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Image-based change quantitation has been recognized as a promising tool for accurate assessment of tumor’s early response to
chemoprevention in cancer research. For example, various changes on breast density and vascularity in glandular tissue are the
indicators of early response to treatment. Accurate extraction of glandular tissue from pre- and postcontrast magnetic resonance
(MR) images requires a nonrigid registration of sequential MR images embedded with local deformations. This paper reports a
newly developed registration method that aligns MR breast images using finite-element deformable sheet-curve models. Specif-
ically, deformable curves are constructed to match the boundaries dynamically, while a deformable sheet of thin-plate splines is
designed to model complex local deformations. The experimental results on both digital phantoms and real MR breast images
using the new method have been compared to point-based thin-plate-spline (TPS) approach, and have demonstrated a significant
and robust improvement in both boundary alignment and local deformation recovery.

Copyright © 2006 Jianhua Xuan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Chemoprevention is an established approach to cancer pre-
vention based on 25 years of research [1–3]. The breast
cancer prevention trial (BCPT) in the United States re-
cently led the Food and Drug Administration (FDA) to ap-
prove tamoxifen as a chemopreventive drug to reduce breast
cancer risk [4]. Although the overall benefits of tamox-
ifen outweigh the overall risks, the risks were found sig-
nificant in the trials, including increased risks of endome-
trial cancer, problems related to blood clots, and cataracts
[5]. Moreover, many clinical studies have also reported that
not all women are protected against breast cancer by ta-
moxifen. Given the risks and the lack of full protection
against breast cancer, some high-risk women are reluctant
to use tamoxifen because they want to know whether ta-
moxifen is effective on their breasts, rather than relying on
statistical evidence. Hence, it is clinically important to de-

velop novel approaches to accurately assess early response to
tamoxifen.

Previous studies have shown that estrogens increase
breast density [6, 7], but the effect on breast density of
selective estrogen receptor modulators (SERMs), such as
tamoxifen and raloxifene, is unknown. In a previous clin-
ical trial [6], one author of this paper has evaluated the
effects of two years of treatment with raloxifene, estro-
gen, or placebo on breast density using a digitized analy-
sis of mammograms. The main findings of the study can
be summarized as the following: (1) the mean breast den-
sity was statistically significantly greater in the conjugated
estrogens group than it was in the other three groups,
and (2) volunteers receiving raloxifene did not increase
breast density after two years of treatment. In the study,
breast density, as measured by mammography, is deter-
mined by the relative amounts of fat and fibroglandular
tissue present. As discussed in [6], since estrogen action
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works through estrogen receptors that are present in glan-
dular tissue, breast density measured on glandular tissue
would more directly indicate the response to SERM chemo-
prevention. However, mammography dose not allow us to
accurately measure the density of glandular tissue in prac-
tice.

In this study, we use gadolinium-enhanced MR imaging
method to differentiate glandular tissue from fibroglandular
tissue, and measure the breast density on the glandular tis-
sue. In the light of the antiestrogenic properties of tamoxifen,
that is, reduction of circulating growth factors and inhibition
of angiogenesis [8], we propose to quantitatively measure
changes of breast density and breast vascular density in glan-
dular tissue to assess early response to tamoxifen. With such
quantitative measurements, we can determine whether the
drug is effective for a patient, early and individually. To com-
pare the glandular tissue volumes between pre- and post-
contrast MR images, nonrigid registration should be per-
formed to align two MR images and recover local deforma-
tions.

Many nonrigid registration methods have been proposed
in recent years [9–11], and can be categorized into intensity-
based or feature-based approaches [12–15]. When using
gadolinium-enhanced MR images, feature-based approaches
offer advantages over intensity-based registration methods
since geometric features—points, curves, and surfaces—are
consistent between pre- and postcontrast MR images while
intensity values are not. By establishing feature correspon-
dences, deformations can be recovered by nonlinear interpo-
lation methods such as the thin-plate-spline (TPS) method
[13].

Registration accuracy often depends on the availabil-
ity of a large number of features. Point-based registration
methods typically use anatomical landmark points as the
features to register images [13]. Although anatomical land-
marks are the most robust features, the number of land-
marks is usually limited in MR breast images. Moreover,
if local deformations are confined in certain regions, the
landmarks have to be well placed over those regions. It
is therefore reasonable to use the boundaries of anatom-
ical objects as features to recover local deformations [14,
16].

