0
prove the nilpotency of the charges Q(a)b in a subtle manner.

In view of expansions in (24) and (28), there are other
ways to express the (anti-)BRST charges. These are explicitly
written as follows:

Qab =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(
i λ̃(h) F̄ (h)

)]
,

Qab =
∫

dx
[ ∂

∂θ̄

(
i ˙̄F (h) F̄ (h)

)]
,

Qab =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(− i ˙̃�(b) F̄ (h)
)]

,

Qab =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(− i ˙̃V (b) F̄ (h)
)]

,

Qb =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(
i λ̃(h) F (h)

)]
,

Qb =
∫

dx
[ ∂

∂θ

(− i Ḟ (h) F (h)
)]

,

Qb =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(− i ˙̃�(b) F (h)
)]

,

Qb =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(− i ˙̃V (b) F (h)
)]

, (37)

123



3025 Page 8 of 16 Eur. Phys. J. C (2014) 74:3025

which can be translated into the ordinary space in terms of
symmetries s(a)b as follows:

Qab =
∫

dx
[
sb sab (i λ C̄)

]
,

Qab =
∫

dx
[
sb (i ˙̄C C̄)

]
,

Qab =
∫

dx
[
sb sab (−i φ̇ C̄)

]
,

Qab =
∫

dx
[
sb sab (−i v̇ C̄)

]
,

Qb =
∫

dx
[
sb sab (i λ C)

]
,

Qb =
∫

dx
[
sab (− i Ċ C)

]
,

Qb =
∫

dx
[
sb sab (−i φ̇ C)

]
,

Qb =
∫

dx
[
sb sab (−i v̇ C̄)

]
. (38)

The above expressions prove the nilpotency and absolute
anticommutativity in a very simple manner. This is due
to the fact that ∂θ

2 = ∂θ̄
2 = 0, ∂θ ∂θ̄ + ∂θ̄ ∂θ = 0.

For instance, it can be seen that Qb =
∫

dx sab (− i Ċ C)

implies that sab Qb = 0 due to the nilpotency of sab. How-
ever, if we exploit the definition of the generator sab Qb =
− i {Qb, Qab}, we observe that the nilpotency of sab (i.e.
s2

ab = 0) is also connected with the absolute anticommutativ-
ity of the (anti-)BRST charges (i.e. {Qb, Qab} = 0). Similar
explanations can be provided for all the other expressions for
the (anti-)BRST charges which are listed in (38).

We close this section with the remarks that the nilpotency
and absolute anticommutativity of the (anti-)BRST symme-
try transformations (s2

(a)b = 0, sb sab+sab sb = 0) as well as

the (anti-)BRST charges (Q2
(a)b = 0, Qb Qab + Qab Qb =

0) owe their origin to the key properties (∂θ
2 = ∂θ̄

2 =
0, ∂θ ∂θ̄ + ∂θ̄ ∂θ = 0) of the translational generators (∂θ , ∂θ̄ )
along the Grassmannian directions (θ, θ̄) of the superman-
ifold on which our theory is considered to be built. Fur-
thermore, we note that the nilpotency and anticommutativ-
ity properties are intertwined together in a beautiful fash-
ion within the framework of the augmented version of the
BT-superfield formalism where one property depends on the
other and vice versa.

5 (Anti-)dual BRST symmetries: a brief synopsis

The (anti-)BRST-invariant Lagrangian density (15) respects
another set of off-shell nilpotent (s2

(a)d = 0) and abso-
lutely anticommuting (sd sad + sad sd = 0) symmetry trans-
formations (s(a)d ). These transformations are called the
(anti-)dual BRST [or (anti-)co-BRST] symmetry transfor-

mations because the gauge-fixing term8 (λ̇− v−φ) remains
invariant under it. These transformations are listed, thus:

sad λ = C, sad φ = 1

2
Ċ, sad v = 1

2
Ċ,

sad C = 0, sad C̄ = i

2
(φ̇ − v̇ + v′ − φ′),

sad (φ̇ − v̇ + v′ − φ′) = 0,

sd λ = C̄, sd φ = 1

2
˙̄C, sd v = 1

2
˙̄C,

sd C̄ = 0, sdC = − i

2
(φ̇ − v̇ + v′ − φ′),

sd (φ̇ − v̇ + v′ − φ′) = 0, (39)

where s(a)d are the (anti-)dual BRST symmetry transforma-
tions. One can explicitly check that the Lagrangian density
(15) transforms to the total time derivatives as

sd L(0)
b =

∂

∂t

[ ˙̄C
2

(φ̇ − v̇ + v′ − φ′)
]
,

sad L(0)
b =

∂

∂t

[ Ċ

2
(φ̇ − v̇ + v′ − φ′)

]
. (40)

The above observations demonstrate that the action integral
S = ∫

dx
∫

dt Lb remains invariant under the transforma-
tions s(a)d for the physically meaningful fields that vanish
off at infinity. According to Noether’s theorem, the above
continuous symmetry transformations lead to the derivation
of the conserved charges as

Qad =
∫

dx
[ Ċ

2
(φ̇ − v̇ + v′ − φ′)− C(λ̇− v − φ)

]
,

Qd =
∫

dx
[ ˙̄C

2
(φ̇ − v̇ + v′ − φ′)− C̄(λ̇− v − φ)

]
. (41)

These charges are found to be nilpotent of order two (i.e.
Q2

(a)d = 0) and they are also absolutely anticommuting
(Qd Qad + Qad Qd = 0) in nature where the off-shoot
(φ̈ − v̈ + v̇′ − φ̇′) + 2 (v + φ − λ̇) = 0 of the EL equa-
tions of motion is used.9 This can be verified from sd Qad =

