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Abstract

In this paper, we present a data gathering technique for sensor networks that exploits correlation between sensor
data at different locations in the network. Contrary to distributed source coding, our method does not rely on
knowledge of the source correlation model in each node although this knowledge is required at the decoder node.
Similar to network coding, our proposed method (which we call Quantized Network Coding) propagates mixtures of
packets through the network. The main conceptual difference between our technique and other existing methods is
that Quantized Network Coding operates on the field of real numbers and not on a finite field. By exploiting principles
borrowed from compressed sensing, we show that the proposed technique can achieve a good approximation of the
network data at the sink node with only a few packets received and that this approximation gets progressively better
as the number of received packets increases. We explain in the paper the theoretical foundation for the algorithm
based on an analysis of the restricted isometry property of the corresponding measurement matrices. Extensive
simulations comparing the proposed Quantized Network Coding to classic network coding and packet forwarding
scenarios demonstrate its delay/distortion advantage.

Keywords: Linear network coding; Distributed source coding; Compressed sensing; Restricted isometry property;
�1 minimization

1 Introduction
Flexible, low cost, and long-lasting implementation of
wireless sensor networks has made them an unavoidable
alternative for conventional wired sensing structures in
a wide variety of applications, including medicine, trans-
portation, and military [1]. As a relatively new technology,
more challenges are faced in the networking aspects of
communication than in the aspects of classic physical
[2]. One of the introduced challenges is the gathering of
sensed data at a central node of the network, where deliv-
ery delay, precision, and robustness to network changes
are emerging issues.
Packet forwarding via routing is widely used in differ-

ent implementations of sensor networks.While it achieves
capacity rates in the case of multiple session unicast
in lossless networks [3], packet forwarding requires an
appropriate routing [4] protocol to be run. However,
packet forwarding can lead to difficulties because of
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its slow adaptation to the network changes, caused by
deploying new node(s) or link failure(s).
Further, in the case of lossy networks, network coding

offers a better error correction capability than packet for-
warding, as a result of network diversity. Network coding
[3] has been proposed as an alternative for packet for-
warding in sensor networks [5,6]. Specifically, network
coding sends a function of incoming packets to the inter-
mediate nodes, as opposed to sending their original con-
tent. Furthermore, the usage of random linear functions,
also known as random linear network coding, is proved
to be sufficient in lossless networks [7,8]. Moreover, the-
oretical analysis shows that when network coding is used
for transmission, no queuing is required to achieve the
capacity rates of the network [3]. Network coding in lossy
networks can result in improved achieved rate regions,
compared to packet forwarding [9,10].
In the case of correlated sources, distributed source cod-

ing [11,12] on top of packet forwarding is proved to be
sufficient, when dealing with networks of lossless links
[13]. Similar to packet forwarding, network coding can
be separately applied on top of distributed source coding
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for correlated sources [14,15]. However, one has to per-
form joint source network decoding in order to achieve
theoretical performance limits, which may not be feasi-
ble because of its computational complexity [15]. Different
solutions have been proposed to tackle this practicality
issue [16-18], by using low-density codes and sum product
algorithm [19] for decoding.
Distributed source coding requires the availability of

appropriate marginal coding rates at each encoder node;
similarly, the deployment of joint source network decod-
ing requires some knowledge of the correlation model of
the sources on the encoding side. The assumption of this
knowledge might not be practical in all cases, even more
so when the source characteristics change over time.
Motivated by this observation, we aim to develop a data

gathering and transmission scheme that, similar to net-
work coding, does not rely on routing but at the same
time can intrinsically take advantage of the source corre-
lation. Our approach models source correlation through a
sparsity or compressibility assumption; combined with a
specific data gathering scheme inspired by network cod-
ing but acting in the real field, this assumption allows us to
develop recovery algorithms at the sink node, which allow
approximate data recovery with low delay. Our recov-
ery mechanism will be based on ideas borrowed from
compressed sensing [20,21] in which the inter-node corre-
lation model of the messages, interpreted as near-sparsity
in some domain, is used.
Recently, the idea of using compressed sensing and

sparse recovery concepts in sensor networks has drawn a
lot of attention [22-25]. Specifically, with the aid of the
compressed sensing concepts, compression of inter-node
correlated data without using their correlation model is
done in [22,23]. Morevoer, in [26,27], theoretical discus-
sion on sparse recovery of graph constrained measure-
ments with an interest in network monitoring application
is presented. Joint source, channel, and network coding
was also proposed in [28], where random linear mixing
was proposed for compression of temporally and spatially
correlated sources. In [29], practical possibility of finite
field network coding of highly correlated sources was
investigated, with the aid of low-density codes and belief
propagation-based decoding. Unfortunately, a solid theo-
retical investigation on the feasibility of adopting sparse
recovery in random linear network coding has not been
done previously.
Real network coding has shown interesting advan-

tages over the conventional finite field network coding
[30]. In our earlier work [31], we combined the idea
of using real field network coding with the concepts of
compressed sensing and proposed a non-adaptive dis-
tributed compression scheme, called Quantized Network
Coding (QNC), for exactly sparse sources. Furthermore,
in [32], we initiated a discussion on the theoretical

feasibility of compressed sensing-based network coding,
using restricted isometry property of random matrices.
In this paper, we extend our previous work from [31,32]
in two specific ways: (i) we extend the network source
model used from exactly sparse to near-sparse signals,
and (ii) we provide a detailed mathematical and numer-
ical justification of the usage of sparse recovery algo-
rithms (including a bound on the reconstruction error)
for this source model. Finally, extensive computer sim-
ulations are used to compare the performance of the
proposed QNC scenario with respect to other network
transmission scenarios. Specifically, our focus is to study
the distributed compression capabilities of the proposed
QNC scenario in a lossless scenario. The study of robust
transmission in lossy cases will be done in a future
work.
Although the idea of using compressed sensing has been

initially proposed in [22], its theoretical and practical
possibilities have not been studied by providing a math-
ematical formulation. Additionally, we discuss on using
compressed sensing in a network coding-based scenario,
which involves quantization and is different from the work
in [22].
As another contribution of our work, we discuss the sat-

isfaction of RIP in a network coding scenario, which has
not been addressed in other works. Specifically, in [25,28],
the authors do not discuss explicit conditions for which
compressed sensing encoding (and decoding) works prop-
erlya. In this work, we propose conditions for network
coding coefficients which ensure a robust recovery of
messages, by using restricted isometry property.
Finally, our QNC scenario is different from other pro-

posed schemes, in the sense that we perform quantiza-
tion to fulfill limited lossless communication between the
nodes, as opposed to only using analog network coding.
Specifically, we study the behavior of the so-called tail
probability [32] in our QNC scheme and show that its
behavior is similar to that which is observed in the classic
(identically and independently distributed (i.i.d.) Gaussian
measurement matrix [33,34]. This leads us to conclude
that our scheme requires a number of received measure-
ments of the same order as that classic case (see Section 4).
A detailed description of the data gathering scenario stud-
ied in this paper, as well as some notations, is presented
in Section 2. In Section 3, we introduce and formulate
our proposed Quantized Network Coding algorithm, fol-
lowed by a discussion on its theoretical feasibility, using
the restricted isometry property, in Section 4. In Section 5,
we present the decoding algorithm used to recover quan-
tized network coded packets and derive a performance
bound on recovery error. Our simulation setup and results
are presented in Section 6. Finally in Section 7, we con-
clude the paper with a discussion on the proposedmethod
and ongoing work.
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2 Problem description and notation
In this paper, we limit our study to a network with loss-
less links with limited capacity. This model could also
correspond to lossy networks, where appropriate channel
coding would have been applied. A more realistic lossy
network model is left as a future work.

