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1 Introduction

In this paper, we consider a class of quasi-linear elliptic systems of the form

—&P Apaue + V(@) |ulPu = Hy(lul?, |vIP)|ulPu + K@) ulP2u, xeRN, w1
—e? Apav+ V@)IVIP2v = H(lul, V) P20 + K@) 2y, xeRY, '
where A, 4u = div(|Vu + iA(x)ulP~(Vu + iA(x)u)), i is the imaginary unit, A(x) : RN — RN
isreal vector potential, 1 < p < N, V(x) is a non-negative potential, p* = Np/(N —p) denotes
the Sobolev critical exponent for N > 3 and K(x) is a bounded positive coefficient.
The scalar case corresponding to (1.1) has received considerable attention in recent
years. For p =2 and A(x) = 0, the scalar case corresponding to (1.1) turns into

—2Au+ V(x)u = K@) |ul* ~u +f (% ul)u, xeRN. (1.2)

The equation (1.2) arises in finding standing wave solutions of the nonlinear Schrodinger

equation
3 2

A standing wave solution of (1.3) is a solution of the form
—iEt
Yx, £) =u(x)exp™® .

Then v/ (x, t) solves (1.3) if and only if u(x) solves (1.2) with V(x) = W (x) — E and &2 = %
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The equation (1.2) has been extensively investigated in the literature based on various
assumptions of the potential V(x) and the nonlinearity f(x, u). See, for example, [1-15]
and the references therein.

There are also many works dealing with the magnetic fields A(x) # 0 and p = 2 for the
scalar case corresponding to (1.1). In [16], the authors firstly obtained the existence of
standing waves for special classes of magnetic fields. For many results, we refer the reader
to [17-22].

For general p > 1, most of the work, as we know, consider the scalar case which corre-
sponds to (1.1) with A(x) = 0. See [23—27] and the references therein. We especially men-
tion [24] for the existence of positive solutions for a class of p-Laplacian equations. Gloss
[24] studied the existence and asymptotic behavior of positive solutions for quasi-linear
elliptic equations of the form

-l Apu + V) ulPu=f(u), xeRYN, (1.4)

where f is a subcritical nonlinearity without some growth conditions such as the
Ambrosetti-Rabinowitz condition. The problem (1.4) has also been studied in [28-32].
The main difficulty in treating this class of equation (1.4) is a possible lack of compactness
due to the unboundedness of the domain.

However, to our best knowledge, it seems there is almost no work on the existence
of non-trivial solutions to the problem (1.1) involving critical nonlinearity and magnetic
fields. We mainly follow the idea of [7]. Observe that though the idea was used in other
problems, the adaption of the procedure to the problem is not trivial at all. Because of the
appearance of magnetic fields A(x), we must deal with the problem for complex-valued
functions and therefore we need more delicate estimates.

The outline of the paper is as follows. The forthcoming section is the main result and
preliminary results including the appropriate space setting to work with. In Section 3, we
study the behavior of (PS), sequence. Section 4 gets that the functional associated to the
problem possesses the mountain geometry structure, and the last section concludes the
proof of the main result.

2 Main results and preliminaries
Firstly, we make the following assumptions on V(x), A(x), H(s, t) and K(x) throughout the
paper:

(Vo) V e C(RN,R), V(0) = inf,_pv V(x) = 0 and there exists b > 0 such that the set v? :=
{x € RN : V(x) < b} has finite Lebesgue measure;

(Ag) A € CRN,RN) and A(0) = 0;

(Kp) K(x) € C(RN,R*), 0 <infK < supK < oo;

(Hy) H(s,t) € C{(R* x R*,R) and H;, H; = o(|s| + |t|) as |s| + |t| = 0;

