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Background
A great deal of efforts have been put to study the phenomena of mass transfer and radia-
tive heat flux in free convective flows because of its applications in many industrial and 
chemical processes. In principal, many physical and biological configurations and work-
ing owe their appearance and existence to mass and heat transfer. In manufacturing and 
chemical industry, many processes include radiative heat flows such as construction 
of satellites, oil and other chemicals’ filtration, construction of accessorizes using solar 
power, nuclear power processes, fuel combustion and drying of porous mediums’, etc. 
The process of mass transfer is very similar to heat flow in fluids and this similarity has 
prompted researchers to study both processes simultaneously. In particular, for the cases 
of low mass transfer and for low concentration in the fluid, the process of mass transfer 
and heat flow behave in almost the same way. The study of combined effects of mass 
transfer and radiation of heat in fluid flow has become a central topic of investigation in 
recent times. Furthermore, the study of motion of magnetohydrodynamic (MHD) fluid 
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bears its own importance in the context of its vast use in many industrial and nuclear 
processes.

Exact solutions for various Newtonian and non Newtonian fluids over oscillating bod-
ies for various physical settings have been calculated. Penton (1968) seems to be first 
to have calculated transient solutions for the flow of Newtonian fluid due to an oscil-
lating plate. An interesting problem of fluid flow with effects of radiative heat on fluid 
motion was presented by Puri and Kythe (1998). A valuable contribution on this line was 
made by Erdogan (2000) when he obtained the exact solutions for the motion of viscous 
fluid due to sine and cosine oscillations of a vertical plate. Rajagopal (1983), Rajagopal 
and Bhatnagar (1995), Hayat et. al. (2001) and Fetecau et. al. (2005, 2006), etc further 
extended the study of motion of fluids in various geometrical scenarios for sine oscilla-
tions, cosine oscillations, longitudinal and torsional oscillations, etc.

Similarly many authors have worked on determining exact solutions for free con-
vection flows. Soundalgekar (1979) was first to have calculated the exact solution of 
free convective flow over an infinite oscillating plate and this problem was extended 
by Soundalgekar and Akolkar (1983) by including the effects of mass transfer on fluid 
motion. Soundalgekar et. al. (1994) and Das et. al. (1994) further studied the effects of 
mass transfer on flow past an impulsively started and vertical oscillating plate. Thermal 
radiation effects on a laminar flow was studied by England and Emry (1969) and Gupta 
and Gupta (1974) presented the exact solutions of motion of electrically conducting 
fluid with radiation effects in the presence of uniform magnetic field. Mazumdar and 
Deka (2007) and Muthucumaraswamy (2006) studied the effects of thermal radiation in 
an MHD flow and on flow past impulsively started plate, respectively.

But the exact solutions of constitutive models of fluid motion with fractional deriva-
tives are rare in present literature. The study of effects of radiation and mass transfer on 
free convective flows using fractional calculus tools is even more rare and is a motivation 
for present investigation. Fractional constitutive relationship model has an advantage 
over customary constitutive relationship model as it readily assesses the properties of 
viscous and molecular mediums that are sometimes overlooked by ordinary derivative 
models. Fractional calculus approach is useful when it comes to generalization of com-
plex dynamics of fluid motion. Many authors (Wang and Xu 2009; Fetecau et al. 2010; 
Tripathi et al. 2010; Hyat et al. 2010a; Hayat et al. 2010b; Liu and Zheng 2011; Fetecau 
et al. 2011; Jamil et al. 2011a, b; Tripathi et al. 2011a, b; Tripathi 2011a, b; Zheng et al. 
2010; Liu et al. 2011; Zheng et al. 2011a, b, 2012) have recently ventured out on study-
ing the motion of viscous MHD fluids using fractional derivatives and made valuable 
contributions.

The following study is undertaken to investigate the thermal radiation and diffusion 
effects on a free convective MHD fractional fluid flow over a vertical oscillating plate. 
Exact expressions of velocity field, temperature and concentration of fluid have been cal-
culated and presented in interesting forms. Also, the expressions of velocity have been 
obtained both for sine and cosine oscillations of plate. Limiting cases of fractional and 
fluid parameters have also been taken into account to retrieve new and some existing 
expressions of velocity, temperature and concentration of fluid. The influence of fluid 
and fractional parameters on fluid motion have also been depicted through graphs and 
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some similarities and differences of velocity profiles for sine and cosine oscillations have 
also been highlighted through graphs.

Mathematical formulation
A case of fractional incompressible viscous MHD fluid over an infinite vertical oscillat-
ing plate is considered. We take x-axis of the Cartesian coordinate system along the ver-
tical direction of the infinite plate and y-axis will be normal to the plate. T∞ and C∞ are 
considered to be initial temperature and concentration of plate and fluid, respectively. 
At time t = 0+, the plate is given an oscillating motion in its own plane with the veloc-
ity f1 cosω1t or f1 sinω1t. At the same time the temperature and concentration of the 
plate are raised to TW  and CW , respectively, and magnetic field of uniform strength B0 is 
applied to the plate in normal direction. It is assumed that magnetic Reynold’s number 
is very small and the induced magnetic field is negligible in comparison to transverse 
magnetic field. The viscous dissipation and Soret and Duoffer effects due to lower level 
of concentration are assumed to be negligible.

