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Abstract

Background: Supervised machine learning approaches have been recently adopted in the inference of
transcriptional targets from high throughput trascriptomic and proteomic data showing major improvements from
with respect to the state of the art of reverse gene regulatory network methods. Beside traditional unsupervised
techniques, a supervised classifier learns, from known examples, a function that is able to recognize new
relationships for new data. In the context of gene regulatory inference a supervised classifier is coerced to learn
from positive and unlabeled examples, as the counter negative examples are unavailable or hard to collect. Such a
condition could limit the performance of the classifier especially when the amount of training examples is low.

Results: In this paper we improve the supervised identification of transcriptional targets by selecting reliable
counter negative examples from the unlabeled set. We introduce an heuristic based on the known topology of
transcriptional networks that in fact restores the conventional positive/negative training condition and shows a
significant improvement of the classification performance. We empirically evaluate the proposed heuristic with the
experimental datasets of Escherichia coli and show an example of application in the prediction of BCL6 direct core
targets in normal germinal center human B cells obtaining a precision of 60%.

Conclusions: The availability of only positive examples in learning transcriptional relationships negatively affects
the performance of supervised classifiers. We show that the selection of reliable negative examples, a practice
adopted in text mining approaches, improves the performance of such classifiers opening new perspectives in the
identification of new transcriptional targets.

Background
An important challenge of computational biology is the
reconstruction of large biological networks from high
throughput genomic and proteomic data. Biological net-
works are used to represent and model molecular interac-
tions between biological entities, such as genes and
proteins in a given biological context.
In this paper we focus on the identification of new tran-

scriptional targets, i.e. coding DNA regions directly regu-
lated by transcription-factors. Transcription factors are
proteins, coded by specific genes, that, alone or with other
proteins in a complex, bind the targets cis-regulatory

regions and control the target transcriptional activity
by promoting or blocking the recruitment of RNA
polymerase.
In identifying the interactions between transcription-

factors and genes from experimental data, two broad
classes of computational methods can be distinguished
in literature [1,2]: those that rely on the physical interac-
tion between molecules (gene-to-sequence interaction)
which relate transcription factors to sequence motifs
found in promoter regions; and algorithms based on the
influence interaction that try to relate the expression of
a gene to the expression of the other genes in the cell
(gene-to-gene interaction). Most of the approaches of
the second class are basically unsupervised and model
the reconstruction of transcriptional relationships as a
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classification problem, where the basic decision is the pre-
sence or absence of a relationship between a given pair of
genes [3-6]. Those methods can be distinguished in:
i) gene relevance network models, which detect gene-gene
interactions with a similarity measure and a threshold,
such as ARACNE [7], TimeDelay-ARACNE [8], and CLR
[9] that infer the network structure with a statistical score
derived from the mutual information and a set of pruning
heuristics; ii) boolean network models, which adopt a bin-
ary variable to represent the state of a gene activity and a
directed graph, where edges are represented by boolean
functions (e.g. REVEAL [10]); iii) differential and difference
equation models, which describe gene expression changes
as a function of the expression level of other genes with a
set of ordinary differential equations (ODE) [11]; and iv)
Bayesian models, or more generally graphical models,
which adopt Bayes rules and consider gene expressions as
random variables [12].
The experimental validation of predicted transcriptional

regulations is performed with ChIP-on-chip [13], a techni-
que used to investigate interactions between proteins and
DNA in vivo by combining chromatin immuno-precipita-
tion (ChIP) with microarray technology (chip). Specifically,
it allows the identification of the cistrome, sum of binding
sites, for DNA-binding proteins on a genome-wide basis.
Whole-genome analysis can be performed to determine
the locations of binding sites for almost any protein of
interest, in particular transcription factors. The goal of
ChIP-on-chip is to localize protein binding sites that may
help identify functional elements in the genome. For
example, in the case of a transcription factor as a protein
of interest, one can determine its transcription factor bind-
ing sites throughout the genome.
A recent trend in computational biology aims recon-

struct large biological networks with supervised approaches
[5,6,14]. Supervised methods require a training set, which
in our context means a set of transcriptional targets where
the information that they are regulated by a transcription
factor is known in advance. Training targets are used to
estimate a function that is able to discriminate whether a
new transcriptional interaction exists. The literature of
machine learning proposed several supervised algorithms:
neural networks, decision tree, logistic models, and Sup-
port Vector Machines (SVM) [15]. Among all SVM gave
promising results in the reconstruction of biological net-
works [16-18]. For example, SIRENE adopted an SVM
classifier to reconstruct the regulatory network of Escheri-
chia coli, and obtained more accurate results than unsuper-
vised methods based on mutual information (e.g. CLR and
ARACNE) [16]. Compared to unsupervised methods,
supervised methods are potentially more accurate, but in
fact they need an initial set of known regulatory connec-
tions. This is in principle not a restriction as many regula-
tions are progressively discovered and shared among