(H,) there exist ¢; > 0 and p < « < p* such that

|Hy(s, O, |Hi(s,8)] < el (1+ 157 41617 )3

’

o B
(H3) there are ag > 0, 6 € (p,p*) and «, B > p such that H(s,t) > pao(|s|? + |t|?) and
0< I%H(s, t) < sH; + tH;.
Under the above mentioned conditions, we get the following result.
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Theorem 1 Suppose that the assumptions (Vy), (Ao), (Ko) and (Hy)-(H3) hold. Then for
any o > 0, there is e, > 0 such that if € < &,, the problem (1.1) has at least one solution
(44, ve) which satisfies

0-p

5 Jo VIl 4 [VP) + VGl + VE@IWl) < 06

Setting A = ¢7?, the problem (1.1) is equivalent to the following problem:

—Apatt + AV (@) ulP2u = AH(|ul?, [vIP) | ulP~2u + AK (0)|ul? 2u, xRN,

! @2.1)
—Apav + AV @) VIP2y = AH,(|ul?, [vIP) [vIP~2y + AK (%) [vIP" 2y, x € RN,

We are going to prove the following result.

Theorem 2 Suppose that the assumptions (Vy), (Ao), (Ko) and (Hy)-(H3) hold. Then for
any o > 0, there is Ay > 0 such that if A, > A, the problem (2.1) has at least one solution
(15, v;.) which satisfies

o —

it 4 (V11| + [Vl [P) + AV @) P + AV () |v ) < oMK, (2.2)
p@ RN

For convenience, we quote the following notations. Let E; 4 denote the Banach space

Eja= {ue Wl'p(RN):/ AV(x)|u|p<oo}, A>0
RN

equipped with the norm

lial = ( fR (v inr A@ul” +W<x>|u|P))”.

Set E = Ej 4 x E 4 and || (u,v) |15 = ||u||1;A + ||v||fA for any (u,v) € E.
Similar to the diamagnetic inequality [16], we have

1 u
Re(Vu + iMAu)m

|V Iu)|| < ‘Vu% - < |Vu+in7 Aul (2.3)

ul

(the bar denotes complex conjugation). This inequality shows that if u € E; 4, then |u| €
WL?(RN) and therefore u € LI(RN) for any g € [p, p*). That is to say, if u,, — u in E; 4, then

U, — uin L?OC

(RN) for any q € [p, p*) and u,, — u a.e. in RV,
The energy functional associated with (2.1) is defined by

L(u,v) :}7/ (|Vu+ikll’Au|p+AV(x)|u|p + |Vv+iA%Av|p+)»V(x)|v|P)
RN

A- * 3 )\-
o I ey N (Y
T JRrN P JrN
_1 P
S O A )

where G(u,v) = %K(x)(|u|l’* + VP + },H(WV”, [vI?).

Page3of 13
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Under the assumptions of Theorem 2, standard arguments [33] show that I; € C}(E) 4,
R) and its critical points are weak solutions of the equation (2.1).

3 (PS). condition
We call a sequence {(u,,v,)} C E a (PS), sequence if I, (u,,v,) — c and I, (u,,v,) = 0
strongly in E’ (E’ is the dual space of E). I, is said to satisfy the (PS), condition if any (PS),
sequence contains a convergent subsequence.

The main result of Section 3 is the following compactness result.

Proposition 3.1 Let the assumptions of Theorem 2 be satisfied. There exists a constant
ap > 0 independent of ) such that, for any (PS). sequence {(u,,v,)} C E for I, with
(s, Vi) — (1, v), either (ty, vy) — (,v) or ¢ — L (1, v) > aph 7P .

As a consequence, we obtain the following result.

Proposition 3.2 Assume that the assumptions of Proposition 3.1 hold, I, (u, v) satisfies the
N
(PS). condition for all ¢ < ao)Ll*F.

In order to prove Proposition 3.1, we need the following lemmas.

Lemma 3.1 Let the assumptions of Theorem 2 be satisfied. {(u,,v,)} is a (PS). sequence
of I,.. Then ¢ > 0 and {(u,,v,)} is bounded in the space E.