Above assumptions and Boussinesq’s approximation lead to the following set of gov-
erning equations of unsteady flow

and initial and boundary conditions with the assumption of no slip between fluid and 
plate are

where u(y, t),T(y, t), C(y, t),ν, g, β, β∗, κ, qr, CP, ρ and D are velocity of the fluid, its tem-
perature, species concentration in the fluid, kinematic viscosity, gravitational accel-
eration, coefficient of thermal expansion, coefficient of expansion with concentration, 
thermal conductivity of the fluid, radiative heat flux, specific heat at constant pressure, 
density of fluid and mass diffusion coefficient, respectively.

Also in Eq. (5), f1 and U0 are constants, and ω1 is the frequency of oscillation.
Following Cogly-Vincentine-Gilles equilibrium model based on assumption of opti-

cally thin medium with relative low density, we have

(1)
∂u(y, t)

∂t
= ν

∂2u(y, t)

∂y2
+ gβ(T (y, t)− T∞)+ gβ∗(C(y, t)− C∞)−

σB2
0

ρ
u(y, t); y, t > 0

(2)ρCP
∂T (y, t)

∂t
= κ

∂2T (y, t)

∂y2
−

∂qr(y, t)

∂y
; y, t > 0

(3)
∂C(y, t)

∂t
= D

∂2C(y, t)

∂y2
; y, t > 0

(4)u(y, t) = 0, T (y, t) = T∞, C(y, t) = C∞, y ≥ 0, t = 0

(5)u(0, t) = f1 cos(ω1t) or f1 sin(ω1t), T (0, t) = TW , C(0, t) = C∞ + (CW − C∞)
U2
0 t

ν
, t > 0

(6)u(y, t) → 0, T (y, t) → T∞, C(y, t) → C∞ as y → ∞

(7)
∂qr(y, t)

∂y
= 4(T (y, t)− T∞)

∫ ∞

0

KW

(

∂eb

∂T

)

W

d� = 4I∗(T (y, t)− T∞)
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where KW  and eb are absorption coefficient and plank function.
Introducing Eq. (7) in Eq. (2), we have

To obtain solutions of Eqs. (1), (3) and (8) along with initial and boundary conditions (4), 
(5) and (6), we first convert these equations in dimensionless form.

The following dimensionless quantities have been introduced

where Pr, Sc, Gr, Gm, M and F are Prandtl number, Schmidth number, thermal Grashof 
number, mass Grashof number, Hartmann number and dimensionless thermal radiation 
parameter, respectively.

Using dimension less quantities (9) in governing Eqs. (1), (3) and (8) and dropping “*” 
notation, we obtain

The corresponding initial and boundary conditions are

where f = f1
U0

 is a constant and ω = ω1ν

U2
0

 is new frequency of oscillation.
To obtain analytical formulas for velocity, temperature and concentration, we use frac-

tional derivative approach. In particular, we consider Caputo fractional differential oper-
ator. Equations (10), (11) and (12) with Caputo derivative take the form

(8)ρCP
∂T (y, t)

∂t
= κ

∂2T (y, t)

∂y2
− 4I∗(T (y, t)− T∞); y, t > 0

(9)

u∗ =
u

U0

, y∗ =
yU0

ν
, t∗ =

tU2
0

ν
, T ∗ =

T − T∞
TW − T∞

C∗ =
C − C∞
CW − C∞

, Pr =
µCP

κ
, Sc =

ν

D
, Gr =

ρβν(T − T∞)

U3
0

Gm =
gβ∗ν(C − C∞)

U3
0

, M =
σB2

0ν

ρU2
0

, F =
4I∗ν2

κU2
0

(10)
∂u(y, t)

∂t
=

∂2u(y, t)

∂y2
+ GrT (y, t)+ GmC(y, t)−Mu(y, t); y, t > 0

(11)
∂T (y, t)

∂t
=

1

Pr

∂2T (y, t)

∂y2
−

F

Pr
T (y, t); y, t > 0

(12)
∂C(y, t)

∂t
=

1

Sc

∂2C(y, t)

∂y2
; y, t > 0

(13)u(y, 0) = T (y, 0) = C(y, 0) = 0; y ≥ 0

(14)

u(0, t) =
f1

U0

cosω1

(

t∗ν

U2
0

)

= f cos(ωt) or f sin(ωt), T (0, t) = 1, C(0, t) = t; t > 0

u(y, t),T (y, t),C(y, t) → 0 as y → ∞

(15)Dα
t u(y, t) =

∂2u(y, t)

∂y2
+ GrT (y, t)+ GmC(y, t)−Mu(y, t); y, t > 0

(16)D
β
t T (y, t) =

1

Pr

∂2T (y, t)

∂y2
−

F

Pr
T (y, t); y, t > 0
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where Caputo differential operator Dα
t  is defined as (Podlubny 1999; Mainardi 2010)

where Ŵ(.) is the Gamma function.

Analytical solutions
Analytical solutions will be obtained by means of Laplace transform and inverse Laplace 
transform.

