
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.7, No.1, pp.98-111 (2017)

http://doi.org/10.11121/ijocta.01.2017.00342

RESEARCH ARTICLE

Artificial bee colony algorithm variants on constrained optimization

Bahriye Akay*, Dervis Karaboga

Department of Computer Engineering, Erciyes University, Kayseri, Turkey
bahriye@erciyes.edu.tr, karaboga@erciyes.edu.tr

ARTICLE INFO ABSTRACT

Article History:
Received 29 September 2016

Accepted 15 November 2016

Available 12 January 2017

Optimization problems are generally classified into two main groups: uncon-
strained and constrained. In the case of constrained optimization, special
techniques are required to handle with constraints and to produce solutions
in the feasible space. Intelligent optimization techniques that do not make
assumptions on the problem characteristics are preferred to produce accept-
able solutions to the constrained optimization problems. In this study, the
performance analysis of artificial bee colony algorithm (ABC), one of the intel-
ligent optimization techniques, is examined on constrained problems and the
effect of some modifications on the performance of the algorithm is examined.
Different variants of the algorithm were proposed and compared in terms of
efficiency and stability. Depending on the results, when DE operators were in-
tegrated into ABC algorithm, an enhancement in the performance was gained
in addition to preserving the stability of the basic ABC. The ABC algorithm
is a simple optimization algorithm that can be efficiently used for constrained
optimization without requiring a priori knowledge.

Keywords:
Artificial bee colony algorithm

Constrained optimization

Deb’s rules

AMS Classification 2010:
65K10

1. Introduction

Design problems are optimization problems in
which the parameters of the system are decided in
order to obtain the best performance. Formulat-
ing design problems as optimization problems and
solving them by using an appropriate optimiza-
tion tool minimizes the experimental costs and
errors. In most of the design problems, problems
have some constraints that the solutions must sat-
isfy.

Traditional optimization algorithms are not suc-
cessful when the problems are nonlinear and have
many constraints and discrete variables. Evo-
lutionary algorithms (EAs) [1] that mimic the
genetic inheritance and natural selection do not
make assumptions on the problem characteristics
and can be used for constrained, nonlinear design
problems successfully [2]. In EAs, a population
of solutions are assigned fitness values and new
child solutions are produced after reproduction,

mutation, crossover operators. Better solutions
are retained in the population applying a selection
operator and the population quality is increased
which means convergence to better solutions.

Swarm intelligence (SI) based algorithms employ
similar operators to those of evolutionary algo-
rithms while SI algorithms are also capable of us-
ing collective intelligence coming due to the in-
teractions of individuals in the swarm. Genetic
algorithm [3], Differential Evolution [4] are typ-
ical examples of EAs; Ant Colony Optimization
[5], Particle Swarm Optimization [6] and Artifi-
cial Bee Colony [7] algorithms are examples of SI
based algorithms.

All these algorithms were initially proposed for
unconstrained optimization and their basic ver-
sions did not have any mechanism to produce so-
lutions in feasible space or to prefer feasible so-
lution to infeasible one. Some operators are inte-
grated to the algorithms in order to search the fea-
sible space and solve constrained problems such as

*Corresponding Author

98

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205901911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/


Artificial bee colony algorithm variants on constrained optimization 99

transforming operator that preserve feasibility of
solutions, penalty functions to penalize constraint
violations in the cost function, distinction opera-
tor that separate feasible and infeasible, hybrid
methods that incorporates evolutionary methods
and deterministic procedures [8]. Artificial Bee
Colony Algorithm proposed for constrained opti-
mization [9, 10] prefers feasible solutions to infea-
sible solutions applying Deb’s rules [11] in the se-
lection phase. Another modification in basic ABC
concerns fitness assignment scheme which consid-
ers both feasible solutions and infeasible solutions
because the population can include both types of
solutions to maintain diversity in the population.

Although there are some studies related to ABC
on the constrained optimization, effect of the
neighbor production mechanism has not been
studied to analyze how they cover feasible space
or whether they are capable of making distinc-
tion between feasible and infeasible space or which
one is more efficient for constrained optimiza-
tion. In this study, various ABC algorithm vari-
ants, which employ different neighbor productions
mechanisms and neighborhood topologies, are an-
alyzed in terms of success rates. Effect of the
neighbor solution production in the search be-
havior of the algorithms and in the convergence
are investigated. Basic ABC algorithm for un-
constrained optimization and proposed ABC al-
gorithm variants for constrained optimization are
summarized in the second and the third sections,
respectively. In the forth section, the experimen-
tal studies are presented and the results are dis-
cussed. The last section is dedicated to the con-
clusion.

2. Artificial bee colony algorithm

Honey bees perform many intelligent tasks and
foraging is one of the most important tasks in the
colony. The foraging is performed using the col-
lective intelligence based on the communication
and interaction of the bees. Bees are specialized
depending on the task they are assigned to. In a
real colony, there are three types of bees assigned
to the foraging task: employed bees, onlooker bees
and scout bees. The scout bees search for new
food sources of which the nectar will be loaded
to the hive. Discovered sources are exploited by
the employed bees and the employed bees share
information with the onlooker bees who wait in
the hive. Onlooker bees select a food source to
fly based on the information taken from the em-
ployed bees. When a source is exhausted, it is
abandoned and its bee switches her role to a scout
bee. In the foraging task, bees try to maximize

the nectar amount loaded to hive by finding the
most profitable sources in the environment.

ABC algorithm [7] simulates the foraging behav-
ior of honey bees in nature. Locations of the
food sources correspond to the parameters of the
problem and finding the location of the most prof-
itable source is an optimization problem. Nectar
amount of the solution is measured by the fitness
of a parameter vector. Main steps of the algo-
rithm are given in Alg. 1:

Algorithm 1. Pseudo-code of ABC algorithm

1: Initialization
2: Evaluation
3: cycle=1
4: repeat

5: Employed Bees Phase
6: Calculate Probabilities for Onlookers
7: Onlooker Bees Phase
8: Scout Bees Phase
9: Memorize the best solution so far

10: cycle=cycle+1
11: until cycle=Maximum Cycle Number

In the initialization phase of the algorithm, values
are passed to the control parameters: the num-
ber of food sources (CS), maximum cycle num-
ber (MCN) and the limit that controls whether a
source is exhausted or not. If the problem has D
parameters to be optimized, a population of CS
number of D dimensional solutions are generated
randomly using Eq. 1.

xji = xjmin + rand(0, 1)(xjmax − xj
min

) (1)

where xjmin and xjmax are lower and upper bound
of the parameter j, respectively.