Proof One has

1
Ly, vi) — glﬁ(un,vn)(un,vn)

- l_l » l_i r* r*
—(p 9)H<umvn>||5+<9 p*)A/RNK(x)(w +lval”")
1 1

+ )‘/ <_(|un|pHs(|un|p» |Vn|p) + |Vn|th(|un|p: |Vn|p)) - _H(lun|p; |Vn|p)>
RN 0 p

11
> (1; - 5) [ Gt v) -

Together with I, (4, v,) — cand I} (14, v,) — 0 as n — oo, we have

(5 - 5l < v o)+ eal il

Then {(u,,v,)} is bounded and ¢ > 0. O

From Lemma 3.1, we may assume (i, v,,) — (%, v) in E and (#,,, v,s) = (,v) in LT (RN) x

Ll (RN)forany g € [p,p*) and u,, — u, v, > vae. in RV,

Lemma 3.2 Lety € [p,p*). There is a subsequence {(u,,,., vn/)} such that for any € > 0, there

isre >0 withr>r.

lim sup/ (Iu,,1,|” + |vn/.|y) <s,
Bj\Br

J—> 00

where B, := {x e RN : x| <r}.
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Proof The proof of Lemma 3.2 is similar to that of Lemma 3.2 of [27], so we omitit. [

Let n € C*°(R*) be a smooth function satisfying 0 < n(¢) <1, n(¢) =1ift <landn(¢) =0
if £ > 2. Define u;(x) = n(2|x|/j)u(x), v;(x) = n(2]x|/j)v(x). Obviously, we have

lu—%llg, —0 and |[v-Vilg, >0 asj— oo. (3.1)

Lemma 3.3 One has

; 14 14 p—2
lim RG/RN(HS(IMV,,I o Vg 1P ) Nt [P~ 1y,

Jj—00

_Hs(|unj_ujlp’|Vn/_Vj|p)|unj_ujlp (= 10) — Hs (15517, [Vi17) 517~ 55;) @ = 0
and

lim Re / N(Ht(Wn, ) [V, |p)|"n/ |p—2vn,
R

Jj—o00

= Hy (|t = T417 [V, = Vi1 ) Vi = Vi 0, =) = He (1517, 5517 ) 9517729) v = O
uniformly in (¢, ) € E with ||(p, V)|l <1.

Proof The local compactness of Sobolev embedding implies that for any » > 0, we
have

. -2
lim Re/B (Hs(lun/ P, |Vn/ |p)|uni |p Uy;
,

Jj—o00

_HS(|uﬂj - ujlp» |V}’l]' - Vj|p)|unj - ujlp (un,' - u}') _Hs(|uj|p’ |Vj|p)|uj|p Z'i]')(p =0

uniformly in [|@||g, , <1. For any ¢ > 0, there exists r. > 0 such that

lim sup/ |u;|” 5/ lul” <e
j—> o0 B/\By RN

]

for all r > r.. Together with the assumption (H5) and the Holder inequality, it follows from
Lemma 3.2 that

. -2
lim supRe / N(Hs(|un,~ 12, [V If’)lun, 2
R

J—> 00

~ ~ ~ - ~ ~ ~ ~ 72~ _
= H(|ttn, = 7, Vi, = V1P |, = TP (i, — %) — H (1517, (V1P) [P 5%) @
] ] ] ]

: 2
= lim sup Re/ (HS(Iun/, 17, [V, Ip)luni P~ uy,
jos B\By

~ ~ ~ _2 ~ ~ ~ ~ _2~ -
_Hs(lun/ - uj|p: |Vn/ - Vj|p)|unj - uj|p (unj - uj) —HS(|L£]'|P, |Vj|p)|uj|p uj)w