researchers through public regulatory databases. Some
examples are: RegulonDB (http://regulondb.ccg.unam.mx),
KEGG (http://www.genome.jp/kegg/), TRRD (http://www.
mgs.bionet.nsc.ru/mgs/gnw), Transfac (http://www.gene-
regulation.com), IPA (http://www.ingenuity.com).
In general a supervised binary classifier needs both

positive and negative examples to learn effectively. In the
context of gene regulatory networks this condition is not
satisfied, as counter negative examples are not available
or may be hard to collect. In functional genomics, infor-
mation about negative examples is in fact not available,
as the input is usually a finite list of genes known to have
a given function or to be associated to a given disease,
and the goal is to identify new genes sharing the same
property. Thus, under a machine learning perspective,
the supervised inference of new transcriptional targets
falls into a class of semi-supervised learning problems
that consists of learning from positive and unlabeled
data. The training set is composed just by known positive
examples (positive set) and the goal is to predict the
unknown positive in examples the unlabeled set.
Learning from only positive and unlabeled data is a hot

topic in the literature of data mining, where three main
families of approaches can be distinguished [19]: i) meth-
ods that reduce the problem to the traditional two-class
learning by selecting reliable negative examples from the
unlabeled set [20-25]; ii) methods that do not need labeled
negative examples and basically adjust the probability of
being positive estimated by a traditional classifier trained
with positive and unlabeled examples [14,26]; and iii)
methods that treat the unlabeled set as noisy negative
examples [27].
In this paper we focus on the first class of approaches

that rely on a starting selection of negative examples. The
main problem is that some of the selected negative exam-
ples could in fact be positives embedded in the unlabeled
data, reducing the prediction capability of a binary classifier.
We empirically evaluate this effect by simulating the posi-
tive contamination inside the negative training set showing
that the performance of the classifier improves when the
positive contamination is low. Such a result demands for
an approach that is able to generate a sufficiently large
negative training set without positive contamination.
We propose, NOIT (NOn Indirect Targets), a method to

select reliable negative training examples by exploiting the
known gene regulatory network topology in the specific
context of prediction new transcriptional targets. The
method is an extension, to a specific context, of approaches
recently published in [28] and [29] where reliable negatives
selection benefits from the over presence, in the current
known gene regulatory networks, of typical network motifs
[30]. We introduce a new heuristic that still exploits the
known regulatory network topology but not in terms of
network motifs as in the specific context of transcriptional
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target prediction the relationships between transcription-
factors and their targets does not exhibit significant net-
work patterns. The NOIT method gives less importance to
indirect targets, i.e. targets of a transcription-factor regu-
lated indirectly through other transcription-factors. The
idea is based on the observation that genes controlled
directly by a transcription factor or indirectly through
other transcription factors are likely to attain for the same
family of functions, thus representing unreliable negative
candidates. This is supported by the fact that transcription
factors evolved in the service of specific biological functions
and are usually classified according to their regulatory
function [31] and sequence similarity [32,33]. Moreover
downstream targets activity is usually modulated by regula-
tory circuits involving small groups of transcription factors
organized in typical network motifs.
We compare NOIT with other negative selection

approaches known in literature. For this purpose we adopt
the dataset of Escherichia coli, where almost all transcrip-
tional regulations are known and a huge amount of experi-
mental data is available for benchmarking (e.g. Faith et al.
[34]). Furthermore we provide an example of application
in the prediction of BCL6 direct targets in normal germ-
inal center human B cells by adopting the results of Basso
et al. [13] showing that NOIT predicts 29 correct targets
in the top 50 ranked genes, outperforming other super-
vised and unsupervised methods that predict less than 10
correct targets. The paper is organized as follows. The
next section (Methods) introduces the NOIT heuristic,
overviews the literature methods that are based on a reli-
able negative selection procedure, and describes the
empirical procedures aimed at evaluating the performance
of the negative selection heuristics. Section on results
reports and discusses the outcomes of the study, and the
last section concludes the paper outlining directions for
future work.