In the evaluation phase, each solution is substi-
tuted in the cost function and assigned a fitness
value using the cost function associated with the
problem. Subsequently, the employed bee, on-
looker bee and scout bee phases are repeated until
the cycle number reaches to MCN .

In the employed bee phase, a local search is car-
ried out in the vicinity of each solution by Eq.
2:

x′ij = xij + φij(xij − xkj) (2)

where k 6= i is a neighbor solution drawn ran-
domly from the population, φij is random real
number within the range [-1,1] drawn from uni-
form distribution. After new solution is assigned
a fitness value, ABC algorithm performs greedy



100 B. Akay, D. Karaboga /Vol.7, No.1, pp.98-111 (2017) c©IJOCTA

selection by which if the fitness of ~x′ is better than
the fitness of ~x, ~x is discarded and ~x′ is included
in the population. Otherwise, ~x is retained in the
population. To be used in the scout bee phase,
a counter associated with each solution holds the
number of times that the solution is retained in
the population. In the onlooker bee phase, on-
looker bees use the information obtained from em-
ployed bees and select high quality sources to fly.
Each solution is assigned a probability value (Eq.
3) proportional to its fitness value obtained from
the employed bee phase. In basic ABC algorithm,
a roulette wheel selection scheme is applied to se-
lect potentially high quality solutions but also to
give chance to low quality solutions to be selected.

pi =
fitnessi

CS
∑

i=1

fitnessi

(3)

Once a solution is determined using roulette wheel
selection, a local search is performed using Eq. 2.
As in the employed bee phase, a greedy selection is
applied and counters are updated. The onlooker
bee phase promotes more local searches around
the better solutions which is a positive feedback
feature.

In the scout bee phase, counters associated with
each solution are checked and if a counter is higher
than the control parameter limit, that source is
assumed to be exhausted. The exhausted source
is replaced with a new solution produced by Eq. 1
and its counter is set to 0. This phenomena arises
a negative feedback effect and fluctuation in the
algorithm which avoids to trap local minima.

The algorithm performs a balanced exploration
and exploitation and has the advantage of em-
ploying less control parameters. ABC algorithm
has been applied to many problems in wide range
of fields [12, 13, 14] and has shown superior perfor-
mance on high dimensional multimodal problems
[15, 9]

3. Artificial bee colony algorithm for

constrained optimization

In most of the design problems, problems have
some constraints that the solutions must satisfy.
A constrained design problem is defined as in Eq.
4.

minimize f(~x), ~x = (x1, . . . , xn) ∈ R
n

li ≤ xi ≤ ui,
i = 1, . . . , n

subject to : gj(~x) ≤ 0,
for j = 1, . . . , q
hj(~x) = 0,
for j = q + 1, . . . ,m

(4)

where f is defined in n-dimensional search space,
(S), and each ~xi parameter is bounded by the
range [li, ui]. Constrained optimization finds a
parameter vector ~x which minimizes the cost
function,(f(~x)) and does not violate inequality
(gj(~x)) and equality (hj(~x)) constraints. A fea-
sible solution satisfies all constraints and in fea-
sible space F ⊆ S, which is defined by m ≥ 0
constraints [16]. Like the other EAs, ABC al-
gorithm was initially proposed for unconstrained
optimization and some modifications have to be
made in the algorithm in order to cope with the
constraints and provide solutions in the feasible
space (F ). In the subsequent sections, proposed
ABC algorithm variants for constraint optimiza-
tion are explained.

3.1. ABCV1: ABC algorithm for

constrained optimization

ABC algorithm for constrained optimization [9,
10] uses the same framework with the basic ABC
algorithm. ABCV1 includes employed bees, on-
looker bees and scout bees phases as well while
there have been some modifications inside the
phases. ABCV1 does not need initial solutions
to be in feasible space and initial solutions are
produced using Eq. 1 as in basic ABC algorithm.

In the employed bee phase of ABCV1, a local
search is conducted in the neighborhood of the so-
lution in bee’s memory using Eq. 5 instead of Eq.
2. Eq. 2 makes modification on one dimension of
the current solution while Eq. 5 makes modifica-
tion on dimensions if a uniformly distributed ran-
dom number Rj is lower than perturbation rate,
MR. MR is a control parameter introduced in
ABCV1. High values of MR speeds up the con-
vergence but has negative effect on fine tuning.

υij =

{

xij + φij(xij − xkj) , if Rj < MR
xij , otherwise

(5)

After generating a mutant solution υij for each
solution, instead of greedy selection, ABCV1 ap-
plies Deb’s rules [11] that are listed below:



Artificial bee colony algorithm variants on constrained optimization 101

• A feasible solution (violationi ≤ 0)
is chosen against an infeasible solution
(violationj > 0) (solution i is dominant),

• If both of the solutions are
feasible(violationi ≤ 0, violationj ≤ 0),
the one with better objective function
value is chosen (fi < fj , solution i is
dominant),

• If both of the solutions are infeasible
(violationi > 0, violationj > 0), the one
with smaller constraint violation is cho-
sen (violationi < violationj , solution i is
dominant).

In the constrained optimization, the cost func-
tion value obtained evaluating an infeasible solu-
tion might be lower than the one obtained with
a feasible solution. In the probability assignment
scheme, the feasible solutions should have higher
fitness values than infeasible solutions to promote
feasible regions. Therefore, the probability of the
feasible solutions starts from 0.5 (within the range
[0.5,1])and the probability of the infeasible solu-
tions are assigned within the range [0,0.5] based
the violation of the solutions. Eq. 6 can be used
for this purpose:

pi =































0.5 +





fitnessi
CS
∑

j=1

fitnessj



 ∗ 0.5 if feasible



1− violationi
CS
∑

j=1

violationj



 ∗ 0.5 if infeasible

(6)

Eq. 6 assigns higher values to the feasible so-
lutions but the solutions with lower probability
value have also chance to be chosen by the roulette
wheel selection. This property provides popula-
tion diversity and search ability near the bound-
ary lines. In order to avoid feasible solutions to
be discarded quickly in the scout phase, the limit
checking is performed in each SPP cycles instead
of each cycle. SPP is also another control param-
eter introduced in ABCV1.