Applying Laplace transform to Eq. (17) and using Laplace transform of corresponding 
initial and boundary condition (13) and (14), we obtain

where C̄(y, q) is the Laplace transform of C(y, t).
In order to obtain C(y, t), we write Eq. (18) in the form

Applying Laplace inverse transform to Eq. (19), we obtain

satisfying initial and boundary conditions for mass concentration of the fluid.
Eq. (20) can also be written in the form of general Wright function i.e.

In above, the general Wright function is defined as (2010)

Now, applying Laplace transform to Eq. (16) and using Laplace transform of correspond-
ing initial and boundary conditions (13) and (14), we obtain

To find T (y, t) = L−1{T̄ (y, q)}, we firstly write Eq. (22) in the following form

(17)D
γ
t C(y, t) =

1

Sc

∂2C(y, t)

∂y2
, y, t > 0

Dα
t f (t) =

1

Ŵ(1− α)

∫ t

o

f ′(τ )

(t − τ )α
dτ ; 0 < α < 1

(18)C̄(y, q) =
1

q2
e−

√
Scqγ y

(19)C̄(y, q) =
1

q2

∞
∑

n=0

(−
√
Scy)

n

n!
q

γn
2

(20)C(y, t) = t

∞
∑

n=0

(

−
√
Scy

t
γ
2

)n

n!Ŵ
(

2− γn
2

)

(21)C(y, t) = tW− γ
2
,2

(

−
√
Scy

t
γ
2

)

, for 0 < γ < 1

W�,µ(z) =
∞
∑

n=0

zn

n!Ŵ(�n+ µ)
, � > −1 ,µ ∈ C

(22)T̄ (y, q) =
1

q
e−

√
Prqβ+Fy
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Taking Laplace inverse transform of Eq. (23), we obtain

satisfying initial and boundary conditions of temperature.
We can also write the above expression in terms of Fox-H function,

where Fox- H function is defined as (Mathai et al. 2010)

Now to find the exact expression for velocity field u(y,  t), we apply discrete Laplace 
transform to Eq. (15) and obtain

where ū(y, q) is the Laplace transform of u(y, t). Also, ū(y, q) has to satisfy the condition

Solving Eq. (26) with the help of Eqs. (18), (22) and (27), we obtain

To find uc(y, t) = L−1{ūc(y, q)}, which is velocity of the fluid corresponding to cosine 
oscillations of the plate, we apply Laplace inverse transform to Eq. (28) and using Appen-
dix (47), (48), (49)  and  we obtain analytic expression of velocity field

(23)T̄ (y, q) =
1

q
+

1

q

∞
∑

n=1

(−
√
Fy)n

n!

∞
∑

j=0

Ŵ
(

n
2
+ 1

)

(

Pr
F

)j
qβj

j!Ŵ
(

n
2
− j + 1

)

(24)T (y, t) = 1+
∞
∑

n=1

(−
√
Fy)n

n!

∞
∑

j=0

Ŵ
(

n
2
+ 1

)

(

Pr
Ftβ

)j

j!Ŵ
(

n
2
− j + 1

)

Ŵ
(

1− βj
)

(25)T (y, t) = 1+
∞
∑

n=1

(−
√
Fy)n

n!
H1,1
1,3

[

−Pr

Ftβ

∣

∣

∣

∣

(−n
2
, 0)

(0, 1), (−n
2
,−1), (0,−β)

]

∞
∑

n=0

(−z)n
∏p

j=1
Ŵ(aj + Ajn)

n!
∏q

j=1
Ŵ(bj + Bjn)

= H
1,p
p,q+1

[

z

∣

∣

∣

∣

(1− a1,A1), . . . , (1− ap,Ap)

(0, 1), (1− b1,B1), . . . , (1− bq ,Bq)

]

.

(26)
∂2ū(y, q)

∂y2
− (qα +M)ū(y, q) = −GrT̄ (y, q)− GmC̄(y, q)

(27)ū(0, q) =
fq

q2 + ω2
or

f ω

q2 + ω2

(28)

ūc(y, q) =
fqe−

√
qα+My

q2 + ω2
+

Gre
−
√
qα+My

q[Prqβ − qα + (F −M)]
+

Gme
−
√
qα+My

q2[Scqγ − qα −M]

−
Gre

−
√

Prqβ+Fy

q[Prqβ − qα + (F −M)]
−

Gme
−
√
qγ Scy

q2[Scqγ − qα −M]
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corresponding to cosine oscillations.
Similarly, we obtain an expression of velocity corresponding to sine oscillations of 

plate i.e.

(29)

uc(y, t) = f cos(ωt)+ f

∞
∑

p=0

(−ω2)p
∞
∑

n=1

(−y)n

n!
t2p−

αn
2

∞
∑

m=0

(Mtα)mŴ( n
2
+ 1)

m!Ŵ( n
2
+ 1−m)Ŵ(1+ 2p− αn

2
+ αm)

+
Gr

Pr

∞
∑

p=0

(

1

Pr

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
)

∫ t

0

Gβ ,pα,p+1

(

M − F

Pr
, s

)

(t − s)αm− αn
2 ds

+
Gm

Sc

∞
∑

p=0

(

1

Sc

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
+ 1)

∫ t

0

Gγ ,pα,p+1

(

M

Sc
, s

)

(t − s)αm− αn
2
+1ds

−
Gr

Pr

∞
∑

p=0

1

(Pr)p

∞
∑

n=0

(−
√
Pry)

n

n!