Methods
Problem formulation
In a binary classification problem, given a set of training
examples, (x1, y1), (x2, y2), ..., (xn, yn) Î X × {+1,-1}, the
goal is to determine a function f(x): X ® {-1,+1} that is
able to predict the label y Î{+1,-1}of a new observation
x Î X. Machine learning algorithms infer an estimate of
the function f from the available examples. To distinguish
effectively whether a new observation is positive or nega-
tive, the training set should contain a sufficient number of
both positive and negative examples. Such a conventional
condition does not hold in the problem we aim to forma-
lize as the training set is composed by only positive exam-
ples. In the context of transcriptional target prediction
negative counter examples are in principle not available as
the nonexistence of a transcriptional activity is hard to be
experimentally verified. Liu et al. [20] theoretically showed

that a statistical classifier may take advantage from unla-
beled examples, and that if the sample size is large enough,
the classifier could converge to a good classifier by maxi-
mizing the number of unlabeled examples classified as
negative while constraining the positive examples to be
correctly classified. The selection of reliable negatives
from the unlabeled set could be crucial for the quality of
a positive only classifier. With those examples a classifier
could be trained with a traditional two-class set under the
control of a convergence condition. The selection of reli-
able negative training examples may, or may not, exploit
the underlying application domain. For example, in the
classification of web documents, reliable negative docu-
ments are those that do not contain any of the most
frequent words extracted from known positive docu-
ments [35].
We propose, NOIT (NOn Indirect Targets), a negative

selection heuristic that exploits the known regulatory net-
work topology by giving less importance to indirect targets,
and formalized as follows. Let G be the set of all genes in
an organism and TF ⊂ G the set of transcription factors.
Given a transcription factor tfi Î TF, the goal is to infer
a function, ftfi(φ(g)) : G → {−1, +1}, from a set of tar-
get genes, Ptfi = {(g1, +1), (g2, +1), ..., (gn, +1)} ⊂ (G\TF),
that are known to be regulated directly by tfi (i.e. positive
examples). The function should be able to predict the label
y of a new gene g ∈ Utfi = G\(TF ∪ Ptfi) from the unlabeled
set. The transformation function j describes each gene
with an m-dimensional real valued feature vector,
φ(g) : G → R

m, such as expression values measured in m
different experimental conditions.
The goal of a negative selection heuristic is to select

from the unlabeled set Utfi a sufficiently large negative
training set without positive contamination. Our aim is to
propose a method based on the assumption that an unla-
beled gene g ∈ Utfi is a bad negative candidate if it is indir-
ectly controlled by tfi, through other transcription factors.
Such information can be extracted from the known gene
regulatory network, or in the situation wherein such infor-
mation is not available, it could be estimated with binding
site promoter analysis [32] and/or unsupervised gene regu-
latory prediction [7,9].
We introduce a probability mass function pmftfi(g) of

negative candidates distribution to estimate the probability
that an example g ∈ Utfi is a good negative candidate.
We compute pmftfi(g) as:

pmftfi(g) =
1

|Utfi|
k

|TF|

where k Î [1, |TF|] is the minimum number of tran-
scription factors, tfi+1, tfi+2, ..., tfi+k, that link tfi to g, i.e. for
every j = i, ..., i + k -1, tfj+1 is a known target of tfj . The
term 1/|Utfi | serves to scale the probability mass function
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to sum to 1. When a path linking tfi and g through a set of
known transcription factors does not exist, we assume that
k = |TF|. In that case the probability is maximum, instead
it is minimum when at least one tfk exists such that
g is regulated by tfk and tfk is regulated by tfi (Figure 1).
The hypothesis is that the expression profile of genes
regulated by tfi are more correlated with genes selected as
bad negatives than those selected as good negatives. This
is confirmed with a bootstrapping experiment where we
selected (many times, e.g. 1000) two random genes, g1 and
g2, belonging to the targets of a transcription factor, and
two genes, ggood and gbad, belonging respectively to good
and bad negative candidates as selected by the NOIT pro-
cedure. We computed the correlation between g1 -g2,
g1-ggood, and g1 -gbad obtaining the three distributions
shown in Figure 2. The black curve shows the distribution

of correlation between genes within the same targets, the
red curve shows the distribution of correlation between
targets and bad negative candidates, and the green curve
shows the distribution of correlation between targets and
bad negative candidates. A two sample Mann-Withney
Test between the latter two distributions shows a signifi-
cant difference (W = 5940280284, p-value < 2.2 × 10-16)
suggesting that the NOIT procedure is able to select nega-
tive that are more distant, in term of correlation, from tar-
gets. With a learning scheme similar to SIRENE [16] we
divide the unlabeled set Utfi into three random folds. The
labels of each fold are predicted with a binary classifier
trained with the known positives and a selection of nega-
tive examples drawn from the other two folds. SIRENE
adopts a method, known as PU learning (Positive Unla-
beled learning), that is strongly affected by the positive