3.2. ABCV2: Each parameter from

different solution

In ABCV2, Eq. 5 is replaced with a different
search operator defined by Eq 7. Eq. 5 exploits
kth solution for all dimensions while Eq 7 uses a
different neighbor (kj) for each dimension so that
information of more individuals are spread and
more interaction can be obtained from the popu-
lation. For each parameter, a random number is
drawn and a random neighbor is selected. If the

random number is less than MR, Eq. 7 changes
this parameter using the information of the neigh-
bor selected.

x′ij =

{

xij + φij(xkjj − xij), Rj < MR
xij otherwise

(7)

The other parts of the algorithm are retained as
in ABCV1.

3.3. ABCV3: ABC algorithm utilizing

individuals in a neighborhood

topology

In ABCV1 and ABCV2, selected neighbors are
drawn from the population in a global manner
without considering any criterion between the so-
lutions. In ABCV3, it is proposed to select the
neighbors from a neighborhood topology which
comprises the solutions within a predefined ra-
dius. Neighborhood of i the solution, Ni, is de-
fined by the expression given by Eq. 8:

Ni =







⋃

k 6=i

xk |dik ≤ davg







(8)

As seen from the expression, a solution xk, is as-
sumed to be a neighbor of the current solution,
xi, if the distance between them (dik) is less than
the average Euclidian distance (davg). In ABCV3,
Eq. 9 is used to produce a new solution:

x
′

ij =

{

xij + φij(xkjj
− xij), Rj < MR, and xkj

∈ Ni

xij , otherwise

(9)

3.4. ABCV4:ABC algorithm using a

neighborhood topology in the

Onlooker bee phase

The quick ABC algorithm [13] is proposed to en-
hance the local search capability of the basic ABC
algorithm. In the basic ABC algorithm, an on-
looker bee performs perturbation the solution se-
lected based on the roulette wheel selection while
in quick ABC algorithm, an onlooker bee per-
forms on the best solution of a neighborhood de-
fined by a radius, NR.

3.5. ABCV5,ABCV6,ABCV7:ABC

algorithms using the mutation and

crossover operators of differential

evolution algorithm

Differential Evolution algorithm [4], proposed by
Storn and Price, is an iterative and population-
based optimization algorithm for optimizing the



102 B. Akay, D. Karaboga /Vol.7, No.1, pp.98-111 (2017) c©IJOCTA

continuous functions. It is a fast, simple and
easy applicable algorithm. As in the other evo-
lutionary algorithms, it has evaluation, muta-
tion, crossover and selection phases. In mutation
phase, for each solution, a mutant solution is pro-
duced by weighing the difference of the solutions
chosen randomly (Eq. 10):

x̂i = xr1 + F (xi − xr2) (10)

where r1 6= r2 6= i and F is real valued scaling
factor within the range [0,2]. The mutant solu-
tion is subjected to the crossover operation with
the original solution (Eq. 11):

yi =

{

x̂i, Rj ≤ CR

xi, Rj > CR
(11)

where CR is crossover rate, Rj is a random real
value drawn within the range [0,1]. New solution
is evaluated using the cost function and greedy se-
lection operator is applied to decide whether the
original solution or new solution will be retained
in the population. These steps are repeated until
the termination criteria is satisfied. Although DE
algorithm produces efficient results on some func-
tions, the statistics related to its stability such as
mean value and standard deviation are not satis-
factory [9]. For this reason, DE’s operators are in-
tegrated with ABC algorithm in order to combine
DE’s success on unimodal functions and to pre-
serve stability of the ABC algorithm. To achieve
this, Eq. 5 in ABC is replaced with Equations 10
and 11. This modification is carried out only in
employed bee phase in ABCV5, only is onlooker
bee phase in ABCV6 and both in employed bee
phase and in onlooker bee phase in ABCV7 vari-
ant.

3.6. ABCV8:ABC algorithm using the

global best

In order to include the information due to the
best solution into the neighborhood, Eq. 12 is in-
troduced which also uses the weighted difference
of the current solution and global best solution,
gbest.

x
′

ij =

{

xij + φij(xkj − xij) + θij(gbestj − xij), Rj < MR

xij otherwise

(12)

where θij is a random real number within the
range [-1,1] drawn from uniform distribution.

3.7. ABCV9:ABC algorithm with

adaptive Scout behavior

In the basic ABC algorithm, the limit value to
abandon a food source is fixed for all solutions
during the population evolution. In this proposed
version, each food source is assigned a counter
value which is proportional to its fitness value if
the solution is feasible and disproportional to its
constraint violation amount if the solution is in-
feasible. This gives more search opportunity in
the locality of the high quality solutions. For this
purpose, the counter of each solution is divided
by the probability value defined by Eq. 6 (Eq.
13)

counteri =
counteri

pi
(13)

Vicinity of the better solutions have higher chance
to be explored compared to the others.

4. Experimental study and results

In this study, different variants of the ABC algo-
rithm are analyzed on constrained optimization
test problems. The details of the thirteen test
problems used are given at the end of the paper
and characteristics of the problems are given in
Table 1.

The common control parameters of the ABC algo-
rithm variants are the number food sources (CS)
that are exploited during search, the maximum
number of cycles (MCN) that the phases are
repeated for, modification rate (MR) that con-
trol the number of parameters to be perturbed,
limit that is the maximum number of exploita-
tions a solution allowed and scout production pe-
riod (SPP ) that the limit checking period and
neighborhood radius (NR) for the variants that
use a neighborhood topology. The values set for
these parameters are given in Table 2.