Several approaches have been proposed that used bound-
aries or curves as matching features [14, 16–18]. Mosh-
feghi proposed an elastic matching method for registra-
tion of multimodality images [14]. The method is based on
Burr’s elastic contour matching algorithm and a Gaussian
smoothed deformation model that estimates the deforma-
tions over the whole image [19, 20]. To reduce the com-
putational complexity, Davatzikos et al. proposed a two-
step approach to recover deformations based on bound-
ary mapping, that is, a homothetic mapping of boundaries
followed by an elastic deformation transformation (EDT)
[16].

However, elastic matching method often suffers from the
following problems: (1) since no physical model (or con-
straint) is imposed on the curve deformation, the resulted
curve matching is considered only an ad hoc solution; and

(2) the Gaussian smoothed deformation model is an over-
simplified model when facing the complex local deforma-
tions existed in MR breast images. For example, although
Davatzikos’ method is a very efficient algorithm resulting in
a great reduction in computational complexity, the key as-
sumption behind is homothetic mapping, that is, a map-
ping by a uniform scaling of its length and arbitrary length-
preserving bending [16]. Such an assumption cannot hold
in MR breast images in that the participated deformations
are relatively large, therefore homothetic mapping could pro-
duce large curve matching error.

In this paper, we propose deformable sheet-curve models
to overcome the problems associated with the existing meth-
ods. Deformable curves are used to obtain a reliable match-
ing of the curves using physically constrained deformations,
and a deformable sheet with the energy functional of thin-
plate splines is used to model complex local deformations
between the images.

2. THEORY AND METHOD

In image registration a nonlinear transformation U(x) =
(Ux(x, y),Uy(x, y)) is used to map the first image to the sec-
ond image. We refer to the function U(x) as the deforma-
tion, which can be modeled as either thin-plate splines [13]
or elastic sheets [16]. Under the assumption that we have
K pairs of corresponding boundaries (or curves), (C1i,C2i),
i = 0, . . . ,K − 1, we use deformable curves to model the
deformation of curves in the two images (denoted as Uc),
and a deformable sheet to model the deformation between
two images (denoted as Us). We propose a deformable sheet-
curve model shown in Figure 1 to recover the deformation
Us through matching the deformable curves and deforming
the deformable sheet iteratively.

A deformable sheet-curve model can be presented in
variational and finite-element forms. We denote the defor-
mation of the sheet by Us(x, y, t) = (Ux

s (x, y, t),U
y
s (x, y, t)),

where (x, y) is the bivariate material coordinate and t is the
time index. Similarly, the deformation of the curve can be
denoted by Uc(s, t) = (Ux

s (s, t),U
y
s (s, t)), where s is the uni-

variate material coordinate of the curve. The strain energy E
can be found to characterize the deformable material of the
sheet or the curve as an instance of the spline function. At
the center of our method, the continuum mechanical equa-
tion [21]

μ
∂2U
∂t2

+ γ
∂U
∂t

+
δE(U)
δU

= f(U) (1)

governs the nonrigid motion of the sheet (curve) in response
to the extrinsic force f(U), where μ is the mass density func-
tion of the deformable sheet (curve) and γ is the viscosity
function of the ambient medium. The third term on the left-
hand side of the equation is the variational derivative of the
strain energy functional E, the internal elastic force of the
sheet (curve).
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Figure 1: Configuration of the deformable sheet-curve model.

2.1. Variational modeling

The deformable energy for the deformation Us(x, y, t) of the
sheet is defined by

Es(x, y) =
∫∫ ⎛
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(2)

where the weights w01, w11, and w10 control the tensions of
the sheet (stretching energy), and w02, w22, and w20 control
its “rigidities” by weighting the bending energy (see [22] for
a detailed discussion on maximal rigidity). Accordingly, the
deformable energy for the deformation Uc(s, t) of the curve
is given by

Ec(x, y) =
∫∫ ⎛
⎝w1

∣∣∣∣∣
∂Uc

∂s

∣∣∣∣∣
2

+ w2

∣∣∣∣∣
∂2Uc

∂s2

∣∣∣∣∣
2
⎞
⎠ds. (3)

The weight w1 controls the tension along the curve (stretch-
ing energy), and w2 controls its rigidity (bending energy).