Figure 1 The NOIT (NOn Indirect Targets) negative selection heuristic. Reliable negative examples are sampled from the unlabeled set
distributed according to an heuristic that promotes the non existence of indirect relationships with the current transcription factor.
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contamination of unlabeled examples as all unlabeled
examples are considered good negative candidates. We
limit such a contamination by selecting the top NC nega-
tive candidates scored by the above introduced probability
mass function pmftfi(g). We consider a number of nega-
tives candidates, NC, depending on the number of known
positives N C = K ∗ |Ptfi |. The parameter K may affect the
performance of the classifier. With an experiment per-
formed in the context of Escherichia Coli we observed on
the independent test set that the best performance is
obtained with K around 10 (Figure 3).

Negative selection methods in literature
In this Section we briefly review the most important
positive only classification methods that include a reli-
able negative selection step in their classification
schema.
Spy-SVM
Spy-SVM is a technique proposed in [20] that works as
follows. A percentage of known positives, {s1, s2, ..., sk},
randomly selected from Ptfi, that act as ‘spies’, are sent to
the unlabeled set Utfi. An SVM classification algorithm is
trained with positive examples (without the spies) and the

unlabeled set (with the spies) assumed as negatives. The
spies should behave identically to the unknown positive
examples belonging toUtfi, and this allows to reliably infer
the behavior of the unknown positive examples. A thresh-
old t is employed to make the decision whether an exam-
ple in Utfi is a reliable negative or not. Examples with a
probability of being positive, P(f(x) = +1), lower than t are
the most likely negative examples. The threshold is intui-
tively calculated as the minimum of the probability of
being positive of spies, i.e. t = min{P(f(s1) = +1), P(f(s2) =
+1), ..., P(f(sk) = +1)}. This means that all the spy examples
should be classified as positives.
PSoL - Positive Sample only Learning
PSoL selects strong negative example using the Euclidean
distance measure [21]. The algorithm starts with a nega-
tive candidate that is the most farthest unlabeled example
from Ptfi calculated as the maximum of the minimum dis-
tance from the elements of Ptfi. More negative candidates
are selected from the unlabeled setUtfi satisfying the con-
strain that are different from the known positive exam-
ples and farthest from the previously selected negative
ones. The algorithm assumes that the negative examples
in the unlabeled set are located far from positives and

Figure 2 Distribution of correlation between gene expression profiles. The distribution of gene expression profiles correlation computed
between genes regulated by the same transcription factor (black curve), between targets and good negative candidates (red curve), and
between targets and bad negative candidates (green curve).
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from the previous selected negative examples. The last
condition assures that the negative set spans the whole
negative examples in the unlabeled set. Given such initial
negative set, the PSoL method iteratively expands the
negative set by using a two-class SVM trained with
known positives and the current negative selection.
Negative set expansion is repeated until the size of the
remaining unlabeled set goes below a predefined number.
At this last step, the unlabeled data points with the lar-

gest positive decision function values are declared as the
positives.
Rocchio-SVM
Rocchio-SVM is based on a technique adopted in infor-
mation retrieval to improve the recall of pertinent docu-
ments through relevance feedback [22]. It identifies the
set of reliable negatives by adopting two prototypes, one
for the positive class, cP, and one for the unlabeled ones,
cU, computed as follows:

Figure 3 Effect of the NOIT parameter K on classifier performance. The parameter K determines the amount of negative candidates that
will be included in the training set. The figure shows the classifier performance in terms of AUROC for different values of K. Each curve refers to
a different percentage of known positives. The optimal value can be observed around K = 10.
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cP = α
1