All implementations were developed using Delphi
7 programming language and run on a computer
with 64 bit 3.06 GHz Intel processor and 8 GB
of RAM. All algorithms were run 30 times with
different seed numbers and statistics of the re-
sults (the best, mean, worst and standard devi-
ation) of 30 runs are summarized in Tables 3-
11 for the versions ABCV1-ABCV9, respectively.
The results of the basic ABC algorithm proposed
for constrained optimization (ABCV1) are taken
from the study in ref. [10]. ABCV1 is taken as
the control algorithm to test the efficiency of the
variants. The best result statistic can be used to
test the efficiency while the mean and standard



Artificial bee colony algorithm variants on constrained optimization 103

Table 1. Characteristics of the test problems used in the experiments. D:Dimension of the
problem, LI: Linear inequality, NI: Nonlinear inequality, LE: Number of linear equalities, NE:
Number of nonlinear equalities, rho: the ratio of feasible region over the search space [17].

D Type of Prob. ρ LI NI LE NE

g01 13 quadr. 0.0003% 9 0 0 0

g02 20 non-linear 99.9973% 1 1 0 0

g03 10 non-linear 0.0026% 0 0 0 1

g04 5 quadr. 27.0079% 0 6 0 0

g05 4 non-linear 0.0000% 2 0 0 3

g06 2 non-linear 0.0057% 0 2 0 0

g07 10 quadr. 0.0000% 3 5 0 0

g08 2 non-linear 0.8581% 0 2 0 0

g09 7 non-linear 0.5199% 0 4 0 0

g10 8 linear 0.0020% 3 3 0 0

g11 2 quadr. 0.0973% 0 0 0 1

g12 3 quadr. 4.7697% 0 93 0 0

g13 5 non-linear 0.0000% 0 0 1 2

Table 2. Values of the control parameters used in the experiments

CS MCN MR limit SPP NR
40 6000 0.8 CSxD CSxD 1

Table 3. The results of ABCV1 [10].

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -15.000 -15.000 0.000
g02 0.803619 0.803611 0.795430 0.770319 0.009466
g03 1.000 1.000 1.000 1.000 0.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.487 5182.868 5374.430 68.584
g06 -6961.814 -6961.814 -6961.814 -6961.813 0.0004
g07 24.306 24.324 24.447 24.835 0.113
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.631 680.636 680.641 0.0026
g10 7049.25 7058.823 7220.106 7493.943 122.589
g11 0.75 0.75 0.75 0.75 0.000
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.760 0.968 1.000 0.055

deviation can be used as an indicator for the sta-
bility and robustness of the algorithm.

The results of ABCV2 in which each parameter
of a mutant solution is taken from a different
neighbor are given in Table 4. When the best re-
sults are investigated, an important improvement
is achieved on g13 function while the performance
on g10 gets worsened. When the mean and stan-
dard deviation results are analyzed, it is seen that
the stability of ABCV2 is worse than ABCV1.

ABCV2 uses a global neighborhood while ABCV3
chooses the neighbors in a local topology. It is
seen that the results in Table 5 are similar to
the results in Table 3. Because the genotypes

of the solutions in a local neighborhood resem-
ble each other in later cycles, choosing the pa-
rameters from different neighbors does not have
significant effect compared to choosing all the pa-
rameters from the same solution.

The results of ABCV4 in Table 6 suggest that
there is no significant improvement when the se-
lection strategy is changed in the onlooker bee
phase of ABC algorithm. That means when an
onlooker bee performs perturbation on the best
solution in a neighborhood instead of a solution
chosen using roulette wheel selection does not af-
fect the algorithm performance on constrained op-
timization. However, it can be said that it has
positive effect in the convergence rate of the algo-
rithm in the earlier cycles.



104 B. Akay, D. Karaboga /Vol.7, No.1, pp.98-111 (2017) c©IJOCTA

Table 4. The results of ABCV2 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -15.000 -15.000 0.000
g02 0.803619 0.803602 0.801538 0.792962 0.003351
g03 1.000 1.000 0.988920 0.941852 0.016025
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5125.225 5170.748 5363.876 56.745
g06 -6961.814 -6961.814 -6961.814 -6961.814 0.000
g07 24.306 24.404 24.578 24.971 0.149894
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.634 680.644 680.667 0.009027
g10 7049.25 7110.214 7325.496 7655.235 125.834
g11 0.75 0.75 0.750112 0.751575 0.000356
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.071093 0.326423 0.476347 0.095829

Table 5. The results of ABCV3 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -15.000 -15.000 0.000
g02 0.803619 0.803600 0.793502 0.774616 0.007767
g03 1.000 1.000 0.998776 0.934880 0.013489
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.491 5206.871 5522.573 98.799
g06 -6961.814 -6961.813 -6961.809 -6961.792 0.005644
g07 24.306 24.351 24.476 24.781 0.106532
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.633 680.640 680.649 0.003598
g10 7049.25 7061.397 7235.247 7440.239 117.820
g11 0.75 0.75 0.750001 0.750016 0.000002
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.774675 0.975163 1.030087 0.050736

Table 6. The results of ABCV4 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -15.000 -15.000 0.000
g02 0.803619 0.803573 0.789310 0.760181 0.012939
g03 1.000 1.000 0.985268 0.964150 0.009554
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.495 5198.656 6112.214 176.557
g06 -6961.814 -6961.796 -6961.482 -6960.889 0.223100
g07 24.306 24.328 24.497 24.989 0.122971
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.632 680.646 680.666 0.007796
g10 7049.25 7051.682 7249.228 7494.751 105.537
g11 0.75 0.75 0.750016 0.750193 0.000037
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.654826 0.778555 0.873567 0.135475

In ABC variants, ABCV5, ABCV6 and ABCV7
the search operator of DE algorithm is integrated

into employed bee, onlooker bee and both phases
and the results are presented in Tables 7-9, re-
spectively. When the best solutions are investi-
gated, it can be seen that on twelve problems g1-
g12, these three variants reach the optimum. On