2.1 Network
As shown in Figure 1, we represent the network by a
directed graph, G = (V , E), where V and E are the sets
of nodes (vertices) and directed edges (links). Each node,
v, is from the finite sorted set V = {1, . . . , n}, and each
edge, e, is from the finite sorted set E = {1, . . . , |E |}. Fur-
ther, each edge (link) can maintain a lossless transmission
from tail(e) to head(e), at a maximum finite rate of Ce bits
per use. Transmission over each link is assumed to have
no interference involved from other links or nodes. One
may modify the capacities of each link to reflect the effect
of interference over each link.
We define the sets of incoming and outgoing edges

of node v, denoted by In(v) and Out(v), respectively, as
follows:

In(v) = {e : e ∈ E , head(e) = v}, (1)
Out(v) = {e : e ∈ E , tail(e) = v}. (2)

The content of edge e at time instant t are represented by
Ye(t), where t represents the discrete (integer) time index,
during which a block of L channel symbolsb is transmit-
ted. Ye(t) is from a finite alphabet of size �2LCe�, where ���
denotes rounding down to the nearest integer. In the rest
of the paper, the realizations of all capital letter random
variables are denoted by lowercase letters.

2.2 Source signals
The nodes of the network are equipped with sensors;
specifically, we model the sensed signals in each node v as

Sensor node

Gateway node

Figure 1 Directed graph representing a data gathering sensor
network.

an information source, Xv, where Xv ∈ R. To reflect the
natural correlation between sensed data at each node, we
assume that the set of signals Xv are near-sparse in some
transform domain.
More specifically, defining the sorted vectorc of Xv ’s,

X = [Xv : v ∈ V] , (3)

we assume that X is near-sparse in some orthonormal
transform domain φn×n. Explicitly, for S = φT · X, and a
small positive εk , we have∣∣∣∣S − Sk

∣∣∣∣
�1∣∣∣∣S∣∣∣∣

�1

≤ εk , (4)

where Sk is such that∣∣∣∣Sk∣∣∣∣�0 = k, (5)

i.e., Sk is k-sparse. An example of the sparsifying trans-
form matrix, φ, is the Karhunen Loeve transform of the
messages.
Moreover, we assume that messages,Xv ’s, take their val-

ues in a bounded interval between−qmax and+qmax. This
is also a reasonable assumption as the sensing range of
sensors is usually limited. The choice of qmax can be made
after a statistical study of realizations of Xv’s and can be
chosen as some confidence region, in which most of the
realizations of Xv’s lay. Note that the sparsity model used
in this paper is different from the conventional joint sparse
model (JSM) [35], in that our node source signals or mes-
sages are scalar random variables, without correlation over
time in each node. This is a valid assumption as a local
transform coding could be applied to the time samples and
generate a set of samples with no time redundancy.

2.3 Data gathering
Having these correlated information sources and the
information network characterized, we study the trans-
mission of Xv’s to a single gateway node. The gateway or
decoder node, denoted by v0, v0 ∈ V , has high compu-
tational resources and is usually in charge of forwarding
the information to a next level network, e.g., a wired back-
bone network. The described (single session) incast of
sources to the unique decoder node is referred to as data
gathering.

3 Quantized Network Coding
3.1 Principle
Random linear network coding for multicast of indepen-
dent sources has been proposed and studied in [8], where
the algebraic operations are carried out in a finite field.
Since our work is motivated by the concepts of com-
pressed sensing, in which the results are valid in the
infinite field of real number, we have to use a real field
alternative for conventional finite field network coding.
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On the other hand, the finite capacity of the edges has
to be appropriately coped with. As a result, we propose
a method that we call Quantized Network Coding, which
uses quantization to match infinite alphabet of real field
network coded packets to the limited capacity of the
network links.
In [31], for each network node v ∈ V and each outgoing

edge e ∈ Out(v), we defined QNC at node v, according to

Ye(t) = Qe

⎛
⎝ ∑

e′∈In(v)
βe,e′(t) · Ye′(t − 1) + αe,v(t) · Xv

⎞
⎠ ,

(6)

for t > 1 and with Ye(1) = 0, ∀e ∈ E , to ensure initial rest
condition in the network. This means that, at time t, the
message on any outgoing edge of a node is made up of a
quantized linear combination of the messages received by
the node at the previous time instant and the information
Xv measured by the node. Themessages,Xv ’s, are assumed
to be constant until the transmission is complete, which
is why Xv’s do not depend on t. The local network coding
coefficients, βe,e′(t)’s and αe,v(t)’s, are real-valued, and the
determination of their value will be discussed in Section 4.
The quantizer operator,Qe(�), corresponding to outgoing
edge e, is designed based on the values ofCe and L, and the
distribution of its input (i.e., random linear combinations).
A simple diagram of QNC at node v is shown in Figure 2.

3.2 End-to-end equations
Denoting the quantization noise of Qe(�) at time t, by
Ne(t), we can reformulate (6) as follows:

Ye(t) =
∑

e′∈In(v)
βe,e′(t) ·Ye′(t−1)+αe,v(t) ·Xv +Ne(t). (7)

We define the adjacency matrix, [F(t)]|E|×|E|, as well as
matrix [A(t)]|E|×n as

{F(t)}e,e′ =
{

βe,e′(t), tail(e) = head(e′)
0, otherwise , (8)

Figure 2 A simple diagram of Quantized Network Coding.

