IJMMS 27:6 (2001) 387-389 PII. S0161171201010997 http://ijmms.hindawi.com © Hindawi Publishing Corp.

FINITE AG-GROUPOID WITH LEFT IDENTITY AND LEFT ZERO

QAISER MUSHTAQ and M. S. KAMRAN

(Received 3 October 2000)

ABSTRACT. A groupoid *G* whose elements satisfy the left invertive law: (ab)c = (cb)a is known as Abel-Grassman's groupoid (AG-groupoid). It is a nonassociative algebraic structure midway between a groupoid and a commutative semigroup. In this note, we show that if *G* is a finite AG-groupoid with a left zero then, under certain conditions, *G* without the left zero element is a commutative group.

2000 Mathematics Subject Classification. 20N99.

1. Preliminaries. An Abel-Grassman's groupoid [6], abbreviated as AG-groupoid, is a groupoid *G* whose elements satisfy the left invertive law: (ab)c = (cb)a. It is also called a left almost semigroup [2, 3, 4, 5]. In [1], the same structure is called left invertive groupoid. In this note we call it AG-groupoid.

It is a nonassociative algebraic structure midway between a groupoid and a commutative semigroup. The structure is medial [5], that is, (ab)(cd) = (ac)(bd) for all $a, b, c, d \in G$. It has been shown in [5] that if an AG-groupoid contains a left identity then it is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. An element a_0 of an AG-groupoid G is called a left (right) zero if $a_0a = a_0(aa_0 = a_0)$ for all $a \in G$.

Let *a*, *b*, *c*, and *d* belong to an AG-groupoid with left identity and ab = cd. Then it has been shown in [5] that ba = dc.

An element a^{-1} of an AG-groupoid with left identity e is called a left inverse if $a^{-1}a = e$. It has been shown in [5] that if a^{-1} is a left inverse of a then it is unique and is also the right inverse of a.

If for all *a*, *b*, *c* in an AG-groupoid *G*, ab = ac implies that b = c, then *G* is known as left cancellative. Similarly, if ba = ca, implies that b = c, then *G* is called right cancellative. It is known [5] that every left cancellative AG-groupoid is right cancellative but the converse is not true. However, every right cancellative AG-groupoid with left identity is left cancellative.

In this note, we show that if *G* is a finite AG-groupoid with left identity and a left zero a_0 , under certain conditions $G \setminus \{a_0\}$ is a commutative group without a left zero.

2. Results. We need the following theorem from [4] for our main result.

THEOREM 2.1 [4]. A cancellative AG-groupoid G is a commutative semigroup if a(bc) = (cb)a for all $a, b, c \in G$.

We now state and prove our main result.

THEOREM 2.2. Let (G, \circ) be a finite AG-groupoid with at least two elements. Suppose that it contains a left identity and a left zero a_0 . Then $G^0 = G \setminus \{a_0\}$ is a commutative group under the binary operation (\circ) provided there is another binary operation (*) such that

- (i) (G, *) is an AG-groupoid with left identity and left inverses,
- (ii) $a_0 * a = a$, for all $a \in G$,
- (iii) $(a * b) \circ c = (a \circ c) * (b \circ c)$, for all $a, b, c \in G$,
- (iv) $a \circ b = a_0$ implies that either $a = a_0$ or $b = a_0$ for all $a, b \in G$,
- (v) $a \circ (b \circ c) = (c \circ b) \circ a$, for all $a, b, c \in G$.

PROOF. Suppose that $G = \{a_0, a_1, ..., a_m\}$, where *m* is a positive integer, is an AGgroupoid with left identity under the binary operation (\circ). Let *e* be the identity element of *G*. It is certainly different from a_0 because of (ii) and because a_0 is the left zero under (\circ). The left invertive law together with (iv) implies that $(a \circ a_0) \circ e = (e \circ a_0) \circ a =$ $a_0 \circ a = a_0$, where $e \neq a_0$. That is,

$$a_0 \circ a = a \circ a_0 = a_0. \tag{2.1}$$

Now consider the subset G^0 of G which is obtained from it by deleting a_0 , so that $G^0 = \{a_i : i = 1, 2, ..., m\}$. In view of the facts that a_0 is a zero under the binary operation (\circ) and it is the left identity under (*) and that (G, \circ) is a finite AG-groupoid with left identity. (G^0 , \circ) is also a finite AG-groupoid with left identity having the same e as the left identity in which all elements are distinct.

We now examine whether an element a of G^0 has an inverse in G^0 under (\circ) or not. We construct a set $H_k = \{a_k \circ a_1, a_k \circ a_2, \dots, a_k \circ a_m\}$, where $a_k \neq a_0$. If $a_k = a_0$, then because a_0 is a left zero in G under (\circ) and the left identity under (*), the ultimate form of the set H_k will be $\{a_0\}$. Therefore it validates our supposition that $a_k \neq a_0$.