8 It can be checked that the 1D co-exterior derivative δ = + ∗ d ∗
(where d = dt ∂t ) operating on the 1-form connection A(1) = dt λ(x)

produces λ̇(x) [because δ A(1) = + ∗ d ∗ A(1) = λ̇(x) is a 0-form].
One can add/subtract other 0-forms (φ, v) fields to it as has been done
in (λ̇− φ − v).
9 The above charges (41) can be also expressed as Qd =

∫
dx

[ ˙̄C
2 (φ̇−

v̇+v′ −φ′) − C̄
2 (φ̈− v̈+ v̇′ − φ̇′

]
, Qad =

∫
dx

[ Ċ
2 (φ̇− v̇+v′ −φ′) −

C
2 (φ̈ − v̈+ v̇′ − φ̇′

]
where we have to use (φ̈ − v̈+ v̇′ − φ̇′)+ 2 (v+

φ − λ̇) = 0 which emerges from the EL equations of motion, which
are derived from the Lagrangian density (15). From these expressions,
the anticommutativity property of Q(a)d becomes obvious and trivial
because we can see explicitly (from the computations of the of l.h.s. of
sad Qd = −i {Qad , Qd } = 0 and sd Qad = −i {Qd , Qad } = 0) that it
is true because the r.h.s. of both these relations turn out to be zero [due
to the transformation properties of Q(a)d under the off-shell nilpotent
(anti-)co-BRST transformations (39)].
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−i {Qad , Qd} = 0 and sad Qd = −i {Qd , Qad} = 0 by
computing the l.h.s. of these relations by exploiting (39) and
(41). We have discussed this issue in Appendix A, where we
have differentiated between the (anti-)BRST and (anti-)co-
BRST symmetries of our present system and have pointed
out some novel features.

With the ghost charge Qg = − i
∫

dx
[
C ˙̄C + C̄ Ċ

]
, the

off-shell nilpotent and absolutely anticommuting (anti-)co-
BRST charges obey the following algebra:

Q2
d = 0, Q2

ad = 0, {Qd , Qad} = 0,

i
[
Qg, Qd

] = − Qd , i
[
Qg, Qad

] = + Qad , (42)

which demonstrates that the ghost numbers of the (anti-)co-
BRST charges are+1 and−1, respectively. Finally, we note
that the conserved (anti-)co-BRST charges are the genera-
tors of continuous symmetry transformations listed in (39).
In the forthcoming two sections, we shall derive the (anti-)co-
BRST symmetry transformations and prove the invariance of
the Lagrangian density in the language of the superfield for-
malism (which captures the nilpotency as well as anticom-
mutativity in a simple and straightforward manner).

6 (Anti-)co-BRST symmetries: superfield approach

To derive the (anti-)co-BRST symmetries (39), we shall
exploit the key ingredients of the augmented version of the
superfield approach to BRST formalism [16–19] where we
shall demand that all the (anti-)co-BRST-invariant quantities
should remain independent of the “soul” coordinates θ and θ̄

when the former are generalized onto the (2, 2)-dimensional
supermanifold. We observe that s(a)d [φ − v] = 0. Thus, we
demand that [cf. (20)]:

�̃(x, θ, θ̄ )− Ṽ (x, θ, θ̄ ) = φ(x)− v(x), (43)

which immediately implies that

f̄1 = f̄2 ≡ f̄ , f1 = f2 ≡ f, b1 = b2 ≡ b. (44)

We further note that s(a)d [λ̇ − φ − v] = 0. This is due to
the fact that the gauge-fixing term remains invariant under the
(anti-)co-BRST symmetry transformations. Thus, we require
the following restrictions on the (super)fields [cf. (20)]:

˙̃
λ(x, θ, θ̄ )− �̃(x, θ, θ̄ )− Ṽ (x, θ, θ̄ )

= λ̇(x)− φ(x)− v(x). (45)

Taking the inputs from (44), we obtain the following rela-
tionships:

˙̄R = 2 i f̄ , Ṙ = 2 i f, Ṡ = 2 b. (46)

Furthermore, the relations (44) also imply the following rela-
tionships:

˙̃
�(x, θ, θ̄ )− ˙̃V (x, θ, θ̄ )+ Ṽ ′(x, θ, θ̄ )− �̃′(x, θ, θ̄ )

= φ̇(x)− v̇(x)+ v′(x)− φ′(x), (47)

which is true because of the fact that s(a)d [φ̇− v̇+v′ −φ′] =
0. Thus, the equality in (47) is due to our basic ideology of
the augmented version of the superfield formalism [16–19].

Now, we are in a position to exploit the mathematical
potential of the (super) co-exterior derivatives in the applica-
tion of the dual-horizontality condition, because we observe
that s(a)d [λ̇ − 2 φ] = 0 and/or s(a)d [λ̇ − 2 v] = 0. How-
ever, we also have seen that in ordinary 1D space, we have
δA(1) = ∗ d ∗ [dt λ(t)] = λ̇(t). Thus, we demand the fol-
lowing restriction under the dual-horizontality condition:

δ̃ Ã(1) − 2 �̃(x, θ, θ̄ ) = δ A(1) − 2 φ(x). (48)

In Appendix B, we have explicitly computed the l.h.s. and
r.h.s. where δ̃ = � d̃ �, d̃ = dt ∂t + d θ ∂θ + d θ̄ ∂θ̄ and
� is the Hodge-duality operation on the (1, 2)-dimensional
super-submanifold [of the general (2, 2)-dimensional super-
manifold] under consideration. Ultimately, our computations
yield the following:

∂θ F = 0 �⇒ B̄1 = 0, s = 0,

∂θ̄ F̄ = 0 �⇒ B2 = 0, s̄ = 0, (49)

where we have taken the expansions from (20). The above
values lead to the determination of the modified form of the
superfields F(x, θ, θ̄ ) and F̄(x, θ, θ̄ ) as

F (r)(x, θ, θ̄ ) = C(x) + i θ̄ B1(x),

F̄ (r)(x, θ, θ̄ ) = C̄(x) + i θ B̄2(x), (50)

where the superscript (r) stands for the reduced form of the
superfields. The above reduced expansions should be used in
our further discussions. Finally, we also have the following
equality (see Appendix B for details):

˙̃
λ+ (∂θ̄ F (r))+ (∂θ F̄ (r))− 2 �̃ = λ̇− 2 φ, (51)

which, ultimately, leads to the following relationships:

B1 + B̄2 = 0 �⇒ B1 = −B = −B̄2, (52)

and the relations written in (46). The above choice, due to
the dual-horizontality condition, leads to the following:

F (dh)(x, θ, θ̄ ) = C(x)+ θ (0)+ θ̄ (− i B(x))+ θ θ̄ (0)

≡ C(x)+ θ (sad C(x))+ θ̄ (sd C(x))

+θ θ̄ (sd sad C(x)),

F̄ (dh)(x, θ, θ̄ ) = C̄(x)+ θ (+ i B(x))+ θ̄ (0)+ θ θ̄ (0)

≡ C̄(x)+ θ (sad C̄(x))+ θ̄ (sd C̄(x))

+θ θ̄ (sd sad C̄(x)). (53)
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In explicit terms, we have already obtained the transfor-
mation properties of (anti-)ghost fields (C̄)C under the
(anti-)dual-BRST transformations,

sd C = −i B, sad C = 0, sd B = 0, sd sad C = 0,

sd C̄ = 0, sad C̄ = + i B, sd B = 0, sd sad C̄ = 0, (54)

where s(a)d B = 0 has been obtained due to the requirement
of the absolute nilpotency property (i.e. s2

(a)d = 0). We are
free to choose B in terms of the basic fields so that the nilpo-
tency and the absolute anticommutativity properties could
be respected together. In this connection, it is worthwhile to
point out that

s(a)d
[
φ̇ − v̇ + v′ − φ′

] = 0. (55)

Thus, we choose10 B = + 1
2

[
φ̇− v̇+v′ −φ′

]
. In this choice,

we have been guided by the fact that the field B should not
explicitly depend on the gauge field λ(t). This implies that
we have the following:

F (dh)(x, θ, θ̄ ) = C(x)+ θ (0)

+ θ̄

(
− i

2

[
φ̇ − v̇ + v′ − φ′

])+ θ θ̄ (0),

F̄ (dh)(x, θ, θ̄ ) = C̄(x)+ θ

(
+ i

2

[
φ̇ − v̇ + v′ − φ′

]
)

+ θ̄ (0)+ θ θ̄ (0), (56)

where the superscript (dh) on the superfields denotes the
expansions obtained after the application of the dual-HC. In
other words, we have derived the following (anti-)co-BRST
transformations for the (anti-)ghost fields of our theory:

sdC = − i

2
(φ̇ − v̇ + v′ − φ′), sad C = 0,

sd sadC = 0,

sdC̄ = 0, sad C̄ = + i

2
(φ̇ − v̇ + v′ − φ′),

sd sadC̄ = 0, (57)

where the nilpotency s2
(a)d = 0 and the absolute anticom-

mutativity property (sd sad + sad sd) C = 0 and (sd sad +
sad sd) C̄ = 0 are satisfied.

Finally, we note from the symmetry of the Lagrangian
density (15) that s(a)d

[
λ(φ̇ − v̇ + v′ − φ′) + 2 i C̄ C

] = 0.
This observation leads to the requirement of the following
equality:

λ̃
[ ˙̃
�− ˙̃V + Ṽ ′ − φ̃′

]+ 2 i F̄ (dh) F̄ (dh)

= λ (φ̇ − v̇ + v′ − φ′)+ 2 i C̄ C. (58)

10 In Appendix C, we provide a precise proof of this choice by using the
basic ingredients of augmented superfield formalism where the (anti-
)co-BRST-invariant quantities are required to be independent of the
Grassmannian variables when they are generalized to an appropriate
supermanifold.

Using the expansions in (20), (56), and (47), we obtain the
following:

R̄ = +C, R = + C̄, S = − 1

2
(φ̇ − v̇ + v′ − φ′). (59)

Now a comparison with (46) yields the following relation-
ships between the secondary fields and other basic fields:

f = − i

2
˙̄C, f̄ =− i

2
Ċ, b = − 1

4
(φ̈ − v̈+v̇′ − φ̇′). (60)

The above relationships demonstrate that we have obtained
all the secondary fields of the expansion in (20) in terms of
the basic fields of the 2D ordinary theory. Collected together,
these relationships are as follows:

R̄ = +C, R = + C̄, S = − 1

2
(φ̇ − v̇ + v′ − φ′),

f = − i

2
˙̄C, f̄ = − i

2
Ċ, b = − 1

4
(φ̈ − v̈ + v̇′ − φ̇′).