Artificial bee colony algorithm variants on constrained optimization 105

Table 7. The results of ABCV5 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -14.894270 -13.000 0.409793
g02 0.803619 0.803618 0.780956 0.744360 0.016786
g03 1.000 1.000 0.998049 0.968504 0.006637
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.484 5298.683 5889.126 224.498
g06 -6961.814 -6961.814 -6961.814 -6961.814 0.000
g07 24.306 24.306 24.321 24.435 0.028042
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.630 680.630 680.631 0.000454
g10 7049.25 7049.253 7091.954 7242.825 65.170
g11 0.75 0.75 0.75 0.75 0.000
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.079478 0.484924 0.764011 0.134548

Table 8. The results of ABCV6 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -14.866 -13.000 0.498887
g02 0.803619 0.803618 0.780261 0.712447 0.020249
g03 1.000 1.000 1.000 1.000 0.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.484 5327.777 5809.034 220.034
g06 -6961.814 -6961.814 -6961.814 -6961.814 0.000
g07 24.306 24.306 24.317 24.384 0.019548
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.630 680.630 680.632 0.000655
g10 7049.25 7049.255 7082.506 7250.971 51.227
g11 0.75 0.75 0.75 0.75 0.000
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.096854 0.419242 0.911652 0.178598

Table 9. The results of ABCV7 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -14.619 -11.281 1.021
g02 0.803619 0.803591 0.644725 0.471498 0.084904
g03 1.000 1.000 1.000 1.000 0.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.484 5339.028 5914.850 234.484
g06 -6961.814 -6961.814 -6961.814 -6961.814 0
g07 24.306 24.306 24.372 24.760 0.110926
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.630 680.632 680.642 0.003779
g10 7049.25 7049.251 7098.076 7469.046 107.195
g11 0.75 0.75 0.75 0.75 0.000
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.058446 0.378819 0.752359 0.157990

g13 problem, only ABCV7, in which the operator
is used in both employed bee and onlooker bee
phases, reaches the optimum.

The results of ABCV8 in which the global best
solution is exploited are presented in Table 10. In
terms of the best results in the table, the results



106 B. Akay, D. Karaboga /Vol.7, No.1, pp.98-111 (2017) c©IJOCTA

Table 10. The results of ABCV8 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -15.000 -15.000 0.000
g02 0.803619 0.803610 0.788472 0.681864 0.022395
g03 1.000 1.000 1.000 1.000 0
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.834 5238.826 5463.804 95.606
g06 -6961.814 -6961.806 -6961.686 -6961.393 0.095273
g07 24.306 24.327 24.462 24.714 0.109640
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.631 680.636 680.641 0.002814
g10 7049.25 7049.997 7139.028 7426.031 71.411
g11 0.75 0.75 0.75 0.75 0.000
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.494877 0.975300 1.000 0.091426

are similar to those of ABCV1 except for g13. In
addition, stability of ABCV8 is also close to the
basic version.

The results of the ABC algorithm with adaptive
scout behavior (ABCV9) are presented in Table
11. This modification does not provide any im-
provement or change in the performance of the
basic algorithm.

In addition to comparing the performance of the
variants with control algorithm ABCV1, an over-
all comparison is conducted in terms of the best
results in Table 12. If an algorithm is the best
among all the algorithms on a problem, it is signed
with + in the table and the last row indicates the
number of problems the algorithm is the best. In
terms of the best results, ABC variants (ABCV5,
ABCV6, ABCV7) that use DE operator in em-
ployed bee and onlooker bee phases seem to be
superior over the other versions.

In order to compare the algorithms, ANOVA sta-
tistical test is conducted to determine whether
there is variation within or among different vari-
ants of ABC algorithm. If ANOVA test responds
as there is significant difference, multiple com-
parisons are performed to find out which vari-
ants differ from the control algorithm, ABCV1.
α value to decide an algorithm is significantly dif-
ferent was 0.05. F and P values produced by
ANOVA are presented in Table 13. In Table
13, if the variant is significantly better than the
control algorithm based on ANOVA and multi-
ple comparisons, it is indicated by (+), else if it
is significantly worse than the control algorithm,
it is indicated by (−), otherwise it is reported as
none. Based on ANOVA test on g01, g04, g08,
g11 and g12, there is no significant difference be-
tween the variants. On g02, ABCV7 is signifi-
cantly worse than the control algorithm. On g03,

ABCV4 and ABCV9 are worse than ABCV1. On
g05 problem, ABCV5, ABCV6 and ABCV7 which
are proposed based on DE operators, are worse
than ABCV1. On g06, ABCV4 and ABCV8 per-
form worse compared to the control algorithm.
On g07, ABCV2, ABCV5, ABCV6, ABCV7 and
ABCV9 differ from the control algorithm ABCV1.
Among them, ABCV2 and ABCV9 are worse
than ABCV1 while ABCV5, ABCV6 and ABCV7
are better than ABCV1. Similarly, on g09,
ABCV5, ABCV6 and ABCV7 are better than
ABCV1 while ABCV2 and ABCV4 are worse
than ABCV1. On g10 problem ABCV1 shows
better performance compared to ABCV2 while
ABCV5, ABCV6 and ABCV7 produc better re-
sults compared to ABCV1. On g13 problem,
ABCV2, ABCV4, ABCV5, ABCV6 and ABCV7
variants are better than ABCV1.

Based on these observations, it can be noted that
ABCV5, ABCV6 and ABCV7 retain stability and
robustness of the basic ABC algorithm and have
shown the efficiency of the DE operator. It should
be noted that ABC framework and basic operator
has an important effect on the stability. The most
stable versions are ABCV6, ABCV2 and ABCV1,
respectively. Changing neighborhood topology of
the basic ABC operator or making the scouts
adaptive based on the fitness does not have signif-
icant effect on the performance of the algorithm.