∞
∑

m=0

(

F

Pr

)m Ŵ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(βm− βn

2
)

∫ t

0

Gβ ,pα−1,p+1

(

M − F

Pr
, s

)

× (t − s)βm− βn
2
−1ds −

Gm

Sc

∞
∑

m=0

1

(Sc)m

∞
∑

n=0

(−
√
Scy)

n

n!Ŵ(2− γn
2
)

∫ t

0

Gγ ,αm,m+1

(

M

Sc
, s

)

(t − s)1−
γ
2
nds

(30)

us(y, t) = f sin(ωt)+ f ω

∞
∑

p=0

(−ω2)p
∞
∑

n=1

(−y)n

n!
t2p−

αn
2
+1

∞
∑

m=0

(Mtα)mŴ( n
2
+ 1)

m!Ŵ( n
2
+ 1−m)Ŵ(2+ 2p− αn

2
+ αm)

+
Gr

Pr

∞
∑

p=0

(

1

Pr

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
)

∫ t

0

Gβ ,pα,p+1

(

M − F

Pr
, s

)

(t − s)αm− αn
2 ds

+
Gm

Sc

∞
∑

p=0

(

1

Sc

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
+ 1)

∫ t

0

Gγ ,pα,p+1

(

M

Sc
, s

)

(t − s)αm− αn
2
+1ds

−
Gr

Pr

∞
∑

p=0

1

(Pr)p

∞
∑

n=0

(−
√
Pry)

n

n!

∞
∑

m=0

(

F

Pr

)m Ŵ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(βm− βn

2
)

∫ t

0

Gβ ,pα−1,p+1

(

M − F

Pr
, s

)

× (t − s)βm− βn
2
−1ds −

Gm

Sc

∞
∑

m=0

1

(Sc)m

∞
∑

n=0

(−
√
Scy)

n

n!Ŵ(2− γn
2
)

∫ t

0

Gγ ,αm,m+1

(

M

Sc
, s

)

(t − s)1−
γ
2
nds
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Velocity expressions (29) and (30) corresponding to cosine oscillations and sine oscilla-
tions, respectively can also be written as

and

satisfying initial and boundary conditions.

(31)

uc(y, t) = f cos(ωt)+ f

∞
∑

p=0

(−ω2)p
∞
∑

n=1

(−y)n

n!
t2p−

αn
2 H1,3

1,1

[

−Mtα
∣

∣

∣

∣

(

−
n

2
, 0

)

(0, 1),

(

−
n

2
,−1

)

,

(αn

2
− 2p,α

)

]

+
Gr

Pr

∞
∑

p=0

(

1

Pr

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
)

∫ t

0

Gβ ,pα,p+1

(

M − F

Pr
, s

)

(t − s)αm− αn
2 ds

+
Gm

Sc

∞
∑

p=0

(

1

Sc

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
+ 1)

∫ t

0

Gγ ,pα,p+1

(

M

Sc
, s

)

(t − s)αm− αn
2
+1ds

−
Gr

Pr

∞
∑

p=0

1

(Pr)p

∞
∑

n=0

(−
√
Pry)

n

n!

∞
∑

m=0

(

F

Pr

)m Ŵ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(βm− βn

2
)

∫ t

0

Gβ ,pα−1,p+1

(

M − F

Pr
, s

)

× (t − s)βm− βn
2
−1ds −

Gm

Sc

∞
∑

m=0

1

(Sc)m

∞
∑

n=0

(−
√
Scy)

n

n!Ŵ(2− γn
2
)

∫ t

0

Gγ ,αm,m+1

(

M

Sc
, s

)

(t − s)1−
γ
2
nds

(32)

us(y, t) = f sin(ωt)+ f ω

∞
∑

p=0

(

−ω2
)p

∞
∑

n=1

(−y)n

n!
t2p−

αn
2
+1H1,3

1,1

[

−Mtα
∣

∣

∣

∣

(

−
n

2
, 0

)

(0, 1),

(

−
n

2
,−1

)

,

(αn

2
− 2p− 1,α

)

]

+
Gr

Pr

∞
∑

p=0

(

1

Pr

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
)

∫ t

0

Gβ ,pα,p+1

(

M − F

Pr
, s

)

(t − s)αm− αn
2 ds

+
Gm

Sc

∞
∑

p=0

(

1

Sc

)p ∞
∑

n=0

(−y)n

n!

∞
∑

m=0

(M)mŴ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(αm− αn

2
+ 1)

∫ t

0

Gγ ,pα,p+1

(

M

Sc
, s

)

(t − s)αm− αn
2
+1ds

−
Gr

Pr

∞
∑

p=0

1

(Pr)p

∞
∑

n=0

(−
√
Pry)

n

n!