(61)

The substitution of these values in the expansion (20) yields
the following explicit expansions:

λ̃(dh)(x, θ, θ̄ ) = λ(x)+ θ (C)+ θ̄ (C̄)

+ θ θ̄

[
− i

2
(φ̇ − v̇ + v′ − φ′)

]

≡ λ(x)+ θ (sad λ)+ θ̄ (sd λ)+ θ θ̄ (sd sad λ),

F (dh)(x, θ, θ̄ ) = C(x)+ θ(0)+ θ̄

(
− i

2

[
φ̇ − v̇ + v′ − φ′

])

+θ θ̄ (0)

≡ C(x)+ θ (sad C)+ θ̄ (sd C)+ θ θ̄ (sd sad C),

F̄ (dh)(x, θ, θ̄ ) = C̄(x)+ θ

(
i

2

[
φ̇ − v̇ + v′ − φ′

])+ θ̄ (0)

+θ θ̄ (0)

≡ C̄(x)+ θ (sad C̄)+ θ̄ (sd C̄)+ θ θ̄ (sd sad C̄),

�̃(as)(x, θ, θ̄ ) = φ(x)+ θ

(
+ Ċ

2

)
+ θ̄

(

+
˙̄C
2

)

+θ θ̄

(
− i

4

∂

∂t

[
φ̇ − v̇ + v′ − φ′

]
)

≡ φ(x)+ θ (sad φ)+ θ̄ (sd φ)+ θ θ̄ (sd sad φ),

Ṽ (as)(x, θ, θ̄ ) = v(x)+ θ

(
+ Ċ

2

)
+ θ̄

(

+
˙̄C
2

)

+ θ θ̄

(
− i

4

∂

∂t

[
φ̇ − v̇ + v′ − φ′

])

≡ v(x)+ θ (sad v)+ θ̄ (sd v)+ θ θ̄ (sd sad v), (62)

where the superscripts (as) and (dh) denote the expansions
that have been obtained after the applications of the aug-
mented superfield formalism and the dual-horizontality con-
dition, respectively. A close look at the expansions (62) shows
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that we have already obtained the (anti-)co-BRST symme-
tries (39) for all the relevant fields of the theory.

We end this section with the remark that we also have
the analog of the mapping (30) between the (anti-)co-BRST
symmetry transformations s(a)d and the translational gen-
erators along the Grassmannian directions (θ, θ̄) of the (2,
2)-dimensional supermanifold. This is succinctly expressed
in the mathematical form as follows:

∂

∂θ
�(dh, as)(x, θ, θ̄ ) |θ̄=0= sad σ(x),

∂

∂θ̄
�(dh, as)(x, θ, θ̄ ) |θ=0= sd σ(x), (63)

where the superscripts (dh, as) on the generic superfield
�(dh,as)(x, θ, θ̄ ) denote the expansions (for these fields)
that have been obtained after the application of the dual-
horizontality and the augmented version of the superfield
restrictions and σ(x) denotes the ordinary generic 2D field
of the theory. It is obvious now that the nilpotency and
the absolute anticommutativity of the (anti-)co-BRST sym-
metry transformations are encoded in such relations (i.e.
∂θ

2 = ∂θ̄
2 = 0, ∂θ ∂θ̄ +∂θ̄ ∂θ = 0) associated with the trans-

lational generators (∂θ , ∂θ̄ ) along the Grassmannian direc-
tions (θ, θ̄ ) of the (2, 2)-dimensional supermanifold.

7 (Anti-)co-BRST invariance, nilpotency, and
anticommutativity: superfield approach

In this section, we embark on the geometrical meaning of the
(anti-)co-BRST invariance of the action integral [cf. (40)] and
nilpotency and absolute anticommutativity of the (anti-)co-
BRST charges [cf. (42)] within the framework of our aug-
mented superfield approach to the BRST formalism. First of
all, we focus on the (anti-)co-BRST invariance of the action
integral S = ∫

d2x L(0)
b where L(0)

b is the Lagrangian density
(15) which respects the (anti-)co-BRST symmetries [as well
as the on-shell nilpotent (anti-)BRST symmetries].

Taking the inputs from (62), it is straightforward to note
that the Lagrangian density (15) can be generalized to the
(2, 2)-dimensional supermanifold in terms of the superfields
obtained after application of the dual-horizontality condition
and (anti-)co-BRST-invariant restrictions as [cf. (62)]:

L(0)
b −→ L̃(0)

b =
1

2

[ ˙̃
�(as) ˙̃�(as) − ˙̃V (as) ˙̃V (as)]

+ ˙̃V (as) [
v′ − φ′

]+ λ̃(dh)
[
φ̇ − v̇ + ṽ − φ̃

]

−1

2

[
v′ − φ′

]2 + B(x)
[ ˙̃
λ(dh) − Ṽ (as) − �̃(as)]

+ B2(x)

2
− i ˙̄F (dh) Ḟ (dh)+2 i F̄ (dh) F (dh). (64)

First of all, it is important to note that we have taken

Ṽ ′(as)(x, θ, θ̄ )− �̃′(as)(x, θ, θ̄ ) = v′(x)− φ′(x),

˙̃
�(as) − ˙̃V (as) + Ṽ ′(as) − �̃′(as) = φ̇(x)− v̇(x)

+v′(x)− φ′(x), (65)

due to our observations in the super-expansions (62). Fur-
ther, we observe that the Lagrangian density (15) has been
generalized, in a straightforward manner, to our chosen (2,
2)-dimensional supermanifold just by replacing the ordinary
2D fields by their counterpart superfields, which we have
been obtained after the application of the dual-horizontality
condition and the (anti-)co-BRST-invariant restrictions on
the supermanifold.