. -1 -1 ~ p-1 ~ -1\ 5
fcl,hmsup/ (1t 77+ 1, P70+ (717 4 (5177 [
J—> 00 B]'\Br

. -1 -1, 5791 ey 5
+ ¢y lim sup/ (2 S N b s 7 117
Bj\Br

J—> 00
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. p-1 p-1
< Cljl_lglo Sup(”un, ”U’(B]-\Br) + ”Vn/ ”LP(B,-\Br)

~ p-1 ~ 1p-1 _
+ ”uj”Lp(B/\By) + ||V]| Lp(B].\Br))”(p”Lp(B/\B,«)
+cp lim Sup(”un»”go?lg B) T ”Vn'”%;lg. B
j—o00 7 ( j\ r) 7 ( 1\ )
+ ||”j||ga(3i\3,) + ||Vj||ga(3j\3,))||‘P||LQ(B,\B,)

p-l a-1
<38 P +CpE @,

where ¢; (i =1,2,3,4) are positive constants. Similarly, we can prove

1 p P p—2
fimRe [ (b, ), 2,

~ ~ ~ =2 ~ ~ P\ SP-2 0\ T
= Hy(|thn; = 17, (Vi = Vi) Vi, = VP2 (v = V) = He (15517, [;1P) [P 72%) = 0. O

Lemma3.4 Let {(u,,v,)} and {(%i,,V,)} be as defined above. Then the following conclusions
hold:

L(thn = Uiy Vi = V) = ¢ = L, V)
and

Lty — Uy vy —Vy) = 0 in E' (the dual space of E).
Proof By using the similar arguments of [34, 35], we have

Ik(un - ﬁnr Vi _;n)
= Ik(un: Vn) - I)L(En:;n)

A * ~ ~ * ~ ok ~ ¥
e 2 [ KOl =i =T = ) + (" = =T = )
P JRN

A ~ ~ ~ ~
+ 1_7 /N(H(|un|p’ |Vn|p) _H(|Mn =ty lP, vy — Vn|p) _H(|un|p’ |Vn|p)) +0(1).
R

By (3.1) and the similar idea of proving the Brézis-Lieb lemma [36], it is easy to get

. * ~ ~ * ~ ~
lim I((x)((|un|p — |t = uulP = |tnl? )+(|Vn|p — Vi =Vul? = [Vul? )) =0
n—>00 JpN

and

im | (H(|ual?, [val?) = H(1ttn = Gnl? |V = Val?) = H([tGn [, [V]7)) = 0.

n—00 JpN

Furthermore, using the fact I, (u,, v,) — ¢ and L, (#,,7,) — L, (14,v), we obtain

IA(un _ﬁnr Vi _T/‘n) — C—IA(M, V).

Page 6 of 13
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In order to prove I} (u, — Uy, v, — V,) — 0 in E7%, for any (¢, ) € E, it follows that

I),L(un - ’ﬁm Vi _"\;n)((p’ l/f)
= ];\(”n: Vn)(w’ 1#) - If\(’ﬁm’f/‘n)(% 1#)

+ARe / K@) (|t 21ty = |ty = a2ty = T) — [0 ~20,)
]RN

+ARe / NK(x)(|vn|P**2vn V=Tl T2 = V) = ) W
R

+ARe / (Hs (12l 0P 1t P2 01,

RN
_Hs(lun - Mn ’ - Vn |p)|un - un |p 2 - En) - Hs(rﬁn |p, ﬁ;n |p)|ﬁn |p_2zzn)(;5
+kRe/ (He(1tnl?, [Vl ) VP2,

RN
_Ht(mn — Ul [V =V |p)|Vn = VulP” 2 Vi = V) — Ht(|ﬁn 7, [V |p)|’17n |p_2"7n)1/_f
+o(1).