{A(t)}e,v =
{

αe,v(t), tail(e) = v
0, otherwise . (9)

We also define the vectors of edge contents, Y (t), and
quantization noises, N(t), according to

Y (t) = [Ye(t) : e ∈ E] , (10)
N(t) = [Ne(t) : e ∈ E] . (11)

As a result, (7) can be re-written in the following form:

Y (t) = F(t) · Y (t − 1) + A(t) · X + N(t). (12)

Depending on the network deployment, matrix
[B]|In(v0)|×|E| defines the relation between the content of
edges, Y (t), and the received packets at the decoder node
v0. Explicitly, we define the vector of received packets at
time t at the decoder:

Z(t) = [Ye(t) : e ∈ In(v0)] = B · Y (t), (13)

where

{B}i,e =
{
1, i corresponds to e ∈ In(v0)
0, otherwise . (14)

By considering (12) as the difference equation, charac-
terizing a linear systemwithX andN(t)’s as its inputs, and
Z(t) its output, and using the results in [36], one gets

Z(t) = �(t) · X + Neff(t), (15)

where the measurement matrix, �(t), and the effective
noise vector, Neff(t), are calculated as follows:

�(t) = B ·
t∑

t′=2
Fprod(t′ + 1; t) A(t′), (16)

Neff(t) = B ·
t∑

t′=2
Fprod(t′ + 1; t) N(t′). (17)

In (16) and (17), Fprod(�; �) is defined as

Fprod(t1; t2) =
{
F(t2) · F(t2 − 1) · · ·F(t1), t2 ≥ t1
I|E|×|E|, otherwise

(18)

and I denotes the identity matrix.
By storing Z(t)’s, at the decoder, we build up the total

measurement vector, Ztot(t), as follows:

Ztot(t) =
⎡
⎢⎣
Z(2)
...

Z(t)

⎤
⎥⎦
m×1

, (19)

wherem = (t−1)|In(v0)|. Therefore, the following can be
established:

Ztot(t) = �tot(t) · X + Neff,tot(t), (20)
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where the m × n total measurement matrix, �tot(t), and
the total effective noise vector, Neff,tot(t), are the con-
catenation result of measurement matrices, �(t)’s, and
effective noise vectors,Neff(t). Because of our assumption
to start transmission from t = 1, measurements in Z(1)
are not useful for decoding, and therefore

�tot(t) =
⎡
⎢⎣

�(2)
...

�(t)

⎤
⎥⎦ , (21)

Neff,tot(t) =
⎡
⎢⎣
Neff(2)

...
Neff(t)

⎤
⎥⎦ . (22)

In conventional linear network coding, the total num-
ber of measurements, m (see (19)), is at least equal to the
number of data sources, n (the number of nodes in the
network here). Typically, the total measurement matrix is
of full column rank, and if there is no uncertainty involved
because of measurement noise, we are able to uniquely
find a solution. In this paper, we are interested in investi-
gating the feasibility of robust recovery of X, when fewer
number of measurements are received at the decoder than
the number of messages, i.e.,m < n.
The characteristic Equation (20) describing the QNC

scenario can be treated as a compressed sensing measure-
ment equation. This gives us an opportunity to apply the
results in the literature of compressed sensing and sparse
recovery [20,37] to our QNC scenario with near-sparse
messages. However, one needs to examine the required
conditions which guarantee sparse recovery in the pro-
posed QNC scenario. In the following, we discuss theo-
retical and practical feasibility of robust recovery with a
compressed sensing perspective.

4 Restricted isometry property
One of the main advantages of the compressed sensing
approach is that it relies on a simple model of correlation
for the sources; if sparse reconstruction can be applied
successfully to recover X from Equation 20 at a given time
t, this is achieved without requiring the encoders (net-
work nodes) to know much about the underlying signal
correlation. This section discusses the design of the lin-
ear mixing coefficients αe,v(t) and βe,e′(t) and the impact
of this design on the ability to apply sparse reconstruction
techniques at the sink node v0 to approximately recover
the n source signals X from m measurements Z(t) at a
given time t, wherem 	 n.

4.1 The restricted isometry property
One of the properties that is widely used to character-
ize appropriate measurement matrices in the compressed

sensing literature is the restricted isometry property (RIP)
[33]. Roughly speaking, this property provides a measure
of norm conservation under dimensionality reduction
[34]. In compressed sensing, the RIP of the measurement
matrix between the sparse domain and the measure-
ment domain allows to draw strong conclusions about the
possibility to recover the original data from a small set
of measurements [33]. In our case, this means that the
RIP should hold for the measurement matrix �tot(t) =
�tot(t)φ.
An m × n matrix �tot(t) is said to satisfy RIP of order

k with constant δk , if for all k-sparse vectors sk ∈ R
n, we

have

1 − δk ≤
∣∣∣∣�tot(t)sk

∣∣∣∣2
�2∣∣∣∣sk∣∣∣∣2�2 ≤ 1 + δk . (23)

Randommatrices with i.i.d. zero-mean Gaussian entries
are known to be appropriate measurement matrices for
compressed sensing. Explicitly, an m × n i.i.d Gaussian
random matrix, denoted G, with entries of variance 1

m ,
satisfies RIP of order k and constant δk , with a probability
exceeding 1 − e−κ1m, (called overwhelming probability) if
m > κ2k log(nk ), where κ1 and κ2 only depend on the value
of δk (theorem 5.2 in [38]).
Using the results above, it can be understood that an

m × n i.i.d Gaussian random matrix, G, satisfies RIP of
order k, with a high probability, when the order of number
of measurements,m, is k log(n/k), formally writing:

m = O
(
k log

(n
k

))
, (24)

which is smaller than the order of n, the size of the
data [38].

4.2 QNC design for RIP
We now turn to the design of QNC coefficients in
Equation 6 so that the overall design satisfies RIP with
high probability. We assemble here several results from
the literature and additional simulations to motivate the
proposed design.
In [31,32], we proposed a design for local network cod-

ing coefficients, βe,e′(t)’s and αe,v(t)’s, which results in
an appropriate total measurement matrix, �tot(t), in the
compressed sensing framework.