Now, we are in a position to capture the (anti-)co-BRST
invariance (40) in terms of the geometrical quantities that
are defined on the (2, 2)-dimensional supermanifold. In other
words, we have the following observations:

∂

∂θ

[ L̃(0)
b

]| θ̄=0 = sad L(0)
b

≡ ∂

∂t

[ Ċ

2
(φ̇ − v̇ + v′ − φ′)

]
,

∂

∂θ̄

[ L̃(0)
b

]| θ=0 = sd L(0)
b

≡ ∂

∂t

[ ˙̄C
2

(φ̇ − v̇ + v′ − φ′)
]
, (66)

which, in the ordinary 2D space, shows the (anti-)co-BRST
invariance of the Lagrangian density (15). This is a con-
sequence of the mapping we have obtained in (63). Geo-
metrically, one can provide an interpretation for the super-
Lagrangian density L̃(0)

b as the sum of composite superfields,
derived after the application of the dual-horizontality con-
dition and (anti-)co-BRST invariant restrictions, such that
its translations along the θ or θ̄ directions of the (2, 2)-
dimensional supermanifold leads to a total time derivative
in the ordinary space. As a consequence, the action inte-
gral (S = ∫

d2x L̃(0)
b ) remains invariant under the nilpotent

(anti-)co-BRST symmetry transformations in the ordinary
space for the physically well-defined fields which vanish
at infinity.

At this juncture, we concentrate on the geometrical inter-
pretation of the nilpotency and the absolute anticommuta-
tivity of the (anti-)co-BRST charges Q(a)d in the language
of the superfield approach to the BRST formalism. It can be
checked that the (anti-)co-BRST charges can be written, in
terms of the superfields (62), in two different ways:

Qd =
∫

dx
[ ∂

∂θ̄
(i F̄ (dh) Ḟ (dh) + i F (dh) ˙̄F (dh))|θ=0

]

≡
∫

dx
[∫

dθ̄ (i F̄ (dh) Ḟ (dh) + i F (dh) ˙̄F (dh))|θ=0

]
,
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Qad =
∫

dx
[ ∂

∂θ
(i F̄ (dh) Ḟ (dh) + i F (dh) ˙̄F (dh))|θ̄=0

]

≡
∫

dx
[∫

dθ(i F̄ (dh) Ḟ (dh) + i F (dh) ˙̄F (dh))|θ̄=0

]
.

(67)

The above expressions can be translated into our ordinary
2D space in terms of the nilpotent (anti-)co-BRST symme-
try transformations s(a)d [in view of the mapping (63)] as
follows:

Qd = i
∫

dx sd
[
C ˙̄C + C̄ Ċ

]
,

Qad = i
∫

dx sad
[
C ˙̄C + C̄ Ċ

]
, (68)

which show the nilpotency of the (anti-)co-BRST charges
due to s2

(a)d = 0. In the language of the superfield formal-
ism, it is evident that ∂θ̄ Qd = 0 and ∂θ Qad = 0 because
of the nilpotency associated with ∂2

θ = 0, ∂2
θ̄
= 0. In other

words, we have sd Qd = −i {Qd , Qd} = 0, sad Qad =
−i {Qad , Qad} = 0 due to the definition of the genera-
tors that imply Q2

(a)d = 0. We, ultimately, draw the con-
clusion that the nilpotency of the conserved (anti-)co-BRST
charges is geometrically connected with the nilpotency prop-
erty (∂2

θ = 0, ∂2
θ̄
= 0) of the translational generators along

(θ, θ̄ )-directions of our chosen (2, 2)-dimensional superman-
ifold.

We are now in a position to provide the geometrical origin
of the absolute anticommutativity properties of the transfor-
mations s(a)d (i.e. sd sad+sad sd = 0) and nilpotent (anti-)co-
BRST charges Q(a)d (i.e. Qd Qad+Qad Qd = 0). With this
goal in mind, we observe

Qad=
∫

dx sd
(−i Ċ C

)
, Qd=

∫
dx sad

(+i ˙̄C C̄
)
. (69)

The above expressions, in the language of the symmetry
generators, imply that sd Qad = −i {Qad , Qd} = 0 and
sad Qd = −i {Qd , Qad} = 0 due to the off-shell nilpo-
tency of (s2

(a)d = 0) of the (anti-)co-BRST transformations.
Thus, we note that the anticommutativity of the charges (i.e.
Qd Qad + Qad Qd = 0) is primarily connected with the
nilpotency of the (anti-)co-BRST symmetry transformations.
Due to the mapping (63), it is obvious that we can express
the above charges as

Qad = + i
∫

dx
∂

∂θ̄

[
Ḟ (dh) F (dh)

]
|θ=0

≡ + i
∫

dx
[∫

dθ̄
[
Ḟ (dh) F (dh)

]
|θ=0,

Qd = − i
∫

dx
∂

∂θ

[ ˙̄F (dh) F̄ (dh)
]
|θ̄=0

≡ − i
∫

dx
[∫

dθ
[ ˙̄F (dh) F̄ (dh)

]
|θ̄=0, (70)

which immediately lead to the observation that ∂θ̄ Qad = 0
and ∂θ Qd = 0. Thus, we note that the absolute anticom-
mutativity of the fermionic (anti-)co-BRST charges (i.e.
{Qd , Qad} = 0) is connected with the nilpotency (i.e.
∂2
θ = 0, ∂2

θ̄
= 0) associated with the translational gener-

ators (∂θ , ∂θ̄ ) along the Grassmannian directions of the (2,
2)-dimensional supermanifold.