In terms of computational cost, because ABCV2
changes the parameters based on the informa-
tion each one chosen from a different neighbor,
its computational cost is slightly higher than
ABCV1. In each operation of ABCV3, a dis-
tance matrix is calculated based on the distances
between all solution pairs and average distance
is computed from the matrix. Therefore compu-
tational cost of ABCV3 is higher than ABCV1



Artificial bee colony algorithm variants on constrained optimization 107

Table 11. The results of ABCV9 variant

Problem Optimum Best Mean Worst StdDev
g01 -15.000 -15.000 -15.000 -15.000 0.000
g02 0.803619 0.803600 0.792384 0.762961 0.008211
g03 1.000 1.000 0.983335 0.854720 0.034182
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000
g05 5126.498 5126.485 5185.711 5563.902 86.864
g06 -6961.814 -6961.814 -6961.814 -6961.814 0.000
g07 24.306 24.337 24.517 24.986 0.164383
g08 0.095825 0.095825 0.095825 0.095825 0.000
g09 680.63 680.633 680.640 680.651 0.004974
g10 7049.25 7060.585 7247.809 7729.255 151.192
g11 0.75 0.75 0.75 0.75 0.000
g12 1.000 1.000 1.000 1.000 0.000
g13 0.053950 0.754425 0.952718 0.999837 0.064039

Table 12. An overall comparison of the algorithms in terms of the best results

Problem ABCv1 ABCv2 ABCv3 ABCv4 ABCv5 ABCv6 ABCv7 ABCv8 ABCv9
g01 + + + + + + + + +
g02 + +
g03 + + + + + + + + +
g04 + + + + + + + + +
g05 + + + + + + + +
g06 + + + + + + +
g07 + + +
g08 + + + + + + + + +
g09 + + +
g10 + + + +
g11 + + + + + + + + +
g12 + + + + + + + + +
g13 +
Total 8 8 8 7 12 12 12 7 8

Table 13. ANOVA Table and multiple comparisons to evaluate the results statistically. Con-
trol Algorithm is ABCV1 and α value is 0.05.

Problem F P Significantly different groups
g01 1.9602 0.0518 None
g02 178.262 3.9918e-10 ABCV7 (-)
g03 7.4307 6.4332e-009 ABCV4 (-), ABCV9(-)
g04 NaN NaN None
g05 8.501 2.8056e-010 ABCV5 (-), ABCV6 (-), ABCV7 (-)
g06 127.985 9.1198e-086 ABCV4 (-), ABCV8(-)
g07 23.987 1.7659e-027 ABCV2(-), ABCV5 (+), ABCV6 (+), ABCV7 (+), ABCV9 (+)
g08 NaN NaN None
g09 36.4943 1.6439e-038 ABCV2 (-), ABCV4 (-), ABCV5 (+), ABCV6 (+), ABCV7 (+)
g10 21.2219 9.8283e-02 ABCV2 (-), ABCV5 (+), ABCV6 (+), ABCV7 (+)
g11 1.9087 0.0590 None
g12 NaN NaN None
g13 201.1567 6.0648e-107 ABCV2 (+), ABCV4 (+), ABCV5 (+), ABCV6 (+), ABCV7 (+)

and ABCV2. In onlooker phase of ABCV4, in
order to produce a mutant solution, the best so-
lution in a neighborhood topology which is con-
structed based on distances of the solutions and

a radius is employed. Its computational cost is
close to ABCV3 but higher than ABCV1 and



108 B. Akay, D. Karaboga /Vol.7, No.1, pp.98-111 (2017) c©IJOCTA

ABCV2. ABCV5, ABCV6 and ABCV7 do not
employ additional procedure compared to the ba-
sic algorithm but only replaces the new solution
production equation. Hence, their computational
cost is close to the basic algorithm. ABCV8 uses
the best solution information in its solution pro-
duction. Since the best solution information is
stored in a variable in all variants, it does not
introduce more computational cost. In ABCV9,
the counters of the solutions are divided by their
probability to leave better solutions in the popu-
lations for more iterations. It is achieved by only
one division operation, so it is computational cost
can be assumed to be the same with the ABCV1.

The ABC algorithm is a simple optimization algo-
rithm that can be used for constrained optimiza-
tion without requiring a priori knowledge. An-
other advantage of ABC algorithm is that it con-
siders both feasible solutions and infeasible solu-
tions in the population and this provides diversity
in the population. In this study, for all variants,
the selection strategy is kept as simple as pos-
sible and Deb’s rules are employed as constraint
handling method instead of the greedy selection
proposed for unconstrained optimization. How-
ever, the performance would change with a differ-
ent constraint handling method. Analyzing the
effect of selection strategies remains as a future
work.

5. Conclusion

In this study, ABC algorithm originally proposed
for unconstrained optimization has been analyzed
on constrained optimization. Different variants of
the algorithm have been proposed and compared
in terms of efficiency and stability. Depending
on the results when DE operators were integrated
into ABC algorithm’s onlooker phase and the em-
ployed bee phase was retained as in ABC algo-
rithm, an improvement in the performance was
gained in terms of the best solution and stability.
The food source population of ABC algorithm can
have both feasible solutions and infeasible solu-
tions, so this provides diversity in the population.

Acknowledgments

This study is supported by Erciyes University,
Scientific Research Projects Unit under contract
number FBA-10-2959.

References

[1] Goldberg, D. E. . Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[2] C., C. A. C. . A survey of constraint handling tech-
niques used with evolutionary algorithms. Technical
report, Laboratorio Nacional de Informtica Avanzada,
1999.

[3] Holland, J. H. . Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor,
1975.

[4] Storn, R. and Price, K. . Tr-95-01: Differential
evolution-a simple and efficient adaptive scheme for
global optimization over continuous spaces. Technical
report, Berkeley, CA,, 1995.

[5] M., D. , V., M. , and A., C. . Tr 91-016: Positive feed-
back as a search strategy. Technical report, Politecnico
di Milano, Italy, 1991.

[6] Kennedy, J. and Eberhart, R. C. . Particle swarm op-
timization. In 1995 IEEE International Conference on

Neural Networks, volume 4, pages 1942–1948”, 1995.
[7] Karaboga, D. . An idea based on honey bee swarm for

numerical optimization. Technical Report TR06, Er-
ciyes University, Engineering Faculty, Computer En-
gineering Department, 2005.

[8] Koziel, S. and Michalewicz, Z. . Evolutionary algo-
rithms, homomorphous mappings, and constrained
parameter optimization. Evol. Comput., 7(1):19–44,
1999.