Theorem 1 (Theorem 3.1 in [32]). Consider a Quan-
tized Network Coding scenario, in which the network cod-
ing coefficients, αe,v(t) and βe,e′(t), are such that:

• αe,v(t) = 0, ∀t > 2.
• αe,v(2)’s are independent zero-mean Gaussian

random variables.
• βe,e′(t)’s are deterministic.
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For such a scenario, the entries of the resulting �tot(t)
are zero-mean Gaussian random variables. Further, the
entries of different columns of �tot(t) are mutually inde-
pendent. �

It is also numerically shown in [32] that a locally orthog-
onal set of βe,e′(t)’s is a better choice than non-orthogonal
setsd. This choice of coefficients is defined, for each node
v and for all e, e′ ∈ Out(v), as

∑
e′′∈In(v)

βe,e′′(t) · βe′,e′′(t) = 0, e 
= e′,

∑
e′∈In(v)

β2
e,e′(t) = 1

|In(v)|2 . (25)

In cases where the number of outgoing edges is greater
than the number of incoming edges, i.e., |Out(v)| >

|In(v)|, some of the outgoing edges are randomly removed
(not used for transmission) to ensure that the generated
βe,e′(t)’s are locally orthogonal. Furthermore, the second
equation in (25) is a coefficient normalization which has
no specific impact at this stage of the analysis, but which
will be important in the study of bounds on sparse recov-
ery performance in Section 5. Heuristically, such choice
of orthogonal set makes each outgoing packets (of each
node) to be innovative.
In [32], we established the relation between the satisfac-

tion of RIP and the so-called tail probability

ptail(�tot(t), ε) = max
x′,

P
(∣∣∣∣∣∣∣�tot(t)x′∣∣∣∣2

�2
− 1

∣∣∣ > ε
)
,

subject to
∣∣∣∣x′∣∣∣∣

�2
= 1 (26)

by proving the following theorem.

Theorem 2 (Theorem4.1 in [32]). Consider�tot(t)with
the tail probability, as defined in (26), and an orthonormal
transform matrix φ. Then, �tot(t) = �tot(t) · φ satis-
fies RIP of order k and constant δk , with a probability
exceeding,

1 −
(
n
k

) (
42
δk

)k
ptail

(
�tot(t), ε = δk√

2

)
. � (27)

In [32], we have derived a detailed expression of the
tail probability (26). Our ultimate goal would be to use
this expression to directly conclude that the number of
necessary measurements m in the QNC scenario is of
the same order as that of a well-known Gaussian mea-
surement matrix, as defined above. However, the rela-
tionship between the network and QNC parameters on
the one hand and the measurement matrix �tot(t) on

the other hand is too complicated to easily draw conclu-
sions (see Equations 8, 9, and 16). We therefore resort
to the following reasoning: we first show through sim-
ulations that the tail probabilities for the QNC and
Gaussian measurement matrices are of the same order;
we then conclude to a similar behavior of QNC and
Gaussian measurement matrices in terms of RIP satis-
faction and thus in terms of the required number of
measurements.
In Figure 3, we present the numerical values of tail

probabilities (defined in (26)) for the QNC measurement
matrix �tot(t), ptail(�tot(t), ε), using the local network
coding coefficients proposed in Theorem 1 with βe,e′(t)’s
satisfying the locally orthogonal conditione of (25). These
tail probabilities are compared with those of i.i.d. Gaus-
sian matrices, G, versus the number of measurements,m,
in each case.
Our numerical evaluations in Figure 3 show that for

the same value of tail probability, the QNC measurement
matrix, �tot(t), and the i.i.d. Gaussian matrix,G, require a
number of measurementsm of the same order.
We can therefore also say, using Theorem 2, that the

QNCmeasurement matrix, �tot(t), and the i.i.d. Gaussian
matrix, G, have a similar behavior in terms of satisfying
RIP as a function of m, so that they will typically require
values ofm of the same order to ensure sparse recovery.
In the following section, we extend our discussion to the

robust recovery in QNC scenario, by using the guarantees,
implied from the satisfaction of RIP.

5 Decoding using sparse recovery
In this section, we will explore the performance of decod-
ing using sparse recovery based on Equation 20 and the
QNC design proposed in Theorem 1. It is well known
that recovery of exactly sparse vectors from an under-
determined set of linear measurements can be done with
no error, using linear programming [39]. Specifically, the-
oretical works show that the NP-hard �0 minimization
can be replaced with �1 minimization without any asso-
ciated error, when dealing with noiseless measurements
[37,39]. However, when dealing with noisy measurements,
�1-min recovery does not necessarily offer a minimum
mean squared error solution. There is still a lot of work
being done to develop practical and near minimum mean
squared error recovery algorithms for noisy cases. Sparse
recovery from quantized measurements has been recently
studied in a number of works [40-42]. For instance, the
authors in [41] consider the estimation problem of sparse
vectors from measurements that are quantized and cor-
rupted by Gaussian noise. The main aspect that differ-
entiates our model from that in [41] is that in our QNC
scenario the resulting effective total measurement noises
are non-linear functions of quantization noises at each
edge.
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Figure 3 Numerical values of tail probabilities. Logarithmic tail probability versus logarithmic ratio of minimum required number of
measurements in our QNC scenario and i.i.d. Gaussian measurement matrices, for n = 100 nodes, different RIP constants, and different degrees of
nodes. The explanation of network deployments for which tail probabilities are calculated is presented in Section 6. (a) Average hops = 3.9
(d0 = 0.25, GWcorner). (b) Average hops = 2.3 (d0 = 0.25, GWcenter).

Along the lines of [20,33], the compressed sensing-
based decoder for the QNC scenario solves the following
convex optimization:

X̂(t) = φ · argmin
S′

∣∣∣∣S′∣∣∣∣
�1
,

subject to
∣∣∣∣Ztot(t) − �tot(t) φ S′∣∣∣∣

�2
≤ εrec(t)

(28)

which can be solved by using linear programming [39].
The following theorems present our results on the recov-
ery error using �1-min decoding of (28).

Theorem 3. Consider the QNC scenario where the abso-
lute value of messages are bounded by qmax and the local
network coding coefficients are such that:

• αe,v(t) = 0, ∀t > 2.
• αe,v(2)’s are independent zero-mean Gaussian

random variables with variance σ 2
0 .• βe,e′(t)’s are deterministic and locally orthogonal

according to (25).

In such scenario, overflowing of linear combinations (over
the limit of qmax) within the nodes happens with a proba-
bility less than or equal to

2|E |Q(σ−1
0 ) , (29)

where Q(�) is the tail probability of standard normal dis-
tributions (i.e., one-sided Q function).

Proof. Using Cauchy-Schwartz inequality, for t ≥ 3, we
have

∑
e′∈In(v)

|βe,e′(t)| ≤

√√√√√
⎛
⎝ ∑

e′∈In(v)
|βe,e′(t)|2

⎞
⎠

⎛
⎝ ∑

e′∈In(v)
1

⎞
⎠

2

(30)

=
√(

1
|In(v)|2

)
(|In(v)|)2 = 1 (31)

As a result, since αe,v(t)’s are zero for t ≥ 3, it is straight-
forward to imply that overflow may not happen for t ≥
3.
For t = 2, since only the node message Xv is available at

each node, the values of βe,e′(2)’s do not affect anything.
Hence, only the value of αe,v(2) can result in overflow
and therefore |αe,v(2)| should be less than or equal to one
to prevent overflow. Moreover, because of the Gaussian
distribution of αe,v(2)’s, each αe,v(2) may have an abso-
lute value more than one, with a probability of 2Q(σ−1

0 ).
Therefore, using the union bound, the probability that
there is at least one αe,v(2) with |αe,v(2)| > 1 is upper
bounded by 2|E |Q(σ−1

0 ).