There are other ways, too, for the (anti-)co-BRST symme-
try to be expressed in terms of the geometrical quantities on
the (2, 2)-dimensional supermanifold. These are as follows:

Qad =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(
i λ̃(dh) Ḟ (dh)

)]
,

Qad =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(− 2 i �̃(as) F (dh)
)]

,

Qad =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(−2 i Ṽ (as) F (dh)
)]

,

Qd =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(
i λ̃(dh) ˙̄F (dh)

)]
,

Qd =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(−2 i �̃(as) F̄ (dh)
)]

,

Qd =
∫

dx
[ ∂

∂θ̄

∂

∂θ

(− 2 i Ṽ (as) F̄ (dh)
)]

. (71)

Due to the mapping (63), it is evident that we can express
the above expansions in the ordinary 2D space of our BRST-
invariant gauge theory as

Qad =
∫

dx
[
sd sad(iλ Ċ)

]
,

Qad =
∫

dx
[
sd sad (−2 iφ C)

]
,

Qad =
∫

dx
[
sd sad (− 2 i v C)

]
,

Qd =
∫

dx
[
sd sad (iλ ˙̄C)

]
,

Qd =
∫

dx
[
sd sad (−2 iφ C̄)

]
,

Qd =
∫

dx
[
sd sad (−2 i v C̄)

]
. (72)

By exploiting the nilpotency s2
(a)d = 0 and anticommutativ-

ity (sd sad + sad sd = 0) of the (anti-)co-BRST symmetry
transformations sa(d), it is clear that we can prove the nilpo-
tency and the absolute anticommutativity of the (anti-)co-
BRST charges Qa(d) by exploiting the following definitions
of the symmetry generators:

sd Qd = −i{Qd , Qd} = 0,

sd Qad = −i{Qd , Qad} = 0,

sad Qd = −i{Qd , Qad} = 0,

sad Qad = −i{Qad , Qad} = 0. (73)
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If we look at the above charges in terms of superfields and
the translational generators (∂θ , ∂θ̄ ) [cf. (71)], it becomes
crystal clear that the nilpotency and absolute anticommu-
tativity of the (anti-)co-BRST charges (and corresponding
transformations) are very intimately connected with such a
kind of properties associated with the translational genera-
tors ∂θ and ∂θ̄ . In other words, the properties (∂2

θ = 0, ∂2
θ̄
=

0, ∂θ ∂θ̄+∂θ̄ ∂θ = 0) are intertwined with the algebraic struc-
tures of the (anti-)co-BRST symmetry operators sa(d) and the
corresponding conserved and nilpotent charges Qa(d).

8 Conclusions

The central results of our present endeavor are the precise
derivations of the proper (i.e. nilpotent and absolutely anti-
commuting) (anti-)BRST and (anti-)co-BRST transforma-
tions for the 2D effective Lagrangian density [cf. (15)] of a
chiral bosonic system at the quantum level. We have provided
the geometrical basis for the above nilpotent symmetries in
the language of the nilpotent (i.e. ∂2

θ = 0, ∂2
θ̄
= 0) trans-

lational generators (∂θ , ∂θ̄ ) along the Grassmannian direc-
tions (θ, θ̄ ) of our chosen (2, 2)-dimensional supermanifold
[parameterized by Z M = (xμ, θ, θ̄ )] on which our present
2D ordinary field theory has been generalized (within the
framework of our augmented version of the BT-superfield
formalism, which is geometrically quite intuitive).

The dynamics of our present 2D theory is such that only
a single component [cf. (4), (18)] of the 2D gauge field cou-
ples with the self-dual chiral bosonic field and its orthogo-
nal component remains inert and does not participate in the
dynamics of our present theory in any significant manner.
This is a novel feature of a gauge theory, which we have
never come across in our earlier discussions on the p-form
(p = 1, 2, 3) gauge theories [25–29] within the framework of
superfield and BRST formalisms. We have been able to cap-
ture this novel feature in the augmented version of our super-
field approach to the BRST formalism and shown that the
super-subspace variables (t, θ, θ̄ ), parameterizing the (1, 2)-
dimensional super-submanifold, are good enough to capture
the whole dynamics of the theory [despite the fact that the 2D
ordinary theory is considered on the full (2, 2)-dimensional
supermanifold parameterized by the superspace variables
Z M ≡ (xμ, θ, θ̄ )].

The other novel feature of our present theory is the
observation that the off-shell as well as on-shell nilpotent
(anti-)BRST symmetries exist for the theory but only the
off-shell nilpotent and absolutely anticommuting (anti-)co-
BRST symmetries are found to exist for the Lagrangian
density (15) [which primarily respects only the on-shell
nilpotent (anti-)BRST symmetry transformations]. It turns
out that the off-shell nilpotent (anti-)co-BRST symmetry
transformations (39) are absolutely anticommuting, too.

However, the corresponding (anti-)co-BRST charges Q(a)d

are found to be absolutely anticommuting only when the off-
shoot [cf. (75)] of the EL equations of motion (76) [emerging
from the Lagrangian density (15)] is utilized for its proof (see
Appendix B for details).

It was a challenging task for us to check the sanctity
for our proposal for the Hodge-duality (�) operation on a
(1, 2)-dimensional super-submanifold [of the full (2, 2)-
dimensional supermanifold on which our effective 2D theory
has been generalized]. We have accomplished this goal (in
Sect. 6) where we have exploited the Hodge-duality opera-
tion in the dual-horizontality condition [cf. (79), Appendix
B] defined on the (1, 2)-dimensional super-submanifold and
derived the analog of the Curci–Ferrari restrictions [cf. (52)].
This exercise has enabled us to derive the correct off-shell
nilpotent (anti-)co-BRST symmetry transformations of our
theory. The idea of the dual-horizontality condition is a new
ingredient in the realm of the superfield approach to the BRST
formalism (which we have appropriately applied in the con-
text of our present 2D theory).