It is standard to check that

hm/ KO ([t 2t = 116 = T2t = ) = BT = 0

and

. *_ ~ k_ ~ ~
lim 1<(x)(|vn |p 2Vn - |Vn —Vu |IJ Z(Vn - Vn) - |Vn |p 2 )W
n—00 JpN

uniformly in (g, ¥) € E with ||(¢, V)| g < 1. Together with Lemma 3.3, we have
Lty — UV —Vy) > 0 inE. O

Let ul = u, —uy,, vl = v, -V, then u, —u = ul + (%, — u), v, —v =v. + (v, —v). From (3.1),
we get (4, v,) = (u,v) in E if and only if (u},v}) — (0,0) in E.
Observe that

n’ n

(53 ) L K@ 1)
p b RN

"o al) + vl He(

1 ) = 1504 0 )

" il))

" vil") - H(

}\, * *
= [ KO+ )

where Kyin = inf,.gnv K(x) > 0. Furthermore, we get

f; < N—(c; Iél(” D Lo, (3.2)

[ e v2)
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Now, we consider the energy level of the functional I; below which the (PS), condition
holds.
Let Vj(x) := max{V'(x), b}, where b is a positive constant in the assumption (V). Since

the set v;, has finite measure, we get
/ VLl + [P = f Vo@ (il + [AA[7) + o(0). (3.3)
RN RN

In connection with the assumptions (H;)-(H3) and the Young inequality, there exists C; > 0
such that

/R K@)l 1vI) + el Hy (1l [v17) + v e (jl”, [91))

< b(llully + VIE) + Co (el + VL. (3.4)

Let S be the best Sobolev constant of the immersion

Slullb, < /RN [Vul?  forallu € W (RV).
Proof of Proposition 3.1 Assume that (u,,v,) - (4,v), then

tim inf | ()] > 0
and

c—L(u,v)>0.
By the Sobolev embedding inequality and the diamagnetic inequality, we get

S(|u,

o+ vl

< [ (vl s vip)
RN

< / (Vi + BB ALY + |Vh + P AGLP)
RN

- / (196 + 2P AL + AV + |V + B AW + 2 VE)AP)
RN

[ Vel )

:A/ K(x)(|ui,’p*+’Vﬁ,|p*)+|uz|pHs(|u1,p, ’
RN

) + 1A

vl”)
_A/ Vb(x)(’uﬂp + ’vi’p) +0(1)
RN

=2b([w, [}, + [vally) + +Co (s

vt 1) =20 (a7 + V417 + o)

=361,

ii + ||vil i:) +0o(1).
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This, together with (3.2), gives

s a7+ |

p P\
, )7 +o()
)4
N(c-1L(u, N
<ag (N D@
M in

4

) (c—IA(u,v))%+o(1).

S cb( N

min
N _N
Set ag =857 C, ” N~ Kiin, then
1-N
oo P <c—-1(u,v) +o0(1).

This completes the proof of Proposition 3.1.

N
Proof of Proposition 3.2 Since ¢ < a7, we have

N
p

c—L(u,v) <aoh"? —L(u,v).

In connection with 7, (&, v) > 0 and Proposition 3.1, we complete this proof.

4 The mountain-pass structure

In the following, we always consider A > 1. We will prove that /, possesses the mountain-
pass structure which has been carefully discussed in the works [37, 38].

Lemma 4.1 Let the assumptions of Theorem 2 be satisfied. There exist o;, p,. > 0 such that

Li(u,v)>0 if0<||(u,v)||E<m and L (u,v) > ay if||(u,v)||E:pk.

Proof By (3.4), for any § > 0, there is Cs > 0 such that
r v
/I;N G, v) < 8(lully + IWIE) + Cs (ullss + [VIE).
Thus,

L(u,v) = l”(u,v)”i—)»/ G(u,v)
RN

=

"I

In connection with ||u||,’§ + ||v||,’§ < Ci||(w,v)||%, we may choose § < (2pAC;)~! such that

1 * *
L(u,v) > @H () [ = 2Cs (el + IIvIIE).

The fact p* > p implies the desired conclusion.

@) |5 = A8l + 1v12) = 2Cs (llullZe + [VIE2).