∞
∑

m=0

(

F

Pr

)m Ŵ( n
2
+ 1)

m!Ŵ( n
2
−m+ 1)Ŵ(βm− βn

2
)

∫ t

0

Gβ ,pα−1,p+1

(

M − F

Pr
, s

)

× (t − s)βm− βn
2
−1ds −

Gm

Sc

∞
∑

m=0

1

(Sc)m

∞
∑

n=0

(−
√
Scy)

n

n!Ŵ(2− γn
2
)

∫ t

0

Gγ ,αm,m+1

(

M

Sc
, s

)

(t − s)1−
γ
2
nds
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Limiting cases
For α, β , γ → 1 in Eqs. (18), (22) and (28), we can retrieve (y, t) solutions of govern-
ing equations in ordinary differential operator. Some significant limiting cases have been 
discussed below.

Solution in the absence of magnetic field

The absence of magnetic field i.e. M = 0 and, assumptions of α, β , γ → 1 and f = 1 in 
Eq. (28) lead to the following expression corresponding to cosine oscillations

Applying Laplace inverse transform to Eq. (33) and using Appendix  (50) and (51), we 
obtain velocity for cosine oscillations i.e.

Eq. (34) can be further simplified using Appendix  (52) and (53) and the following 
expressions

Similarly, velocity corresponding to sine oscillation is

(33)ūc(y, q) =
qe−

√
qy

q2 + ω2
+

Gre
−√

qy

q[Prq − q + F ]
+

Gme
−√

qy

q2[Scq − q]
−

Gre
−
√
Prq+Fy

q[Prq − q + F ]
−

Gme
−
√
qScy

q2[Scq − q]

(34)

uc(y, t) =
∫ t

0

ye−
y2

4s

2
√
πs

3
2

cosω(t − s)ds +
Gr

(Pr − 1)

∫ t

0

erfc

(

y

2
√
s

)

e
− F

Pr−1
(t−s)

ds

+
Gm

(Sc − 1)

∫ t

0

erfc

(

y

2
√
s

)

(t − s)ds +
Gr

√
Pry

2F
√
π

∫ t

0

e
− Pr y

2

4s − F
Pr

s

s
3
2

ds

−
Gr

√
Pry

2F
√
π

∫ t

0

e
− Pr y

2

4s − F
Pr−1

(t−s)− F
Pr

s

s
3
2

ds −
Gm

(Sc − 1)

∫ t

0

erfc

(
√
Scy

2
√
s

)

(t − s)ds

∫ t

0

ye−
y2

4s

2
√
πs

3
2

cosω(t − s)ds =
1

2
Reeiωt

[

e
√
iωyerfc

(

y

2
√
t
+

√
iωy

)

+ e−
√
iωyerfc(

y

2
√
t
−

√
iωy)

]

√
Pry

2
√
π

∫ t

0

e
− Pr y

2

4s − F
Pr

s

s
3
2

ds =
1

2

[

e
√
Fyerfc

(
√
Pry

2
√
t
−

√

Ft

Pr

)

+ e−
√
Fyerfc

(
√
Pry

2
√
t
+

√

Ft

Pr

)]

√
Pry

2
√
π

∫ t

0

e
− Pr y

2

4s − F
Pr−1

(t−s)− F
Pr

s

s
3
2

ds =
1

2

[

e
−i

√

F
Pr−1

y
erfc

(
√
Pry

2
√
t
− i

√

Ft

Pr(Pr − 1)

)

+e
i
√

F
Pr−1

y
erfc

(
√
Pry

2
√
t
+ i

√

Ft

Pr(Pr − 1)

)]

∫ t

0

erfc(
y

2
√
s
)e

− F
Pr−1

(t−s)
ds =

Pr − 1

F

{

erfc(
y

2
√
t
)−

e
− F

Pr−1
t

2

[

e
−i

√

F
Pr−1

y
erfc

(

y

2
√
t
− i

√

Ft

Pr − 1

)

+ e
i
√

F
Pr−1

y
erfc

(

y

2
√
t
+ i

√

Ft

Pr − 1

)]}
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where

We observe that both velocity expressions uc(y, t) and us(y, t) satisfy initial and boundary 
conditions even in the absence of magnetic field.

Solution in the case of constant radiative heat flux and β → 1

Assuming radiative heat flux to be constant along y-direction of plate, F  =  0 (or 
qr = constant)and β → 1, we obtain from Eq. (22) the following expression

Applying Laplace inverse transform to Eq. (36) and using Appendix (51), we obtain an 
expression for temperature of the fluid in the absence of thermal radiation i.e.

satisfying also the corresponding boundary condition (14) for temperature where erfc(.) 
represents complementary error function.

Solution in the absence of magnetic field and constant radiative heat flux

The absence of magnetic field, M = 0, constant radiative heat flux along y-direction of 
plate, F = 0 (or qr = constant) and assumption of α, β , γ → 1 in Eq. (33) lead to the 
following expression

Applying Laplace inverse transform to above expression and using Appendix (51), we 
obtain velocity for cosine oscillations i.e.