Theorem 4. Consider a QNC scenario where, for all
v ∈ V , the network coding coefficients satisfy the condi-
tions in Theorem 3, and for which, based on the discussion
in Section 4, the measurement matrix �tot(t) = �tot(t)φ
satisfies RIP of order 2k with constant δ2k <

√
2 − 1. The

edge quantizers, Qe(�)’s, are assumed to be uniformf with
the step size 
e. Then, with a probability exceeding

1 − 2|E |Q(σ−1
0 ), (32)
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for the �1-min decoding of (28), we have∣∣∣∣∣∣X̂(t) − X
∣∣∣∣∣∣

�2
≤ c1εrec + c2√

2
εk , (33)

where ε2rec(t) is defined in (34),

ε2rec(t) = 1
4

t∑
t′=2

∑
e∈In(v0)

⎛
⎝ t′∑

t′′=2

|E|∑
e′=1

|{Fprod(t′′+1; t′)}e,e′ | 
e′

⎞
⎠

2

,

(34)

and the matrix product Fprod(�, �) in (34) is defined in (18).
The constants c1 and c2 are also defined as follows:

c1 = 4
√
1 + δ2k

1 − (1 + √
2)δ2k

, (35)

c2 = 2
1 − (1 − √

2)δ2k
1 − (1 + √

2)δ2k
. (36)

Proof. According to Theorem 3, the conditions on
the local network coding coefficients ensures that over-
flow does not happen with a probability exceeding 1 −
2|E |Q(σ−1

0 ). Further, since the network is lossless, the only
associated measurement noise is resulting from the quan-
tization noise at the edges. For each uniform quantizer
Qe(�), e ∈ E , we have

−
e
2

≤ Ne(t) ≤ +
e
2
. (37)

This implies

∣∣∣∣Neff,tot(t)
∣∣∣∣2

�2
=

t∑
t′=2

|In(v0)|∑
i′=1

{
Neff(t)

}2
i′ (38)

=
t∑

t′=2

∑
e∈In(v0)

⎧⎨
⎩

t′∑
t′′=2

Fprod(t′′ + 1; t′)N(t′′)

⎫⎬
⎭

2

e

(39)

=
t∑

t′=2

∑
e∈In(v0)

⎛
⎝ t′∑

t′′=2

|E|∑
e′=1

{
Fprod(t′′ + 1; t′)

}
e,e′ Ne′ (t′′)

⎞
⎠

2

(40)

≤
t∑

t′=2

∑
e∈In(v0)

⎛
⎝ t′∑
t′′=2

|E|∑
e′=1

| {Fprod(t′′+1; t′)
}
e,e′ | |Ne′ (t′′)|

⎞
⎠

2

(41)

≤ 1
4

t∑
t′=2

∑
e∈In(v0)

⎛
⎝ t′∑

t′′=2

|E|∑
e′=1

| {Fprod(t′′ + 1; t′)
}
e,e′ | 
e′

⎞
⎠

2

(42)

= ε2rec(t), (43)

where (39) holds because of the one-to-one mapping
structure of B matrix. This provides an upper bound on
the �2-norm of measurement noise in our QNC scenario.
According to theorem 4.2 in [21], when the mea-

surement matrix satisfies RIP of appropriate order and
constant (as in the assumptions of Theorem 4) and the
measurement noise is bounded, �1-min recovery can yield
an estimate with bounded recovery error. Explicitly, the

bound is as in (33), considering the near-sparsity model
of the messages and the obtained bound on the measure-
ment noise.

According to the preceding theorem, the upper bound,
c1εrec, is decreased when the quantization steps, 
e’s, are
decreased. Since 
e = 2qmax/2�LCe�, a smaller upper
bound on the �2 norm of the recovery error can be
obtained by increasing the block length, L. Although this
can be done practically, it will simultaneously increase the
point to point transmission delays in the network, which
may not be desirable. This creates a trade-off between
reconstruction quality and delay, whichwill be explored in
detail in Section 6.
As discussed in Theorem 4, the local network coding

coefficients, proposed in (25), ensure that the normaliza-
tion is respected and overflow does not happen, with high
probability. More precisely, an appropriate choice of σ0
should also be picked for this purpose. For example, when
the number of edges is in the order of 1, 000, selecting
σ0 = 0.25 would result in a low probability for overflow.
It was also discussed in Section 4 that the resulting

�tot(t) = �tot(t)φ satisfies the RIP condition with a high
probability, when the local network coding coefficients are
generated according to the assumptions of Theorem 1,
with a number of measurements m of the same order
as would be required for a i.i.d. Gaussian measurement
matrix. Based on Theorem 4, if the resulting �tot(t) satis-
fies the RIP of appropriate order with a high probability,
then the robust recovery can be guaranteed with high
probability.
Therefore, putting all these numerical and theoretical

results together, QNC will result in bounded error recov-
ery (33) with a number of measurements (number of
packets received at the decoder) of smaller order than the
number of messages. This saving in the required num-
ber of received packets can be interpreted as an embedded
distributed compression, achieved by Quantized Network
Coding at the nodes: the more packets are received at the
decoder, the largermwill be and the lower the reconstruc-
tion error will be.

6 Simulation results
In this section, we evaluate the performance of Quan-
tized Network Coding, by using different numerical
simulations. The main motivation behind the proposed
Quantized Network Coding technique is to allow for
reconstruction of the correlated source signals at the sink
node or decoder with a limited number of measurements.
To this end, we will compare delay distortion curves
for different data gathering algorithms. Our performance
analysis includes statistical evaluation of the proposed
QNC scenario versus packet forwarding and conventional
finite field network coding schemes. The resulting analysis
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will provide a comprehensive comparison between these
transmission methods for different network deployments
and correlation of sources.