[9] Karaboga, D. and Basturk, B. . Foundations of

Fuzzy Logic and Soft Computing: 12th International

Fuzzy Systems Association World Congress, IFSA

2007, Cancun, Mexico, June 18-21, 2007. Proceed-

ings, chapter Artificial Bee Colony (ABC) Optimiza-
tion Algorithm for Solving Constrained Optimization
Problems, pages 789–798. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[10] Karaboga, D. and Akay, B. . A modified artificial bee
colony (abc) algorithm for constrained optimization
problems. Applied Soft Computing, 11(3):3021 – 3031,
2011.

[11] Deb, K. . An efficient constraint handling method for
genetic algorithms. Computer Methods in Applied Me-

chanics and Engineering, 186(2- 4):311–338, 2000.
[12] Karaboga, D. and Akay, B. . A survey: Algorithms

simulating bee swarm intelligence. Artificial Intelli-

gence Review, 31(1):68–55, 2009.
[13] Karaboga, D. and Gorkemli, B. . A quick artificial bee

colony (qabc) algorithm and its performance on opti-
mization problems. Applied Soft Computing, 23:227 –
238, 2014.

[14] Akay, B. and Karaboga, D. . A survey on the appli-
cations of artificial bee colony in signal, image, and
video processing. Signal, Image and Video Processing,
9(4):967–990, 2015.

[15] Karaboga, D. and Basturk, B. . On the performance
of artificial bee colony (abc) algorithm. Applied Soft

Computing, 8(1):687–697, 2008.
[16] Michalewicz, Z. and Schoenauer, M. . Evolution-

ary algorithms for constrained parameter optimiza-
tion problems. Evolutionary Computation, 4(1):1– 32,
1995.

[17] Mezura-Montes, E. and Coello Coello, C. . A
Simple Multimembered Evolution Strategy to
Solve Constrained Optimization Problems. Tech-
nical Report EVOCINV-04-2003, Evolutionary
Computation Group at CINVESTAV, Sección
de Computación, Departamento de Ingenieŕıa
Eléctrica, CINVESTAV-IPN, México D.F., México,



Artificial bee colony algorithm variants on constrained optimization 109

2003. Available in the Constraint Handling Tech-
niques in Evolutionary Algorithms Repository at
http://www.cs.cinvestav.mx/˜constraint/.

Bahriye Akay completed M.Sc. and Ph.D degrees
in Erciyes University, Department of Computer Engi-
neering in 2005 and 2009, respectively and performed
post-doctoral studies in the University of Birmingham,
UK. Her research areas include evolutionary optimiza-
tion, swarm intelligence and software engineering. She
has several papers related to optimization algorithms
and their applications. She has been working in Er-
ciyes University as an associated professor since 2013.

Dervis Karaboga received the B.Sc. degree in 1983
from the Department of Electronics Engineering, Er-
ciyes University, Turkey and the M.Sc. degree in
1988 from the Department of Electronics and Commu-
nication Engineering, Istanbul Technical University,
Turkey, and the Ph.D degree in 1994 from Systems En-
gineering Department, University of Wales, College of
Cardiff, UK. He is currently a Professor at the Depart-
ment of Computer Engineering, Erciyes University,
Turkey. His research areas include optimization, fuzzy
systems, neural networks, engineering applications of
intelligent methods. He has two books on intelligent
optimization techniques: The first one is a coauthored
book (D.T. Pham and D. Karaboga, Intelligent Opti-
misation Techniques, Springer-Verlag, London, Sur-
rey, UK, 2000.) and the second one (D. Karaboga,
Artificial Intelligence Optimization Algorithms, Nobel
Publisher, Ankara, 2004.) is in Turkish. He has sev-
eral articles published in the journals and papers pre-
sented at the conferences related with the intelligent
optimization methods and their applications.

Appendix

g01: Minimize f(~x) = 5
4
∑

i=1

xi − 5
4
∑

i=1

x2
i −

13
∑

i=5

xi

subject to

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0
g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0
g4(~x) = −8x1 + x10 ≤ 0
g5(~x) = −8x2 + x11 ≤ 0
g6(~x) = −8x3 + x12 ≤ 0
g7(~x) = −2x4 − x5 + x10 ≤ 0
g8(~x) = −2x6 − x7 + x11 ≤ 0
g9(~x) = −2x8 − x9 + x12 ≤ 0

where bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9, 13) ,
0 ≤ xi ≤ 100 (i = 10, 11, 12). The global optimum is
at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, , 3, 3, 3, 1), f(x∗) = −15.

Constraints g1, g2, g3, g4, g5 and g6 are active.

g02: Maximize f(~x) =

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

cos4(xi)−2
n
∏

i=1

cos2(xi)

√

n
∑

i=1

ix2
i

∣

∣

∣

∣

∣

∣

∣

subject to

g1(~x) = 0.75−
n
∏

i=1

xi ≤ 0

g2(~x) =
n
∑

i=1

xi − 7.5n ≤ 0

where n=20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The
known global maximum is at x∗

i = 1/
√
n (i =

1, . . . , n), f(x∗) = 0.803619. g1 is close to being active
(g1 = −10−8)

g03: Maximize f(~x) = (
√
n)n

n
∏

i=1

xi

subject to

h(~x) =
n
∑

i=1

x2
i − 1 = 0

where n=10 and 0 ≤ xi ≤ 1 (1 = 1, . . . , n). The

global maximum is at x∗

i = 1/
√

(n) (i = 1, . . . , n)
where f(x∗) = 1

g04: Minimize f(~x) = 5.3578547x2
3 + 0.8356891x1x5

+37.293239x1 − 40792.141

subject to

g1(~x) = 85.334407 + 0.0056858x2x5

+0.0006262x1x4 − 0.0022053x3x5

−92 ≤ 0
g2(~x) = −85.334407− 0.0056858x2x5

−0.0006262x1x4 + 0.0022053x3x5 ≤ 0
g3(~x) = 80.51249 + 0.0071317x2x5

+0.0029955x1x2 − 0.0021813x2
3

−110 ≤ 0
g4(~x) = −80.51249− 0.0071317x2x5

+0.0029955x1x2 − 0.0021813x2
3

+90 ≤ 0
g5(~x) = 9.300961− 0.0047026x3x5

−0.0012547x1x3 − 0.0019085x3x4

−25 ≤ 0
g6(~x) = −9.300961− 0.0047026x3x5

−0.0012547x1x3 − 0.0019085x3x4

+20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45
(i = 3, 4, 5). The optimum solution is
x∗ = (78, 33, 29.995256025682, 45, 36.775812905788),
where f(x∗) = −30665.539. Constraints g1 and g6 are
active.