(35)

us(y, t) =
∫ t

0

ye−
y2

4s

2
√
πs

3
2

sinω(t − s)ds +
Gr

(Pr − 1)

∫ t

0

erfc

(

y

2
√
s

)

e
− F

Pr−1
(t−s)

ds

+
Gm

(Sc − 1)

∫ t

0

erfc

(

y

2
√
s

)

(t − s)ds +
Gr

√

Pry

2F
√
π

∫ t

0

e
− Pr y

2

4s − F
Pr

s

s
3
2

ds

−
Gr

√
Pry

2F
√
π

∫ t

0

e
− Pr y

2

4s − F
Pr−1

(t−s)− F
Pr

s

s
3
2

ds −
Gm

(Sc − 1)

∫ t

0

erfc

(
√
Scy

2
√
s

)

(t − s)ds

∫ t

0

ye−
y2

4s

2
√
πs

3
2

sinω(t − s)ds =
1

2
Imgeiωt

[

e
√
iωyerfc(

y

2
√
t
+

√
iωy)+ e−

√
iωyerfc

(

y

2
√
t
−

√
iωy

)]

(36)T̄ (y, q) =
1

q
e−

√
Prqy

(37)T (y, t) = erfc

(
√
Pry

2
√
t

)

(38)ūc(y, q) =
qe−

√
qy

q2 + ω2
+

Gre
−√

qy

q[Prq − q]
+

Gme
−√

qy

q2[Scq − q]
−

Gre
−
√
Prqy

q[Prq − q]
−

Gme
−
√
qScy

q2[Scq − q]
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Similarly, velocity corresponding to sine oscillation is

where the value of f is assumed to be 1.

Mass concentration corresponding to γ → 1

Assuming γ → 1 in Eq. (18), we obtain

Applying Laplace inverse transform to above expression, we obtain mass concentration 
for ordinary MHD free convective fluid i.e.

which can be further simplified by using Appendix (52) i.e.

or from Eqs. (20) and (21), mass concentration can simply be written as

Results and discussion
Many interesting physical aspects of radiative heat flow have been brought into light 
through graphs. These graphs also represent the influence of physical parameters Gr, Gm , 
Sc, Pr, M, F, ω and fractional parameters α, β, γ on motion of MHD fluid over a vertical 
oscillating plate.

(39)

uc(y, t) =
∫ t

0

ye−
y2

4s

2
√
πs

3
2

cosω(t − s)ds +
Gr

(Pr − 1)

∫ t

0

erfc

(

y

2
√
s

)

ds

+
Gm

(Sc − 1)

∫ t

0

erfc(
y

2
√
s
)(t − s)ds

−
Gr

(Pr − 1)

∫ t

0

erfc

(
√
Pry

2
√
s

)

ds

−
Gm

(Sc − 1)

∫ t

0

erfc

(
√
Scy

2
√
s

)

(t − s)ds

(40)

us(y, t) =
∫ t

0

ye−
y2

4s

2
√
πs

3
2

sinω(t − s)ds

+
Gr

(Pr − 1)

∫ t

0

erfc

(

y

2
√
s

)

ds +
Gm

(Sc − 1)

∫ t

0

erfc

(

y

2
√
s

)

(t − s)ds

−
Gr

(Pr − 1)

∫ t

0

erfc

(
√
Pry

2
√
s

)

ds −
Gm

(Sc − 1)

∫ t

0

erfc

(
√
Scy

2
√
s

)

(t − s)ds

(41)C̄(y, q) =
1

q2
e−

√
Scqy

(42)C(y, t) =
∫ t

0

ye−
−y2

4s

2
√
πs

3
2

(t − s)ds

(43)C(y, t) =
(

t +
y2Sc

2

)

erfc

(
√
Scy

2
√
s

)

−
y
√
Sct√
π

e−
−y2Sc
4t

(44)C(y, t) = t

∞
∑

n=0

(

−
√
Scy√
t

)n

n!Ŵ(2− n
2
)
= tW− 1

2
,2

(

−
√
Scy√
t

)
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Figures 1 and 2 represent velocity profiles for different values of t ad for fixed values of 
Gr, Gm, Sc, Pr, M, F, α, β, γ, f and ω for sine and cosine oscillations. It can be observed that 
near the plate for starting time, the velocity profiles override each other but the velocity 
increases eventually for increasing values of time t. Also, it can be seen in both graphs 
that velocity is vanishing for higher values of y as was expected because the impact of 
oscillations on fluid gets weaker as fluid gets farther away from the plate.

Figures 3 and 4 make comparison between velocity profiles for varying values of ther-
mal Grashof number, Gr, mass Grashof number, Gm and Hartmann number, M and 

Fig. 2  Velocity profiles for different values of t at Gr = 10, Gm = 5, Sc = 2.5, M = 0.5, F = 2.5, Pr = 7, ω = 8, 
α = 0.5, β = 0.3, γ = 0.2, f = 1  for sine oscillation

Fig. 3  Velocity profiles for different values of Gr ,Gm and M at t = 0.2, Sc = 2.5, F = 2.5, Pr = 7, ω = 8, α = 0.5, 
β = 0.3, γ = 0.2, f = 1 for cosine oscillation

Fig. 1  Velocity profiles for different values of t at Gr = 10, Gm = 5, Sc = 2.5, M = 0.5, F = 2.5, ω = 8, Pr = 7, 
α = 0.5, β = 0.3, γ = 0.2, f = 1 for cosine oscillation
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other fluid and fractional parameters are taken to be fixed. Besides the different shape 
of velocity profiles for sine oscillations and cosine oscillations, it is observed that veloc-
ity increases with increase in Gr and Gm and decreases with increase in M. The influence 
of parameters M, F and Sc on free convective fluid motion has been depicted through 
Figs. 5, 6, 7 and 8. All these graphs point to the fact that velocity has inverse relation with 
Schmidth number, Sc, Harmann number, M and thermal radiation parameter, F even if 
the pattern of velocity profiles is different for sine and cosine oscillations. It is also noted 
that velocity responds to the changes of M faster than the changes in Sc and F.