6.1 Network deployment andmessage generation
To set up the simulations, we generate random deploy-
ments of networks with directed links, obtained from
a transmission power loss model. Specifically, a certain
number of nodes, n, are deployed in a unit square two-
dimensional region, according to a uniform distribution.
One of the deployed nodes in the network is randomly
picked to be the gateway node, v0, in which the messages
are decoded. In our simulations, we examine two differ-
ent probability models to pick the gateway node. In the
first model, denoted byGWcorner, the gateway node is uni-
formly picked from the nodes within the region in the
corners of the unit square, as shown in Figure 4a. In the
second model, denoted by GWcenter, the gateway node is
uniformly picked from the nodes within the region in the
center of a unit square, as shown in Figure 4a.
The asymmetric connectivity (which is different from

full duplex transmission over links) of two nodes is deter-
mined according to an exponential power decay model: if
there is a distance between node i and node j, denoted di,j,
then there is an edge (link) from i to j; if

di,j ≤ d0, (44)

and

Pi,j ≤ P0, (45)

where d0 is a threshold which determines the commu-
nication range of sensor nodes, Pi,j is a uniform random
variable between 0 and 1, and P0 (0 < P0 ≤ 1) tunes
the average percentage of nodes in the communication

range of a sensor toward which there will be a link. We
change the value of d0 (and typically keep P0 = 0.9) to
generate networks with different number of edges and dif-
ferent maximum hop distances, as described later in this
section. Different settings for generating network deploy-
ments, the resulting average degree of nodes |In(v)|, and
the resulting average hop distances of nodes from the
gateway node are presented in Table 1.
In our simulation, each communication link (edges) can

maintain a lossless communication of 1 bit per use, i.e.,
Ce = 1, for all e ∈ E . We also assume that there is no
interference involved from transmission in other nodes
which may have been achieved by using a time multiplex-
ing strategy. A sample network deployment is shown in
Figure 4b, where the arrows represent the directed links
between the nodes.
To generate a realization of messages, x, we first gen-

erate a k-sparse random vector, sk , whose non-zero com-
ponents are uniformly distributed between − 1

2 and + 1
2 .

Then, a near-sparse vector, s, is obtained such that ele-
ments of (s − sk) are drawn from independent zero-mean
uniform random variables and∣∣∣∣s − sk

∣∣∣∣
�1∣∣∣∣s∣∣∣∣

�1

= εk . (46)

This is followed by generation of an orthonormal ran-
dom matrix, φ, and calculating random messages: x =
φ · s. To ensure that xj’s are bounded, they are normalized
between −qmax and +qmax (xj’s are multiplied by a con-
stant value). The value of qmax used for the simulations
does not affect the simulation results, since we are using
average SNR as a measure of decoding quality. We study
the performance of different transmission scenarios by

Figure 4 Network deployment with transmission power decay model. (a) Gateway node selection. (b) A deployed network in GWcorner mode
with d0 = 0.15.
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Table 1 Number of hops in each deployment settingwith
n = 100 nodes
Simulation settings Average |In(v)| Average hops

d0 = 0.15, GWcorner 5.3 9.7

d0 = 0.15, GWcenter 5.3 5.3

d0 = 0.25, GWcorner 13.9 3.9

d0 = 0.25, GWcenter 13.9 2.3

d0 = 0.35, GWcorner 24.8 2.7

d0 = 0.35, GWcenter 24.8 1.7

repeating our simulations for different values of sparsity
factor, kn , and near-sparsity parameter, εk .
The average signal-to-noise ratio (SNR) is used as the

quality measure in our numerical comparisons. Explicitly,
for the decoded messages in a scheme, x̂, the average SNR
is defined as

SNR = 20 log10

∣∣∣∣x∣∣∣∣
�2∣∣∣∣x − x̂
∣∣∣∣

�2

, (47)

where (�) stands for the average over different realizations
of network deployments. For each realization of network
deployment, we only generate one realization of messages,
and therefore, taking the average over different network
deployments is enough to obtain the average SNR values.
The payback measure in our comparisons is the corre-

sponding average delivery delay, to achieve the required
quality of service (average SNR). Explicitly, delivery delay
for a transmission which has terminated at t is equal to
(t − 1) L in all cases of transmission scenarios. In the case
of packet forwarding, we do not consider the learning
period required to find the routes from each sensor node
to the decoder node.
The used simulation parameters are listed in Table 2. In

the table, we describe the different simulated transmission
scenarios.

6.2 Quantized Network Coding
For each generated random network deployment, we per-
form QNC with �1-min decoding. Local network coding

Table 2 The parameters of messages and the networks
used in our simulations

Parameter Value(s)

n 100

d0 0.15, 0.25, 0.35

P0 0.9

L 1, . . . , 40

k/n 0.01, 0.05, 0.10

εk 0, 0.002, 0.02, 0.2

coefficients, αe,v(t)’s and βe,e′(t)’s, are generated accord-
ing to the conditions of Theorem 3, where σ0 = 0.25.
Edge quantizers, Qe(�)’s, have uniform characteristic with
a range of [−qmax,+qmax] and 2L intervals (since Ce =
1, ∀e). Random αe,v(2)’s and βe,e′(t)’s can be generated in
a pseudo-random way, and therefore, only the generator
seed needs to be transmitted to the decoder in a packet
header.
At the decoder, the received measurements up to t,

ztot(t), are used to recover the original messages. Specif-
ically, for a realization of messages, x, we define x̂QNC(t)
to be the recovered messages, using �1-min decoding,
according to (28). The convex optimization, involved in
(28), is solved by using the open source implementation of
disciplined convex programming [43]. Moreover, the net-
work deployment is assumed to be known at the decoder
in order to build up �tot(t) matrices (the random gener-
ator seed is enough to regenerate local network coding
coefficients). Although the exact sparsity of messages, k,
does not need to be known for performing �1-min decod-
ing, the sparsifying transform, φ, should be known. The
block length, L, has to be known at the decoder to be able
to calculate the level of the effective measurement noise,
i.e., εrec(t)’s.

6.3 Quantization and packet forwarding
For each deployment, we also simulated a routing-based
packet forwarding and compared it with the results for
QNC. To find the routes from each node to the gate-
way node, we find the shortest path from each node to
the gateway node using the Dijkstra algorithm [44]. Fur-
ther, the real-valued messages, xv’s, are quantized at their
corresponding source nodes, by using similar uniform
quantizers, as used in QNC transmission. The system
delivers all xv ’s to the decoder node over a certain period
of time and keeps track of delivered messages over time, t,
in the recovered vector of messages, x̂PF(t). Moreover, if a
message, xv, is not delivered by time index, t, zero is used
as its recovered value:

{x̂PF(t)}v = 0. (48)

6.4 Quantization and packet forwarding with CS
decoding

The quantization and packet forwarding with CS decod-
ing (QandPFwithCS) scenario is exactly the same as the
quantization and packet forwarding (QandPF) scenario,
except at the decoder side. Specifically, at the decoder
node, if the messages of some nodes are still not deliv-
ered, the decoder tries to recover them from the other
received (quantized) messages, using compressed sensing
decoding. Explicitly, we define �tot,PF(t) to be the map-
ping matrix from the messages to the received quantized
messages, i.e.,
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{�tot.PF(t)}i,v =
{
1, Q(xv) delivered by t and corresponds to ith received packet,
0, Q(xv) not delivered by t , (49)

and ztot,PF(t) to be the set of received (delivered via PF)
quantized messages at the decoder. In such case, the
following �1 minimization is solved:

x̂PFCS,0(t) = φ · argmin
s′

∣∣∣∣s′∣∣∣∣
�1
,

subject to
∣∣∣∣ztot,PF(t) − �tot,PF(t)φs′

∣∣∣∣
�2

≤ εrec,PF(t),

(50)

where εrec,PF(t) is the upper bound on the �2-norm of
quantized delivered messagesg. Then, for each v if its
quantized messages Q(xv) is still not delivered, we use
{x̂PFCS,0(t)}v, meaning

{x̂PFCS}v =
{
Q(xv), Q(xv) delivered by t,
{x̂PFCS,0(t)}v, Q(xv) not delivered by t .