The dynamics of the deformable sheet-curve model is de-
fined by the following Lagrangian motion equations:

μ
∂2Ui

c

∂t2
+ γ

∂Ui
c

∂t
+
δE
(

Ui
c

)
δUi

c
= f ic, i = 0, . . . ,K − 1,

μ
∂2Us

∂t2
+ γ

∂Us

∂t
+
δE
(

Us
)

δUs
= fs,

(4)

where fs and f ic are the external forces applied on the sheet
and the curve, respectively. The registration process is an

iterative procedure by repeating the following two steps.

(1) Boundary deformation recovery by deformable curve
matching: deformable curves use the corresponding
curves in the second image to define the external forces
(f ic , i = 0, . . . ,K − 1). The deformations of the curves
(Ui

c(s, t), i = 0, . . . ,K − 1) can then be obtained by
solving Lagrangian motion equations of the curves.

(2) Image deformation recovery by deforming the deforma-
ble sheet: the deformable sheet uses the new curve po-
sitions (Cnew

1i = C1i + Ui
c, i = 0, . . . ,K − 1) to define

the external forces (fs). The local deformation of the
image can be obtained by solving Lagrangian motion
equation of the sheet.

The final deformation Us is obtained when the energies of
the deformable sheet-curve model reach their minima.

We define the external forces f ic to reflect the mismatch
between the two corresponding curves (C1i,C2i) : f ic = D(C1i,
C2i), where D(C1i,C2i) is the Gaussian weighted Euclidean
distance of each point on the first curve to the nearest point
on the second curve. After we recover the curve deformations
Ui

c, we obtain the new curve positions as Cnew
1i = C1i + Ui

c, i =
0, . . . ,K − 1. Then we use Gaussian weighted Euclidean dis-
tance to define the external forces for the deformable sheet,
that is, fs = D((C1i,Cnew

1i ), i = 0, . . . ,K − 1).

2.2. Finite element modeling

We use a finite-element method to compute the numerical
solutions of Us and Uc. We first tessellate the continuous ma-
terial domain, (x, y) for the sheet and s for the curve, into
a mesh of m element subdomains Dj . We then approximate
U by a weighted sum of continuous basis functions Ni (so-
called shape functions): U ≈ Uh = ∑n

i=1 UiNi = Na, where
Ui is a vector of nodal variables associated with mesh node
i, Ni is a vector of shape functions associated with node i, n
is the number of nodes of an element, aT = [UT

1 , . . . , UT
n ],

and N = [N1, . . . , Nn]. The shape functions Ni are fixed in
advance and the nodal variables Ui are the unknowns. The
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motion equation (4) can then be discretized as

M
∂2a
∂t2

+ C
∂a
∂t

+ Ka = F, (5)

where M is the mass matrix, C is the damping matrix, K is
the stiffness matrix, and F is the forcing matrix. M, C, and F
can be obtained as follows:

M =
∫∫

μNTNdx dy,

C =
∫∫

γNTNdx dy,

F =
∫∫

NT f dx dy.

(6)

To compute K, we have the following equation:

K =
∫∫ (

NT
s αNs + NT

b βNb
)
dx dy, (7)

where
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[
∂N
∂x

,
∂N
∂y

]T
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[
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∂2N
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,
N
∂y2
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,

α =
[
w10 w11

w11 w01

]
, β =

⎡
⎢⎢⎣
w20 0 0

0 w22 0

0 0 w02

⎤
⎥⎥⎦ .

(8)

2.2.1. Deformable sheet element

The deformable sheet consists of a set of connected triangular
elements. Barycentric coordinates are the natural choice for
defining shape functions over a triangular domain, since a
unifying representation of different triangles can be achieved
[23]. Barycentric coordinates (L1,L2,L3) are defined by the
following mapping with material coordinate (x, y):

⎡
⎢⎢⎣
x

y

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x1 x2 x3

y1 y2 y3

1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
L1

L2

L3

⎤
⎥⎥⎦ , (9)

where (x1, y1), (x2, y2), and (x3, y3) are the coordinates of
three vertex locations of a triangle.

We construct a 9-degree-of-freedom (DOF) triangular
element with its position and first parametric partial deriva-
tives at each triangle vertex. The shape functions for the 9-
DOF triangle are [24]

N9T
1 =
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2
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2
3
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)

⎤
⎥⎥⎦ .