|Ptfi|
∑

g∈Ptfi

φ(g)
||φ(g)|| − β

1
|Utfi|

∑

g∈Utfi

φ(g)
||φ(g)||

cU = β
1

|Utfi|
∑

g∈Utfi

φ(g)
||φ(g)|| − α

1
|Ptfi|

∑

g∈Ptfi

φ(g)
||φ(g)||

where a and b adjust the relative impact of positive and
negative training examples. The unlabeled examples that
are more similar to the unlabeled prototype than to the
positive one, i.e. sim(g, cP) <sim(g, cU), are selected as
strong negative examples. To compute such a similarity
the Rocchio technique adopts the cosine similarity. With
the known positive examples and the selected negative
examples a conventional SVM classifier is trained and
then used to classify the remaining set of unlabeled
examples.
Bagging - SVM
Baggin SVM is an ensemble technique that generally
improves the performance of individual classifiers when
they are unstable or not correlated to each other. Positive
only learning have a particular structure that leads to
instable classifiers due to the positive contamination of
the unlabeled set which can be advantageously exploited
by a bagging-like procedure [36,37]. The approach col-
lects the outcome of a huge number classification runs
(e.g. 1000), where each classifier, Fi, is trained with the
known positive examples, Ptfi, and a random set of NC
negative candidates drawn uniformly from Utfi, consid-
ered as negative examples. The ensemble classifier, F,
scores an unlabeled example g by averaging the scores
obtained by that example at each run:

F(g) =

∑
i∈Tg

Fi(g)

|Tg|
where g is a member drawn fromUtfi, Fi is the i-th classi-

fier, and Tg is the set of partial classifiers that were not
trained with g, i.e. the unlabeled example g was not drawn
by the random selection.

Empirical evaluation methods
In this section we introduce the datasets, the basic learn-
ing algorithm, and the methods we adopted to empiri-
cally evaluate to which extend a negative selection
heuristic improves the performance of a classifier trained
to infer new transcriptional targets.
Datasets
To test our approach we adopt the well known dataset of
Escherichia coli provided by Faith et al. [34], and a data-
set that was adopted by Basso et al. [13] to predict BCL6
direct target genes in normal germinal center human B
cells.

The dataset of Escherichia coli consists of 445 different
Affymetrix Antisense2 microarray expression profiles for
4345 genes. The transcriptional regulatory network of
Escherichia coli is the most complete annotated network
consisting of 3293 experimentally confirmed relation-
ships between 154 transcription factors and 1211 direct
targets extracted from RegulonDB (version 5) [38].
The dataset of Basso et al. is deposited in the Gene

Expression Omnibus database and is accessible through
GEO series accession number GSE12195. It consists of
136 expression profiles of 73 B-cell lymphoma biopsies,
10 purified tonsillar geminal center, 10 naive and mem-
ory B cells, 38 Follicular lymphoma biopsies, and 5 lym-
phoblastoid cell lines. We normalized the dataset from
CEL files according to the RMA procedure [39] and fil-
tered out probes with low inter experiment variability
by means of the varFilter function of the genefilter Bio-
conductor package. The final dataset is composed by
136 samples and 9876 genes. Basso et al. identified a
group of 120 new core targets down-regulated by BCL6
with an integrated biochemical-computational-functional
approach (see Supplemental Table S2 of [13]), validated
through ChIP-on-chip.
We show that those 120 new core targets can be pre-

dicted with a supervised learning approach starting from
a positive training set of 171 targets annotated as down-
regulated by BCL6 in a previous work by Ci et al. [40].
For the NOIT negative selection procedure we rely on 47
transcription factors known to be regulated by BCL6 by
TRANSFAC sequence motifs analysis which considers
those that exhibit a BCL6-bound enrichment in their
promoter regions as reported in [13]. Their targets were
predicted preliminary with ARACNE as reported in the
supplemental Table 5 of reference [13].
Basic Learning algorithm
We use the Support Vector Machine (SVM), with Platt
scaling [41], to estimate the probability that a target is
regulated by a transcription-factor. In particular we use the
SVM implementation provided by KERNLAB [42], a pack-
age for kernel-based machine learning methods in R. The
basic element of an SVM algorithm is a kernel function K
(x1, x2), where x1 and x2 are feature vectors of two gene tar-
gets. The idea is to construct a separation hyperplane
between two classes, +1 and -1, such that the distance of
the hyperplane to the points closest to it is maximized. The
kernel function implicitly maps the original data into some
high dimensional feature space, in which the optimal
hyperplane can be found. In our experiment we adopt an
SVM classifier for each transcription-factor tfi Î TF trained
with the known positive targets and the reliable selection of
negative examples performed with a negative selection
approach. Such a classifier in then used to score the set of
genes g Î G\TF according to their probability to be
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regulated by tfi. We used C-support vector classification
(C-SVC) which solves the following problem:

min
α

1
2

αTyiyjK(xi, xj)α − eTα

subject to: yT a = 0, where yi Î {+1,-1}is the class of
vector xi, 0 ≤ ai ≤ C, i = 1, ..., 2n, e is a vector with all
elements equal to one, and K(xi, yj) is a kernel function.
We adopt a radial basis kernel function defined as:

K(xi, xj) = e−γ |xi−xj|2

where C and g are parameters that we set empirically
inside the training loop [43].
Cross validation and performance measures
To estimate the unknown performance of a classifier
designed for discrimination we adopt a workflow consist-
ing of 5 steps (Figure 4). For each transcription factor tfi Î
TF we partition the original dataset into 10 random folds.
Alternatively 9 folds are used for training, while the other
fold is used for testing (step 2). Each fold contains a den-
sity of positives that is almost similar to the density of
positives in the original dataset. The known targets regu-
lated by tfi belonging to the current training set is split
into a positive set Ptfi, assumed to be the known positive
training set, and an unknown set Qtfi, forming with Ntfi

the current unlabeled set Utfi (step 3). The size of Ptfi is
incremented linearly starting from 2 or according to the

fraction
|Ptfi |

|Ptfi∪Qtfi |. To limit the selection bias we re-sample

Ptfi 100 times. The negative training set is extracted from
the unlabeled set,Utfi (step 4), and adopted, together with
the current known positives, to train an SVM classifier
(step 5). Genes belonging to the test set are scored accord-
ing to the current classifier and the accuracy of classifica-
tion is evaluated at different ranking levels in terms of
precision and recall as follows:

PRn =
TPn
n

; RCn =
TPn

|targets(tfi)|
where TPn is the number of true positives appearing

in the top n ranked targets, and targets(tfi) is the set of
tfi targets we want to predict in each test set. Instead,
true positive rates and false positive rates are computed
as:

T P Rn =
TPn
|Qtfi |

; FPRn =
n − TPn

#true negatives

where #true negatives is the number of true negatives in
the test set. From those measures we compute also aggre-
gate performance measures, such as: AUROC (areas under
the ROC curve) and AUPR (area under the precision/

Figure 4 Evaluation procedure. A negative selection method is evaluated by adopting a completely labeled dataset and a stratified k-fold
cross validation procedure, where the number of known positives is varied linearly starting from 2 or according to its percentage with respect
to the unknown positives (from 10% to 100%). To limit the selection bias of known positives, within each k-fold, the percentage of known
positives is re-sampled 100 times.
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recall curve). Within a selection of known positives perfor-
mance measures are averaged among all folds, all positive
sampling runs, and all transcription factors obtaining an
overall performance estimation of the classifier.

Results and discussion
Effect of positive contamination
The contamination of the training set with positive exam-
ples considered wrongly as negatives affects the
performance of a classifier. We define the level of positive
contamination as the fraction ρ

Q of unknown positives,
with respect to the total number of unknown positives
(Q), selected wrongly as negatives. Figure 5 shows the
effect, in terms of AUROC (on the left) and AUPR (on the
right), of positive contamination in two extreme condi-
tions: a training set with full positive contamination

( ρ

Q = Q
Q = 100%) and a training set with no positive con-

tamination ( ρ

Q = 0
Q = 0%). In the first all unknown posi-

tives have been selected (wrongly) as negatives, U = Q + N.
Instead, in the second the training set is composed just by
true negatives, U = N , and represents an ideal classifier
with a perfect negative selection heuristic. In principle the
actual performance of a negative selection heuristic should
be within the area delimited by the two curves.
Both classifiers have been trained in the context of

Escherichia coli with the procedure depicted in Figure 4 at
different levels of known positives (on the x-axis between

0.1 and 1). The main effect is that the performance of both
contaminated and uncontaminated classifiers decreases
with the fraction of known positives, although the propor-
tion of that decrement is more rapid for the classifier
trained with full positive contamination. When the fraction
of known positives is minimum (0.1) the difference between
contaminated and uncontaminated classifiers is maximum.

Effect of the negative selection approach
The performance of a negative selection approach is
affected by the proportion of known positives available in
the training set. With the evaluation procedure depicted
in Figure 4 we evaluated the performance of a negative
selection approach by varying both the relative fraction
and the absolute number of known positives. The latter
being more in accordance with practical purposes, as
users only know the total number of positives which they
have. Figure 6 reports, for each method, the average
AUROC computed at different fraction of known posi-
tives (on the left) and at different number of known posi-
tives (in logarithmic scale on the right). On average the
performance of each method increases with the quantity
of known positives. With the exception of Rocchio each
method reaches the maximum performance (AUROC
around 0.8) when the training set is completely labeled,
i.e. the percentage of known positives is maximum
(100%). At low levels of known positives the difference
among methods is more significant. Up to a percentage of