Fig. 4  Velocity profiles for different values of Gr ,Gm and M at t = 0.2, Sc = 2.5, F = 2.5, ω = 8, Pr = 7, α = 0.5, 
β = 0.3, γ = 0.2, f = 1 for sine oscillation

Fig. 5  Velocity profiles for different values of F and M at = 0.2 Gr = 10,Gm = 5, Sc = 1.5, Pr = 7, ω = 8, 
α = 0.5, β = 0.3, γ = 0.2, f = 1 for cosine oscillation

Fig. 6  Velocity profiles for different values of F and M at = 0.2 Gr = 10,Gm = 5, Sc = 1.5, Pr = 7, ω = 8, 
α = 0.5, β = 0.3, γ = 0.2, f = 1 for sine oscillation
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Figures 9 and 10 show a contrasting behavior of velocity profiles for cosine oscillations 
and for sine oscillations. It is observed that velocity is increasing for decreasing values 
of oscillating frequency of plate for the case of cosine oscillations and in the case of sine 
oscillations, it is decreasing with decrease in oscillating frequency. However, it is apparent 
that in both cases, velocity profiles don’t show much different behavior for bigger values 
of oscillating frequency. Figures 11 and 12 verify the fact that amplitude of oscillations of 
velocity field decrease with gradual increase in height. Also, it is observed from Fig. 13 

Fig. 8  Velocity profiles for different values of Sc and M at t = 0.2 Gr = 10,Gm = 5,F = 1, Pr = 7, ω = 8, α = 0.5,  
β = 0.3, γ = 0.2, f = 1 for sine oscillation

Fig. 9  Velocity profiles for different values of oscillating frequency at = 02 Gr = 10,Gm = 5,Sc = 2.5, Pr = 7

,F = 2.5, M = 0.5, α = 0.5, β = 0.3, γ = 0.2, f = 1 for cosine oscillation

Fig. 7  Velocity profiles for different values of Sc and M at t = 0.2 Gr = 10,Gm = 5, Pr = 7, ω = 8, α = 0.5, 
β = 0.3, γ = 0.2, f = 1 for cosine oscillation
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that temperature is influenced negatively by Prandtl number, Pr and thermal radiation 
parameter, F i.e. increasing values of Pr and F decrease the temperature of fluid.

It can be seen from Figs. 14 and 15 that concentration of fluid increases with increasing 
time but increasing values of Schmidth number, Sc have negative impact on concentration of 
fluid. Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 validate the boundary condition u(y, t) → 0 

Fig. 10  Velocity profiles for different values of oscillating frequency at = 02 Gr = 10,Gm = 5,Sc = 2.5, Pr = 7

,F = 2.5, M = 0.5, α = 0.5, β = 0.3, γ = 0.2, f = 1 for sine oscillation

Fig. 11  Velocity profiles for different values of y at Gr = 10,Gm = 5,Sc = 2.5, Pr = 7,F = 2.5, M = 0.5, α = 0.5, 
β = 0.3, γ = 0.2, ω = 8, f = 1 for cosine oscillation

Fig. 12  Velocity profiles for different values of y at Gr = 10,Gm = 5,Sc = 2.5, Pr = 7,F = 2.5, M = 0.5, α = 0.5, 
β = 0.3, γ = 0.2, ω = 8, f = 1 for sine oscillation



Page 16 of 21Shahid ﻿SpringerPlus  (2015) 4:640 

as y → ∞. Influence of fractional parameters on fluid motion is studied through Figs. 16, 
17 and 18. These graphs clearly show that velocity, temperature and concentration of fluid 
decrease for increasing values of fractional parameters α, β and γ, respectively. In Figs. 17 
and 18, we have also retrieved profiles of temperature and concentration for ordinary MHD 
convective flow over an oscillating plate by assuming β → 1 and γ → 1.

Finally, in order to have a clearer idea about the accuracy of analytical solutions that 
have been established, a comparison between the numerical and analytical results was 
prepared for concentration. The corresponding results have been included in Table  1. 
The concentration values resulting from Eq. (20), where n = 55 terms of the sum have 
been taken into consideration, are compared with those obtained using the Stehfest,s 
numerical algorithm (Stehfest 1970) for calculating the inverse Laplace transform of the 
function given by Eq. (18). This algorithm is based on the next relation

Fig. 14  Concentration profiles for different values of t at Sc = 0.5 and γ = 0.5

Fig. 15  Concentration profiles for different values of Sc at t = 0.2 and γ = 0.5

Fig. 13  Temperature profiles for different values of F and Pr M at = 0.2 β = 0.5
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where p is a positive integer,

(45)C(y, t) = L−1{C̄(y, q)} ≈
ln 2

t

2p
∑

j=1

djC̄

(

y, j
ln 2

t

)

,

(46)
dj = (−1)j+p

min(j,p)
∑

k=

[

j+1

2

]

kp(2k)!
(p− k)!k!(k − 1)!(j − k)!(2k − j)!