Page9of 13
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Lemma 4.2 Under the assumptions of Lemma 4.1, for any finite dimensional subspace
F C E, we have

Li(u,v) > —00 as(u,v) € F, || (u,v) ||E — 00.
M B
Proof Together with the fact H(s, t) > pao(|s|? + |t|7), we have
1
L(u,v) < 5 |G w) |5 = Aao ()& + IlvI)  for all (u,v) € E.

Since all norms in a finite-dimensional space are equivalent and «, 8 > p, we complete the
proof. d

In the following, we will find special finite-dimensional subspaces by which we establish
sufficiently small mini-max levels.

Define the functional
D; (u,v) = }7 ||(u,v) ||§ - Ao /}RN(WP‘ + |V|ﬂ).

Obviously, it follows that ®, € C(E) and I, (u, v) < ®; (i, v) for all (u,v) € E.
Observe that

inf{/RN VoI : ¢ € C°(RY,R), |9l o gy = 1} =0
and
inf{fRN VU ¥ € CF (RN, R), 16y = 1} =0,
Then, for any § > 0, there are ¢s, Y5 € C*(RY,R) with |5 ]l omny = 1¥s]ls@n) = 1 and

supp ¢s, supp Vs C By, (0) such that | Vs[5, Vsl < 8.
Set e, (x) = (¢s(¥/2x), ¥s(&/2x)). Then suppe; C Bx‘l (0). For t > 0, we get

prﬁ
tP a
D;(te;) = — el — aort® / |5 (Vax) [ = aort? / |5 ()|
p RN RN
= Al_%fx(tfﬁa, tys),
where

Ji (1) = 1/ (IVal? + Vv + (A7) + V(37 5)) (|el? + vI?))
b JrN

—ay /RN(|14|°‘ + |V|ﬂ).

By direct computation, we have

o

w0 = — L [ @+ (a7 v O)I)|

po(aag)®?

Page 10 0of 13
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B

¥ Lpl,{/ (V2 + (A(A7x) + v(,\%x))mavf)}ﬁ_p.
pB(Bag) P> /RN

Since A(0) =0, V(0) = 0 and ||V |l5, Vs l5 < 8, we know that there is As > 0 such that
for all A > A, we have

max I (s, t) < (L‘”},(sa)ﬁ ¥ Lplg(w)ﬂ)#—%. (4.1)
=0 polaag)** pB(Bao) P>

Lemma 4.3 Forany o >0, there is A, > 0 such that .. > A, there is wy € E with ||wy || >
01 L(W;) < 0 and

— 1-N
max [, (twy) <oA 7,
>0

where p;, is defined in Lemma 4.1.
Proof This proof is similar to that of Lemma 4.3 in [7], so we omit the details. g
5 Proof of Theorem 2

Proof By using Lemma 4.3, for any o > 0 with 0 < o < ap, we choose A, > 0 and define
the mini-max level

N
¢, = inf max L (y(9) < oA"7  forallA > A,,
yel; te0,1]

where I';, = {y € C([0,1],E) : (0) =0,y (1) = w; }.

By Proposition 3.1, we know that I, satisfies the (PS)., condition. Hence, by the
mountain-pass theorem, there is (,,v,) € E such that I, (u,v;) = ¢, and I} (i;,v,) = 0.
This shows (u;, vy) is a weak solution of (2.1).

Moreover, note that I, (1, v;) < okl_% and [} (uy,v;) = 0. Then

1
L(u,vy) = L(uy,vi) — gli(uxyvx)(umvx)
11 1 1 . .
= (; - 5) ” (MAyVA)HIE + (5 - E)A[RN K(x)(|’fl/\|p + [l )
1
A / (—(|Mx|pHs(|MA|p; o) + P (a7, 1v217)
RN 9
- lH(wp,mV’))
P

> (55 )l

Furthermore, together with the diamagnetic inequality, we prove that (u,, v, ) satisfies the
estimate (2.2). The proof is complete. d
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