We plan to apply the theoretical potential and power of
the augmented version of our superfield formalism to super-
symmetric gauge theories of phenomenological interest and
establish a connection between the BRST type symmetries
and supersymmetries. In particular, we wish to apply this
method to obtain the precise (anti-)BRST symmetry trans-
formations for the supersymmetric gauge theories. We have
already obtained the supersymmetrization of the HC for
a SUSY system of spinning relativistic particle and have
obtained its proper (anti-)BRST symmetries and CF-type
condition [30]. This direction of investigation is one of the
open problems for us for our future endeavors.
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Appendix A: On the (anti-)BRST and (anti-)co-BRST
symmetry transformations

One of the key observations of our present investigation is
the fact that the Lagrangian density (5) and (15) respect
the off-shell and on-shell nilpotent (anti-)BRST symmetries
as quoted in (6) and (13), respectively. On the other hand,
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the Lagrangian density (15) respects the off-shell nilpotent
(anti-)co-BRST symmetry transformations and there is no
on-shell version of it. One of the characteristic and decisive
features of these (anti-)co-BRST symmetry transformations
is the requirement that the gauge-fixing term (λ̇ − φ − v),
which basically owes its origin to the co-exterior deriva-
tive (δ = + ∗ d ∗), remains invariant under the above
infinitesimal, off-shell, and absolutely anticommuting sym-
metry transformations.

The interesting properties are the nilpotency and anti-
commutativity. It is straightforward to note that, for the
(anti-)BRST symmetry transformations, the above sacro-
sanct properties are satisfied for the off-shell as well as on-
shell cases. This statement can be readily corroborated by
(10) where the l.h.s. of these relations can be computed with
the help of (6) and (9) for the off-shell nilpotent (anti-)BRST
symmetries. A similar exercise could also be performed for
the on-shell nilpotent version. This, however, is not the case
with the (anti-)co-BRST symmetries and their correspond-
ing charges. In particular, in the case of the latter, it can be
checked explicitly that the absolute anticommutativity of the
(anti-)co-BRST charges,

sd Qad = − i {Qad , Qd} = 0,

sad Qd = − i {Qd , Qad} = 0, (74)

can be true if and only if the equation

φ̈ − v̈ + v̇′ − φ̇′ = 2 (λ̇− v − φ) (75)

is satisfied, which emerges from the appropriate combination
of the following equations of motion that are derived from
(15):

λ̈ = 2v̇ + φ′ − v′,
v̈ − 2 v̇′ + φ̇′ + (λ̇− λ′)− (φ′′ − v′′)+ (λ̇− v − φ) = 0,

φ̈ + (λ̇− λ′)− v̇′ − (φ′′ − v′′)− (λ̇− v − φ) = 0. (76)

We would like to state, in passing, that the relation of type
(75) is the analog of the celebrated Curci–Ferrari conditions
for this system, which turns out to be an (anti-)co-BRST-
invariant quantity. In other words, we have s(a)d

[
(φ̈ − v̈ +

v̇′ − φ̇′)− 2 (λ̇− v − φ)
] = 0.

We close this appendix with the remark that, within the
framework of the superfield approach to the BRST formal-
ism, too, there is a key difference between the nilpotent
(anti-)BRST and (anti-)co-BRST symmetries. In the former
case, we have ∂θ F̄ = 0 and ∂θ̄ F = 0 when we set the coef-
ficients of (dθ ∧ dθ) and (dθ̄ ∧ dθ̄ ) equal to zero in the HC
(i.e. d̃ Ã(1) = d A(1)) which leads to the relationships (23).
On the other hand, in the latter case, we obtain the condi-
tions ∂θ F = 0 and ∂θ̄ F̄ = 0 which lead to the relations

(49). The CF-type restrictions that emerge from these (dual-)
horizontality conditions are [cf. (23), (52)]:

B̄1 + B2 = 0, B1 + B̄2 = 0, (77)

which enable us to obtain the absolute anticommutativity
of the nilpotent (anti-)co-BRST and (anti-)BRST symmetry
transformations, respectively.

Appendix B: Hodge-duality operation on the (1, 2)-dimen
sional super-submanifold

In this appendix, we demonstrate that we have the action of
the Hodge-duality operation on a (1, 2)-dimensional super-
submanifold [of the full (2, 2)-dimensional supermanifold]
in the following (super) 0-form relationship due to the dual-
horizontality condition:

δ̃ Ã(1) − 2 �̃(x, θ, θ̄ ) = δ A(1) − 2 φ(x), (78)

where δ = ∗ d ∗ and δ̃ = � d̃ �. Here the operator ∗ is
the Hodge-duality operation on the 1D ordinary submani-
fold of the full 2D ordinary spacetime manifold (parame-
terized by t) and � is the Hodge-duality operation on the
(1, 2)-dimensional super-submanifold characterized by the
supervariables (t, θ, θ̄ ). It can be seen that the δ̃ Ã(1) =
+ � d̃ � Ã(1) can be computed from (19) in the following
manner. First of all, we take the operation (� Ã(1)) as given
below in an explicit manner:

� Ã(1) = �
[
dt λ̃(x, θ, θ̄ )+ dθ F̄(x, θ, θ̄ )+ d θ̄ F(x, θ, θ̄ )

]

= (dθ ∧ dθ̄ ) λ̃(x, θ, θ̄ ) + (dt ∧ dθ̄ ) F̄(x, θ, θ̄ )

+ (dt ∧ dθ) F(x, θ, θ̄ ), (79)

which is nothing but a super 2-form on the (1, 2)-dimensional
superfield. Now the application d̃ on (79) leads to the follow-
ing super 3-form:

d̃ (� Ã(1)) = (dt ∧ dθ ∧ dθ̄ )
˙̃
λ+ (dt ∧ dt ∧ dθ̄ ) ˙̄F

+(dt ∧ dt ∧ d θ) Ḟ + (dθ ∧ dθ ∧ dθ̄ ) ∂θ λ̃

−(dθ ∧ dt ∧ dθ̄ ) ∂θ F̄ − (dθ ∧ dt ∧ dθ) ∂θ F

+(dθ̄ ∧ dθ ∧ dθ̄ ) ∂θ̄ λ̃− (dθ̄ ∧ dt ∧ dθ̄ ) ∂θ̄ F̄

−(dθ̄ ∧ dt ∧ dθ) ∂θ̄ F. (80)