Fig. 16  Velocity profiles for different values of α at = 0.1 Gr = 10,Gm = 5, M = 0.5, Sc = 2.5, F = 2.5, Pr = 7, 
β = 0.3, γ = 0.2, ω = 8, f = 1 for cosine oscillation

Fig. 17  Temperature profiles for different values of β at =0.2 Pr = 7 F=1.5

Fig. 18  Concentration profiles for different values of γ at t = 0.2 Sc = 0.5



Page 18 of 21Shahid ﻿SpringerPlus  (2015) 4:640 

and [r] denotes the integer part of the real number r. According to Table 1, the absolute 
error being of order 10−6, there exists a good agreement of the numerical results. Similar 
comparisons can be made for temperature and velocity.

Conclusion
Exact solutions have been calculated for fractional MHD free convective viscous fluid 
over a vertical oscillating plate and influence of thermal radiation and mass diffusion 
on fluid motion have been analyzed. Expressions of velocity field, temperature and mass 
concentration of fluid have been obtained by applying Laplace transform to fractional 
differential equations governing present fluid flow problem. In particular, Caputo frac-
tional differential operator is favored and motivation to employ fractional calculus tool is 
generalization of dynamics of such fluid flow problems.

Expressions of velocity field have been obtained for both sine and cosine oscillations of 
plate and are presented in series form and in the form of integral solutions. The part of 
velocity corresponding to oscillations of plate is nicely presented in the form of Fox- H 
function and the part of velocity corresponding to thermal radiation, mass diffusion and 
magnetic field effects has been presented in integral solutions form, employing the con-
cept of Generalized function. The expression of mass concentration of fractional MHD 
fluid has been presented in the form of general Wright function and the exact expression 
of temperature is written in the form of Fox- H function form.

All solutions satisfy initial and boundary conditions.
Some significant limiting cases of fractional and fluid parameters have also been taken 

into account and expressions of mass concentration and temperature, present in litera-
ture, have been retrieved for γ → 1 and, β → 1 and F = 0, respectively. Also, velocity 
field expression has been separately calculated for the case when magnetic field is absent 
as well as for the case of absence of thermal radiation.

To analyze the behavior and influence of fluid and fractional parameters on free con-
vective flow, graphs of velocity, temperature and mass concentration have been drawn 
and following observations are made:

Table 1  Values of concentration C(y, t) resulting from the analytic solution Eq. (20) and the 
numerical algorithm applied to Eq. (18) at t = 5, Sc = 1 and γ = 0.591

y C(y,t), Eq. (20) C(y,t) Eq. (18) Absolute error

0 5 5.00001 6.031× 10−6

0.1 4.669 4.669 3.15× 10−6

0.2 4.35855 4.35856 1.008× 10−5

0.3 4.06747 4.06747 8.068× 10−6

0.4 3.79465 3.79465 6.578× 10−6

0.5 3.53903 3.53903 7.199× 10−6

0.6 3.29961 3.29961 4.718× 10−6

0.7 3.07544 3.07544 4.313× 10−7

0.8 2.86562 2.86562 6.646× 10−6

0.9 2.66929 2.6693 7.367× 10−6

1 2.48566 2.48566 2.036× 10−6
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1.	 The velocity of fluid for both sine and cosine oscillations increase with increasing t, 
eventually.

2.	 The velocity has inverse relation with fluid parameters Hartmann number, M, ther-
mal radiation parameter, F and Schmidth number, Sc and has direct relation with 
thermal Grashof number, Gr and mass Grashof number, Gm.

3.	 Temperature of fluid increases for decreasing values of Prandtl number, Pr and ther-
mal radiation parameter, F.

4.	 Mass concentration of fluid is negatively influenced by Schmidth number, Sc but it 
increases with increasing time.

5.	 A contrasting behavior of velocity profiles for different values of oscillating frequency, 
ω for both cases of sine and cosine oscillations has been noted through graphs. These 
graphs show that the velocity is decreasing for increasing values of oscillating fre-
quency for cosine oscillations and decreases for decreasing frequency for sine oscilla-
tions.

6.	 The influence of fractional parameters on fluid motion is also studied through graphs. 
These graphs show that for decreasing values of α, β and γ, velocity, temperature and 
concentration increase, respectively.

7.	 For concentration of fluid C(y,  t), the accuracy of obtained analytical solutions has 
been checked by making a comparison between the numerical and analytical results. 
Numerical data is in good agreement with analytical results. Same can be done for 
temperature and velocity field.
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Appendix

(47)L−1

{

qb

(qa − d)c

}

= Ga,b,c(d, t); Re(ac − b) > 0, Re(q) > 0, |
p

qa
| < 1,

(48)
1

Prqβ − qα + (F −M)
=

1

Pr

∞
∑

p=0

(

1
Pr

)p
qpα

(

qβ − M−F
Pr

)p+1
,

(49)
1

Scqγ − qα −M
=

1

Sc

∞
∑

m=0

(

1
Sc

)m
qmα

(

qγ − M
Sc

)m+1
,

(50)L−1{e−
√
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2
√
π t

3
2
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