Figure 5 Effect of positive contamination on classifier performance. Positive contamination, i.e. the fraction of positives in the unlabeled
training set, affects the performance of a classifier. The figure shows two extreme conditions: a classifier trained with unlabeled data totally
contaminated with positive examples (100%), and a classifier trained without positive contamination (0%). On the left the performance is shown
in terms of AUROC (area under the roc curve), while on the right it is shown in terms of AUPR (area under the precision/recall curve).
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60% of known positives, or, up to a number of 20 known
positives, in the training set, the NOIT procedure outper-
forms significantly all other methods. At low levels of
known positives the worst performance is registered by
PU, as in fact does not adopt any negative selection
approach. Instead, at high levels of known positives the
worst performance is registered by Rocchio.
Table 1 summarizes the performance of each method

in terms of average Recall computed at 60% and 80% of
precision. The table reports, at different fraction of
known positives, the 95% confidence intervals of Recall
measures and the statistical significance (corrected with
Benjamini & Hochberg) obtained with a pairwise t-test
performed between NOIT and each other method. The
adoption of t-test was preliminarly justified as Recall mea-
sures follow a normal distribution (Shapiro test, p-value
< 2.2 · 10-16)and the one-way ANOVA test showed that
Recall measures among methods are significantly different
(ANOVA, p-value < 2.2 · 10-16). At low levels of known
positives (precisely at 10% and 30%) the NOIT procedure
outperforms significantly all other methods (with the
exception of Bagging that exhibits a marginal significant
difference when the precision is set to 60%). The incre-
ment in Recall can be estimated around 10% with respect
to Bagging which is the current state of the art in super-
vised inference of gene regulatory connections [16,37].

Prediction of BCL6 core targets in GC human B cells
In order to illustrate an examples of application we pre-
dict BCL6 core targets in GC human B cells adopting

data and results provided by Basso et al. [13]. Figure 7
shows the number of true BCL6 core targets appearing in
the top n genes ranked by an SVM classifier trained with
different negative selection approaches. Each classifier
has been trained by using the previously known targets
provided by Ci et al. [40] and the predicted ranked set of
genes has been compared with the BCL6 new core tar-
gets published by Basso et al. [13]. For the NOIT selec-
tion procedure we rely on 47 transcription-factors,
reported in the Supplemental Table S5 of by Basso et al.
[13], known to be controlled by BCL6 by means of
TRANSFACT sequence motif analysis. The Figure
includes also the result obtained with ARACNE [7], an
unsupervised method adopted by Basso et al. [13], that
ranks genes according to their mutual information with
BCL6. It is noticeable that supervised reverse engineering
methods perform better than unsupervised, a result
already confirmed in literature [16]. Instead, among
supervised methods there is a remarkable difference in
the top 50 ranked genes, where NOIT predicts 29 correct
targets (60% precision) outperforming other methods
that predict less than 10 correct targets. Over the first
200 ranked genes the Bagging method exhibits the best
performance reaching a correct prediction of 66 targets
in the first 1000 ranked genes, whereas NOIT predicts
only 51 and the others less than 45.
We like to remark that with this experiment we pre-

dicted an interesting number of BCL6 targets without the
integrated approach consisting of wide spectrum geno-
mics experiments adopted by Basso et al. [13] (Figure S6

Figure 6 Classification performance of different negative selection methods. The performance of different negative selection methods for
the prediction of transcriptional targets in Escherichia coli. The figures show the classifier performance in terms of AUROC at different
percentage of known positives (on the left), and at different number of known positives (on the right).
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of [13]). Furthermore, among supervised techniques, the
NOIT procedure can take advantage from supplemental
transcriptional information, which is aviable in many
contexts.

Conclusions
The availability of only positive examples affects negatively
the performance of supervised classifiers. This is particu-
larly manifested in the context of learning transcriptional
relationships. We showed that the selection of reliable
negative examples, a practice adopted in text mining
approaches, could improve the performance of such classi-
fiers opening new perspectives in predicting new transcrip-
tional targets. We introduced a new negative selection
heuristic, NOIT, that promotes, as negative candidates of a
transcription-factor, genes that are not regulated indirectly

through other transcription-factors. The method has been
tested against other negative selection procedures showing
that it is able to improve the average performance of
almost 10%, in terms of AUROC and AUPR, especially
when the number of known positives is low. We provided
an example of application in the context of prediction of
BCL6 direct core targets in normal germinal center human
B cells by adopting the results of Basso et al. [13]. We
showed that in the top 50 genes, ranked with the NOIT
method, 29 targets out of 120 are those experimentally
demonstrated by Basso et al. [13]. This is promising as
such targets have been predicted without intersecting the
results of ChIP-on-chip assays, ARACNe outcomes, and
transcriptional repression in GC experiments.
Threats to external validity, concerning the possibility

to generalize our findings, affect the study as we

Table 1 Recall of negative selection heuristics at 80% and 60% of precision.