(51)

As it can be predicted, compressed sensing-based
decoding tries to find an approximate estimation for the
un-delivered messages by using the redundancy of mes-
sages and improves the overall performance in terms of
recovery error norm.

6.5 Quantization and network coding
Conventional finite field network coding is also simulated
for transmission of messages to the decoder node. In this
scenario, similar to packet forwarding, the messages are
first quantized at their source nodes, by using a uniform
quantizer. The quantizers have a range between −qmax
and +qmax, and their step size depends on the transmis-
sion block length, L. Then, the quantized messages are
transmitted to the decoder node by running a classical
batch-based finite field network coding [7,8]. The field
size in network coding is determined by the value of L,
and the network coding coefficients are picked randomly
and uniformly from the field elements. At the decoder
node, the received finite field packets are collected until n
of them are stored, and the transmission is then stopped.
If the finite field matrix, which maps the messages to the
received packets at the decoder node, has full column
rank, then the quantized messages can be reconstructed
without any error. However, if the field size is not large
enough and matrix inversion is not possible, then none
of the messages can be decoded. In such case, we set the
reconstructed (decoded) messages to be equal to their
mean value (i.e., 0 in our simulations):

{x̂QandNC(t)}v = 0, ∀v. (52)

This is referred to as all or nothing decoding in the
conventional network coding literature. Similar to QNC
scenario, the network deployment is assumed to be known
at the decode node, and the mapping matrix (from mes-
sages to received packets) can be built up by only receiving
the seed of pseudo-random generators.

6.6 Analysis of simulation results
For a fixed block length, L = 9, the average SNR values
versus the average delivery delay is depicted in Figure 5.
In Figure 5a,b, the horizontal axis represents the prod-
uct (t − 1)L, which is the delivery delay, corresponding to
L = 9, for different values of t ≥ 1. The vertical axis is
the average SNR, calculated according to (47), for QNC,
QandPF (with and without compressed sensing decod-
ing), and quantization and network coding (QandNC)
scenarios.
As it is shown in Figure 5a,b, when using the same

block length, QNC achieves significant improvement,
compared to PF, for low values of delivery delay. These
low delays correspond to the initial t’s in the transmission,
at which a small number of packets are received at the
decoder. As promised by the theory of compressed sens-
ing, fewer measurements enable message recovery, with
an associated measurement noise. After enough pack-
ets are received at the decoder, QNC achieves its best
performance (where the curve is almost flat). This best
performance improves (i.e., average SNR increases) when
the correlation of messages is higher (sparsity factor k/n
is lower).
The best performance for QandPF, QandPFwithCS, and

QandNC happens after a longer period of time than for
QNC. As it can be seen, this is the best achievable qual-
ity (SNR value), which is limited only by quantization
noises at the source nodes, for both QandPF and QandNC
scenarios. As it is also expected, using compressed sens-
ing decoding (as in QandPFwithCS scenario) provides a
better estimation of the messages before all the packets
are delivered. Furthermore, as opposed to QandPF which
shows a progressive improvement in the quality, QandNC
has an all or nothing characteristic, as mentioned earlier.
It is also interesting to note that low-density adjacency
matrices in networks with small degree of nodes result
in having (finite field) measurement matrices that are not
of full rank in the QandNC scenario. Hence, as shown in
Figure 5a, QandNC scheme fails to work properly.
The quantization noises and their propagation through

the network does not allow QNC to achieve the same best
performance as in PF and QandNC scenarios (where only
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Figure 5 Average SNR versus average delivery delay for QNC, PF, and QandNC scenarios, when εk = 0. (a) d0 = 0.15, GWcenter,
average hops = 5.3, L = 9. (b) d0 = 0.35, GWcenter, average hops = 1.7, L = 12.

source quantization noise is involved). However, as it is
shown in the following, QNC outperforms QandPF (with
and without compressed sensing decoding) and QandNC
scenarios in a wide range of delay values, when an appro-
priate block length is chosen.
After simulating QNC, QandPF, QandPFwithCS, and

QandNC scenarios for different block lengths and calcu-
lating the corresponding delay and recovery error norms,
we find the best values of block length for each specific
average SNR value. The resulting L-optimized curves for
each of these scenario are shown in Figure 6.
It can be seen in Figure 6a,b,c,d that, when the net-

work does not have too many links (i.e., when the average
hop distances are low), the proposed QNC scenario out-
performs both routing-based packet forwarding (with and
without compressed sensing decoding) and conventional
QandNC scenarios. This is true for a wide range of average
SNR values, varying up to around 35 dB, which is consid-
ered as high quality in many applications. Moreover, as it
is expected, the average SNR of QNC scenario increases
when the correlation of messages increases (i.e., when the
sparsity factor, k/n, decreases).
As shown in Figure 6e,f, when dealing with networks

with very high number of edges, which results in small
average hop distances, the proposed QNC scenario can-
not outperform QandNC scenario, for very high SNR
values (explicitly for average SNR values higher than
40 dB). This may be a result of quantization noise pro-

pagation through the network during the QNC steps,
which strengthen the effective measurement noise above
the level that sparse recovery can compensate.
By comparing the figures, in which only the loca-

tion of gateway node has changed, i.e., from GWcenter
to GWcorner (Figure 6a to Figure 6b and Figure 6c to
Figure 6d), we can understand that QNC shows a more
robust behavior than PF and QandNC schemes. In other
words, QNC does not suffer from the complications
(especially happening in packet forwarding) caused by
asymmetric distribution of network flow. Using com-
pressed sensing decoding for packet forwarding, as in
QandPFwithCS scenario, improves the performance of
packet forwarding in this situation, although it cannot
outperform QNC scenario.
We have also studied the effect of the near-sparsity