We assert that H_k contains m elements. Suppose otherwise and let

$$a_k \circ a_r = a_k \circ a_s, \tag{2.2}$$

for some r, s = 1, 2, ..., m and $r \neq s$. Since H_k is an AG-groupoid with left identity under (\circ), therefore (2.2) implies that

$$a_r \circ a_k = a_s \circ a_k, \tag{2.3}$$

for some r, s = 1, 2, ..., m and $r \neq s$. Consider now the element $(a_s * a_r^{-1}) \circ a_k$, which is certainly an element of *G*, where a_r^{-1} is the left inverse of a_r in *G* with respect to (*). Now,

$$(a_s * a_r^{-1}) \circ a_k = (a_s \circ a_k) * (a_r^{-1} \circ a_k) = (a_r \circ a_k) * (a_r^{-1} \circ a_k) = (a_r * a_r^{-1}) \circ a_k = a_0 \circ a_k = a_0.$$
(2.4)

Because of (iii), equation (2.3) and the facts that a_r^{-1} is the inverse of a_r under (*). Thus $(a_s * a_r^{-1}) \circ a_k = a_0$. Since $a_k \neq a_0$, therefore because of (iv), $a_s * a_r^{-1} = a_0$. Next $(a_s * a_r^{-1}) \circ a_r = a_0 * a_r$ implies that $(a_s * a_r^{-1}) \circ a_r = a_r$ because a_0 is the left identity in *G* under (*). Hence, $a_r = (a_s * a_r^{-1}) * a_r = (a_r * a_r^{-1}) * a_s = a_0 * a_s$ that is, $a_r = a_s$. Since $|H_k| = m$, therefore the result $a_r = a_s$ contradicts our assumption; thus

388

proving that H_k contains distinct elements. Since H_k is contained in G^0 and $|G^0| = m$ we have $H_k = G^0$.

Also, since G^0 is an AG-groupoid under (\circ) with the left identity e, so is H_k and hence H_k contains the left identity e. So, e will be of the form $a_i \circ a_j$, that is, $e = a_i \circ a_j$ implying that a_i is the left inverse of a_j under the binary operation (\circ). But in an AG-groupoid with left identity, if it contains left inverses, every left inverse is a right inverse. Thus a_j is the right inverse of a_j under (\circ).

Since k = 1, 2, ..., m has been chosen arbitrarily, we have shown that G^0 is an AGgroupoid with left identity and inverses under the binary operation (\circ).

If $a_i, a_j, a_k \in G^0$ such that $a_i \circ a_k = a_j \circ a_k$, then $(a_i \circ a_k) \circ a_k^{-1} = (a_j \circ a_k) \circ a_k^{-1}$ implies that $(a_k^{-1} \circ a_k) \circ a_i = (a_k^{-1} \circ a_k) \circ a_j$ and so $a_i = a_j$. Thus G^0 is right cancellative under (\circ) . But G^0 being right cancellative under (\circ) , is left cancellative also, therefore G^0 is cancellative. Since G^0 is cancellative whose elements satisfy condition (v), therefore by applying Theorem 2.1, we conclude that G^0 is a commutative group under (\circ) .

COROLLARY 2.3. *If* (G, \circ) *is a finite* AG*-groupoid with left identity and a left zero* a_0 *, then* $(G \setminus \{a_0\}, \circ)$ *is a cancellative* AG*-groupoid with left identity and inverses provided there is another binary operation* (*) *such that*

- (i) (G, *) is an AG-groupoid with left identity and left inverses,
- (ii) $a_0 * a = a$, for all $a \in G$,
- (iii) $(a * b) \circ c = (a \circ c) * (b \circ c)$, for all $a, b, c \in G$,
- (iv) $a \circ b = a_0$ implies that either $a = a_0$ or $b = a_0$ for all $a, b \in G$.

PROOF. The proof is analogous to the proof of Theorem 2.2.

ACKNOWLEDGEMENT. The authors are grateful to the referee for his invaluable suggestions.

REFERENCES

- P. Holgate, *Groupoids satisfying a simple invertive law*, Math. Student **61** (1992), no. 1-4, 101-106. MR 95d:20113. Zbl 900.20160.
- M. A. Kazim and M. Naseeruddin, On almost semigroups, Aligarh Bull. Math. 2 (1972), 1–7. MR 54#7662. Zbl 344.20049.
- Q. Mushtaq and Q. Iqbal, Decomposition of a locally associative LA-semigroup, Semigroup Forum 41 (1990), no. 2, 155–164. MR 91f:20067. Zbl 682.20049.
- [4] Q. Mushtaq and M. S. Kamran, *On LA-semigroups with weak associative law*, Sci. Khyber 2 (1989), no. 1, 69–71.
- [5] Q. Mushtaq and S. M. Yusuf, On LA-semigroups, Aligarh Bull. Math. 8 (1978), 65-70. MR 84c:20086. Zbl 509.20055.
- [6] P. V. Protić and M. Božinović, Some congruences on an AG**-groupoid, Filomat (1995), no. 9, part 3, 879–886. MR 97b:20097. Zbl 845.20052.

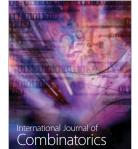
QAISER MUSHTAQ: DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY, ISLAMABAD, PAKISTAN

E-mail address: qmushtaq@apollo.net.pk

M. S. KAMRAN: DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY, ISLAMABAD, PAKISTAN

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