In the above, the second and the third terms in the first line
should be zero because (dt ∧ dt) = 0. The first terms of the
second and the third lines would be zero according to the pre-
scription laid down in [31] because, on a (1, 2)-dimensional
superfield, a super 3-form with merely (θ, θ̄ ) terms cannot be
defined (see, e.g., [31] for details). Thus, ultimately, we have
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the following:

d̃ (� Ã(1)) = (dt ∧ dθ ∧ dθ̄ )
˙̃
λ+ (dt ∧ dθ ∧ dθ̄ ) ∂θ F̄

+ (dt ∧ dθ ∧ dθ) ∂θ F+(dt ∧ dθ̄ ∧ dθ̄ ) ∂θ̄ F̄

+ (dt ∧ dθ ∧ dθ̄ ) ∂θ̄ F, (81)

where we have used (dt ∧ dθ) = −(dθ ∧ dt) and (dt ∧
dθ̄ ) = −(dθ̄ ∧ dt). Now, we are at a stage, to apply the
final � on (81). Using the rules of [31], we have the following
operation on the 3-form differentials of the (1, 2)-dimensional
super-submanifold:

� (dt ∧ dθ ∧ dθ̄ ) = 1, � (dt ∧ dθ ∧ dθ) = Sθθ ,

� (dt ∧ dθ̄ ∧ dθ̄ ) = Sθ̄ θ̄ , (82)

where Sθθ and Sθ̄ θ̄ are symmetric so that if we take another �

on (82) we should get back the original 3-form differentials
(modulo a ± sign). It is evident that all the super 0-forms in
(82) are independent of one another.

Taking the above into account, we have the following
equation:

� d̃ � Ã(1) = (
˙̃
λ+ ∂θ F̄ + ∂θ̄ F)+ Sθθ ∂θ F + Sθ̄ θ̄ ∂θ̄ F̄ . (83)

It is now obvious that the equality (78) can be expanded as
follows:

(
˙̃
λ+ ∂θ F̄ + ∂θ̄ F − 2 �̃)+ Sθθ ∂θ F + Sθ̄ θ̄ ∂θ̄ F̄

= λ̇− 2 φ. (84)

This is the explicit expression that has been taken in the main
body of our text where we have computed the (anti-)dual
BRST symmetry transformations for the (anti-)ghost fields
of our theory in a correct fashion [cf. (53)].

Appendix C: On the specific choice of B

In this appendix, we provide the precise derivation of the ad
hoc choice made in Sect. 6 [cf. the comment after (55)] for
the auxiliary variable

B = 1

2
(φ̇ − v̇ + v′ − φ′), (85)

from which ensues the relations R = C̄, R̄ = C, f =
− i

2
˙̄C, f̄ = − i

2 Ċ, b = − 1
4 (φ̈ − v̈ + v̇′ − φ̇′) in the main

body of our text (cf. Sect. 6). To derive these explicitly, we
have to take recourse to the augmented version of supervari-
able approach where all the (anti-)BRST- [and/or (anti-)co-
BRST-] invariant quantities (of physical interest) are required

to be independent of the Grassmannian variables θ and θ̄

when they are generalized to an appropriate supermanifold.
According to the above logic, we observe that the follow-

ing additional quantities (Qi , i = 1, 2, 3, 4) of interest:

Q1 = λ C, Q2 = φ Ċ, Q3 = λ C̄, Q4 = φ ˙̄C, (86)

remain invariant under the nilpotent (anti-)co-BRST sym-
metry transformations s(a)d (i.e. sad Q1 = sad [λ C] =
0, sad Q2 = sad [φ Ċ] = 0, sd Q3 = sd [λ C̄] =
0, sd Q4 = sd [φ ˙̄C] = 0). Thus, we demand that the fol-
lowing equalities should hold true:

λ̃(x, θ, θ̄ ) F̄ (dh)(x, θ, θ̄ ) = λ(x) C̄(x),

λ̃(x, θ, θ̄ ) F (dh)(x, θ, θ̄ ) = λ(x) C(x),

�̃(x, θ, θ̄ ) ˙̄F (dh)(x, θ, θ̄ ) = φ(x) ˙̄C(x),

�̃(x, θ, θ̄ ) Ḟ (dh)(x, θ, θ̄ ) = φ(x) Ċ(x), (87)

which lead to the following relationships:

i λ B + R̄ C̄ = 0, R C̄ = 0, R B + S C̄ = 0,

i λ B − R C = 0, R̄ C = 0, R̄ B + S C = 0,

φ Ḃ + f̄ ˙̄C = 0, f̄ Ċ = 0, i b ˙̄C − f Ḃ = 0,

φ Ḃ − f Ċ = 0, f ˙̄C = 0, i b Ċ − f̄ Ḃ = 0. (88)

The above equations automatically show that we have R ∝
C̄, f ∝ ˙̄C, R̄ ∝ C and f̄ ∝ Ċ . We make one of the sim-
plest choices: R = C̄, R̄ = C . This choice is good enough
to lead to all the values written in (61) (cf. Sect. 6). Thus,
we observe that we have derived all the secondary variables
in terms of the basic and auxiliary variables of the theory,
which fully lead to the expansions (62) that incorporate all
the transformations s(a)d .
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