parameter, εk , on the performance of our QNC scheme.
Those results are shown in Figure 7, where the average
SNR is depicted versus the average delivery delay, for dif-
ferent settings of network deployment and a fixed sparsity
factor of k/n = 0.01. Increasing the near-sparsity param-
eter, εk , means that the generated messages are getting
further away from the sparsity model. As a result, the
performance of QNC degrades when εk increases, which
can be seen in Figure 7a,b,c,d,e,f. A more sophisticated
correlation model, which would incorporate in the decod-
ing procedure other prior information about the messages
than only sparsity may improve the performance of the
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Figure 6 Average SNR versus average delivery delay for εk = 0. (a) d0 = 0.15, GWcenter, average degree = 5.3, average hops = 5.3. (b)
d0 = 0.15, GWcorner, average degree = 5.3, average hops = 9.7. (c) d0 = 0.25, GWcenter, average degree = 13.9, average hops = 2.3. (d) d0 = 0.25,
GWcorner, average degree = 13.9, average hops = 3.9. (e) d0 = 0.35, GWcenter, average degree = 24.8, average hops = 1.7. (f) d0 = 0.35, GWcorner,
average degree = 24.8, average hops = 2.7.
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Figure 7 Average SNR versus average delivery delay for k/n = 0.01. (a) d0 = 0.15, GWcenter, average degree = 5.3, average hops = 5.3. (b)
d0 = 0.15, GWcorner, average degree = 5.3, average hops = 9.7. (c) d0 = 0.25, GWcenter, average degree = 13.9, average hops = 2.3. (d) d0 = 0.25,
GWcorner, average degree = 13.9, average hops = 3.9. (e) d0 = 0.35, GWcenter, average degree = 24.8, average hops = 1.7. (f) d0 = 0.35, GWcorner,
average degree = 24.8, average hops = 2.7.



Nabaee and Labeau EURASIP Journal onWireless Communications andNetworking 2014, 2014:40 Page 15 of 17
http://jwcn.eurasipjournals.com/content/2014/1/40

QNC scenario. We are currently studying such possibility,
and our initial findings are reported in [45,46].
In the routing-based packet forwarding scenarios (with

and without compressed sensing decoding), the interme-
diate (sensor) nodes have to go through route training
and queuing of packets. One of the main advantages of
QNC is that the intermediate nodes should only carry
out simple linear combination and quantization, which
reduces the required computational power of interme-
diate sensor nodes (they still have to perform sensing
and physical layer transmission). On the other hand,
at the decoder sides, QNC requires an �1-min decoder
which is potentially more complex than the receiver
required for packet forwarding. However, since the gate-
way node is usually capable of handling higher compu-
tational operations, this may not be an issue in practical
cases.

6.7 QNC in lossy networks
Although it is not themain focus of our paper, we have run
some numerical simulations to assess the robustness of
QNC scenario in lossy networks. Specifically, we consider
a network model similar to the one used for the lossless
case, but with the presence of packet losses. More pre-
cisely, all the links are assumed to have a bit dropping rate

of pdrop, i.e., a bit (which corresponds to a symbol in the
case of C0 = 1 considered in the simulations) is dropped
(lost) during the transmission with a probability of pdrop.
When dealing with packets of length L, a packet is consid-
ered as being dropped if one or more of its bits are lost.
This will be applied to all different transmission schemes,
described in Section 6.1.
During the packet forwarding, if a packet is not suc-

cessfully transmitted over a channel, it needs to be re-
transmitted completely. Moreover, in the QandNC and
QNC scenarios where finite field network coding and
Quantized Network Coding are adopted, loss of a packet
(transmitted over a link) is reflected by a zero value for the
corresponding local network coding coefficient.
The simulation results for this lossy network scenario

are shown in Figure 8. Similar to the case of lossless net-
work, the curves are obtained by finding the appropriate
packet length for each SNR value. We have used a wide
range of bit loss rates pdrop for our simulations and shown
results for a few representative values of pdrop. Specifically,
we present the performance curves for a low loss rate of
pdrop = 10−5, 10−4 and a high loss rate of pdrop = 10−2.
Since the low SNR values (low decoding quality) in

QNC scenario are obtained by using small packet lengths
(small values of L), the probability of having a bit drop in

(a) (b)

Figure 8 Average SNR versus average delivery delay in the presence of packet loss. (a) d0 = 0.15, GWcenter. (b) d0 = 0.25, GWcorner.
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the packet is smaller, compared to a larger packet length
(larger L). As a result, the resulting performance curves
are not very different, when having different loss rates.
This is shown in Figure 8a,b, where there is a small gap
between the curves of different pdrop values at low SNR
values.
Moreover, since the compressed sensing decoder

exploits the correlation between the messages, it is able to
reconstruct some messages when their corresponding lin-
ear measurements are lost in the transmission. This fact
can also be seen in QandPF scenario when compressed
sensing decoding is adopted.

7 Conclusions
Joint source network coding of correlated sources was
studied with a sparse recovery perspective. In order to
achieve encoding of correlated sources without requir-
ing the encoders to know the source correlation model,
we proposed Quantized Network Coding, which incorpo-
rates real field network coding and quantization to take
advantage of decoding using linear programming. Thanks
to the work in the literature of compressed sensing,
we discussed theoretical guarantees to ensure efficient
encoding and robust decoding of messages. Moreover, we
were able to make conclusive statements about the robust
recovery of messages, when fewer number of received
packets than the number of source signals (messages)
were available at the decoder. Finally, our computer simu-
lations verified the reduction in the average delivery delay,
by using Quantized Network Coding.
Currently, we are studying the feasibility of near mini-

mum mean squared error decoding, when other forms of
prior information are available about the source. Specif-
ically, we have suggested the use of belief propagation-
based decoding [45] in a Bayesian scenario. However,
more theoretical work is needed to derive mathematical
guarantees for robust recovery. Studying the general case
of lossy networks with interference between the links is
also one of the proposed future directions.

Endnotes
aThey only mention that dense networks satisfy

restricted eigenvalue condition and do not prove it.
bAlthough the impact and value of L are not discussed

at this point, it is an important design parameter, which
will be extensively discussed in Section 6.

cIn this paper, all the vectors are column-wise.
dThis choice reduces the tail probabilities defined later

on in Equation 26 and, as such, increases the probability
of the measurement matrix satisfying RIP.

eExplicitly, we have a predetermined set of orthogonal
matrices, used as βe,e′(t)’s. Further, the variance of
αe,v(2)’s are picked the same such that the mean of
�2-norms (defined in [32]) is equal to 1.

fAlthough a uniform quantizer may not be the best
choice for some message distributions, it is still widely
used in practice. It also allows us to simplify the
mathematical analysis to provide a theoretical bound on
the resulting recovery error. The study of the impact of
different quantizer designs is left as a future work.

gThis depends on the characteristic of quantizers used
at the source node to quantize each message before
packet forwarding. Specifically, in our simulations where
we used uniform quantizers with step size 
Q, εrec,PF(t)
is equal to the product of 
Q and the number of
delivered quantized messages.
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