Method %of Known Positives Recall (Pr = 80%) p-value
(corrected)

Recall (Pr = 60%) p-value
(corrected)

NOIT 10 0.179 (± 0.052) 0.203 (± 0.053)

PSOL 10 0.043 (± 0.020) 2.0 · 10-5 0.070 (± 0.031) 1.2 · 10-4

BAGGING 10 0.066 (± 0.027) 7.1 · 10-4 0.132 (± 0.051) 9.5 · 10-2

ROCCHIO 10 0.036 (± 0.023) 1.1 · 10-5 0.053 (± 0.032) 2.0 · 10-5

SPY 10 0.022 (± 0.011) 7.3 · 10-7 0.038 (± 0.017) 6.4 · 10-7

PU 10 0.013 (± 0.004) 2.0 · 10-7 0.038 (± 0.017) 6.4 · 10-7

NOIT 30 0.252 (± 0.060) 0.384 (± 0.059)

PSOL 30 0.140 (± 0.039) 5.9 · 10-3 0.232 (± 0.052) 5.7 · 10-4

BAGGING 30 0.158 (± 0.047) 3.5 · 10-2 0.272 (± 0.067) 2.9 · 10-2

ROCCHIO 30 0.006 (± 0.002) 1.8 · 10-10 0.010 (± 0.006) 1.2 · 10-16

SPY 30 0.123 (± 0.036) 1.1 · 10-3 0.200 (± 0.049) 2.0 · 10-5

PU 30 0.079 (± 0.024) 3.3 · 10-6 0.160 (± 0.036) 3.5 · 10-8

NOIT 50 0.294 (± 0.062) 0.446 (± 0.065)

PSOL 50 0.240 (± 0.056) 3.6 · 10-1 0.366 (± 0.064) 1.3 · 10-1

BAGGING 50 0.245 (± 0.053) 3.9 · 10-1 0.374 (± 0.069) 1.8 · 10-1

ROCCHIO 50 0.010 (± 0.006) 1.1 · 10-11 0.017 (± 0.011) 1.3 · 10-17

SPY 50 0.228 (± 0.062) 2.6 · 10-1 0.336 (± 0.067) 4.0 · 10-2

PU 50 0.230 (± 0.053) 2.5 · 10-1 0.320 (± 0.056) 9.8 · 10-3

NOIT 70 0.278 (± 0.064) 0.486 (± 0.066)

PSOL 70 0.249 (± 0.063) 7.4 · 10-1 0.397 (± 0.071) 1.1 · 10-1

BAGGING 70 0.304 (± 0.059) 7.4 · 10-1 0.433 (± 0.071) 3.7 · 10-1

ROCCHIO 70 0.011 (± 0.006) 1.6 · 10-10 0.019 (± 0.012) 5.9 · 10-19

SPY 70 0.233 (± 0.064) 5.0 · 10-1 0.359 (± 0.074) 2.6 · 10-2

PU 70 0.305 (± 0.066) 7.4 · 10-1 0.435 (± 0.068) 3.7 · 10-1

NOIT 90 0.328 (± 0.066) 0.511 (± 0.065)

PSOL 90 0.239 (± 0.070) 1.4 · 10-1 0.391 (± 0.081) 4.1 · 10-2

BAGGING 90 0.352 (± 0.065) 7.5 · 10-1 0.494 (± 0.062) 8.6 · 10-1

ROCCHIO 90 0.011 (± 0.005) 3.7 · 10-12 0.022 (± 0.013) 4.9 · 10-20

SPY 90 0.296 (± 0.068) 7.4 · 10-1 0.436 (± 0.071) 1.8 · 10-1

PU 90 0.337 (± 0.067) 1 0.509 (± 0.064) 1

The table shows, at different percentage of known positives, the average Recalls of negative at 80% and 60% of precision (lower and upper 95% confidence
intervals is shown in parentheses). The p-value column (corrected with Benjamini & Hochberg) is the outcome of a t-test performed to check whether the recall of
NOIT is greater than the recall of another negative selection method. A p-value shown in boldface means that the statistical significance of the test is less than 0.05.
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evaluated the heuristics on a limited number of organ-
isms. The study can be replicated as the tools are avail-
able upon request to authors and experimental datasets
are publicly available.
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