110 B. Akay, D. Karaboga /Vol.7, No.1, pp.98-111 (2017) c©IJOCTA

g05: Minimize f(~x) = 3x1 + 0.000001x3
1 + 2x2+

(

0.000002
3

)

x3
2

subject to

g1(~x) = −x4 + x3− 0.55 ≤ 0
g2(~x) = −x3 + x4− 0.55 ≤ 0
h1(~x) = 1000 sin(−x3 − 0.25)

+1000 sin(−x4 − 0.25) + 894.8
−x1 = 0

h2(~x) = 1000 sin(x3 − 0.25)
+1000 sin(x3 − x4 − 0.25) + 894.8
−x2 = 0

h3(~x) = 1000 sin(x4 − 0.25)
+1000 sin(x4 − x3 − 0.25)
+1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200,−0.55 ≤ x3 ≤
0.55, and −0.55 ≤ x4 ≤ 0.55. The best known solution
is x∗ = (679.9453, 1026.067, 0.1188764,−0.3962336),
where f(x∗) = 5126.4981.

g06: Minimize f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to

g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The
optimum solution is x∗ = (14.095, 0.84296) where
f(x∗) = −6961.81388. Both constraints are active.

g07: Minimize f(~x) = x2
1 + x2

2 + x1x2 − 14x1

−16x2 + (x3 − 10)2 + 4(x4 − 5)2

+(x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2

+(x10 − 7)2 + 45

subject to

g1(~x) = −105 + 4x1 + 5x2− 3x7 + 9x8 ≤ 0
g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4
−120 ≤ 0

g5(~x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5

−6x6 ≤ 0
g7(~x) = 0.5(x1− 8)2 + 2(x2− 4)2 + 3x2

5 − x6
−30 ≤ 0

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global
optimum is
x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,
1.430574, 1.321644, 9.828726, 8.280092, 8.375927),
where f(x∗) = 24.3062091. Constraints
g1, g2, g3, g4, g5 and g6 are active.

g08: Maximize f(~x) = sin3(2πx1) sin(2πx2)
x3
1(x1+x2)

subject to

g1(~x) = x2
1 − x2 + 1 ≤ 0

g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2). The optimum solu-
tion is located at x∗ = (1.2279713, 4.2453733),
where f(x∗) = 0.0095825.

g09: Minimize f(~x) = (x1 − 10)2 + 5(x2 − 12)2

+x4
3 + 3(x4 − 11)2 + 10x6

5

+7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

subject to

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4

+5x5 ≤ 0
g2(~x) = −282 + 7x2 + 3x2 + 10x2

3 + x4

−x5 ≤ 0
g3(~x) = −196 + 23x1 + x2

2 + 6x2
6 − 8x7 ≤ 0

g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10, (i = 1, . . . , 7).
The global optimum is
x∗ = (2.330499, 1.951372,−0.4775414,
4.365726,−0.6244870, 1.038131, 1.594227),
where f(x∗) = 680.6300573. g1 and g4 constraints are
active.

g10: Minimize f(~x) = x1 + x2 + x3

subject to

g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(~x) = −1 + 0.01(x8 − x5) ≤ 0
g4(~x) = −x1x6 + 833.33252x4 + 100x1

−83.333333 ≤ 0
g5(~x) = −x2x7 + 1250x5 + x2x4

−1250x4 ≤ 0
g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000,(i =
2, 3), 10 ≤ xi ≤ 1000,(i = 4, . . . , 8). The global opti-
mum is
x∗ = (579.19, 1360.13, 5109.92, 182.0174, 295.5985, 217.9799,
286.40, 395.5979), where f(x∗) = 7049.25. g1, g2 and
g3 are active.

g11: Minimize f(~x) = x2
1 + (x2 − 1)2

subject to

h(~x) = x2 − x2
1 = 0

where −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum
solution is x∗ = (±1/

√

(2), 1/2), where f(x∗) = 0.75.



Artificial bee colony algorithm variants on constrained optimization 111

g12: Maximize f(~x) = 100−(x1−5)2−(x2−5)2−(x3−5)2

100

subject to

g1(~x) = (xi − p)2 + (x2 − q)2 + (x3 − r)2

−0.0625 ≤ 0

where 0 ≤ xi ≤ 10, (i = 1, 2, 3) and p, r, q=1, . . . , 9.
The global optimum is located at x∗ = (5, 5, 5), where
f(x∗) = 1.

g13: Minimize f(~x) = ex1x2x3x4x5

subject to

h1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 0

h2(~x) = x2x3 − 5x4x5 = 0
h3(~x) = x3

1 + x3
2 + 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2), −3.2 ≤ xi ≤
3.2,(i = 3, 4, 5). The global optimum is
x∗ = (−1.717143, 1.5957091,−0.736413,−0.763645),
where f(x∗) = 0.0539498.

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Artificial bee colony algorithm
	3. Artificial bee colony algorithm for constrained optimization
	3.1. ABCV1: ABC algorithm for constrained optimization 
	3.2. ABCV2: Each parameter from different solution
	3.3. ABCV3: ABC algorithm utilizing individuals in a neighborhood topology
	3.4. ABCV4:ABC algorithm using a neighborhood topology in the Onlooker bee phase
	3.5. ABCV5,ABCV6,ABCV7:ABC algorithms using the mutation and crossover operators of differential evolution algorithm
	3.6. ABCV8:ABC algorithm using the global best
	3.7. ABCV9:ABC algorithm with adaptive Scout behavior

	4. Experimental study and results
	5. Conclusion
	Acknowledgments
	References
	Appendix