(10)

The triangle’s symmetry in barycentric coordinates can be
used to generate the shape function for the second and third
nodes in terms of the first. To generate N9

2 use the above
equations but add a 1 to each index so that 1→2, 2→3, and

3→1. The N9
3 functions are generated by adding another 1

to each index. By defining 9 DOFs of the triangular element
as aT = [U1, U1x, U1y , U2, U2x, U2y , U3, U3x, U3y], we can ap-
proximate the Us as

Uh
s = N9a =

[
N9

1 N9
2 N9

3

]
a. (11)

2.2.2. Deformable curve element

The finite element of the curve has 4 DOFs for the two nodes
located atthe ends of the curve segment. The DOFs at each
node are the position and tangent of the node. The defor-
mation of the curve segment can be approximated as the
weighted sum of a set of Hermite polynomials [23]:

Uc ≈ Uh
c (s) =

3∑
i=0

Ui
cNi, (12)

where Ui
c, i = 0, . . . , 3, are nodal variables and Ni, i = 0, . . . , 3,

are given as follows:
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(13)

where h is the parametric element length.

2.2.3. Numerical integration

The deformable sheet-curve model can be stabilized during
the matching process if its motion is critically damped to
minimize vibrations. Critical damping can be achieved by
appropriately balancing the mass and damping distributions.
A simple way of eliminating vibration while preserving use-
ful dynamics is to set the mass density in (1) to zero, thus
reducing (5) to

C
∂a
∂t

+ Ka = F. (14)

This first-order dynamic system governs the model that
has no inertia and comes to rest as soon as all the forces
balance. We integrate (14) using an explicit first-order Eu-
ler method [24]. The method begins with a simple forward
difference approximation. By considering extrapolation from
time with the forward difference approximation

∂a
∂t
= a(t + Δt)− a(t)

Δt
, (15)

(14) then becomes

Ca(t + Δt) = (C− ΔtK)a(t) + ΔtF. (16)
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Thus we obtain the updating formula as follows:

a(t + Δt) = (I− ΔtC−1K
)

a(t) + ΔtC−1F. (17)

It is well known that finite difference methods for initial-
value systems yield expressions very similar to the above re-
sults obtained by finite-element schemes [25]. A noteworthy
distinction is that the coefficient matrix for finite differenc-
ing is diagonal in the usual difference approximation. This
leads, in the forward difference approximation, to an effi-
cient algorithm for solving the problem. In the finite-element
method, due to the sparseness of C, it is difficult to com-
pute C−1 since complicated singular decomposition meth-
ods have to be used. Fortunately, a physical solution exists
in computational mechanics, namely, the “lumping” proce-
dure, to overcome such difficulties. The idea can be physically
interpreted as replacing the continuous material with the dis-
tributed mass, that is, concentrated material with “lumped”
mass (“beads”) at the nodes. In practice, there are several
ways to perform such a “lumping” procedure—for example,
using modified shape functions or different numerical inte-
gral methods [24]. Among those, the easiest way is to keep
only the diagonal coefficients and is adopted here in solving
the motion equations of the deformable sheet-curve model.

3. EXPERIMENTAL RESULTS

Deformable sheet-curve models were implemented using a
finite-element method using 9-DOF triangular sheet ele-
ments and 4-DOF curve elements. The deformable curves
are used to match boundaries, and the deformable sheet is
modeled as a thin-plate spline to recover the local deforma-
tion. The registration process is an iterative procedure by re-
peating the following two steps: (1) the deformations of the
curves (Ui

c) are obtained by solving Lagrangian motion equa-
tions of the curves with the external forces (f ic) defined by the
corresponding curves, and (2) the deformation of the sheet
(Us) is obtained by solving Lagrangian motion equation of
the deformable sheet with the external forces (fs) defined by
the new curve positions (derived from Ui

c). The final defor-
mation of the whole image is recovered when the energies
of the deformable sheet-curve model reach their minima.
In our experiments, we applied the deformable sheet-curve
models to both simulated data and real breast MR images to
demonstrate the performance of the method in recovering
boundary deformation and image deformation.

3.1. Simulation result

Digital phantoms are generated and used to validate the
proposed boundary-based registration approach in a con-
trolled manner with known truth. As shown in Figure 2, the
boundaries in the first image are depicted in solid line while
those in the second image are in dashed line. In our ap-
proach, we use deformable curves to model the boundaries
and match them by recovering the deformation iteratively.
The recovered boundary deformation demonstrates an excel-
lent matching between the initial and target boundaries with
a mean square error (MSE) less than 2%, where the parame-

(a) (b)

(c) (d)

Figure 2: A simulation result deformation recovered by the de-
formable sheet-curve model: (a) curve features, (b) recovered
boundary deformation, (c) recovered image deformation, and (d)
recovered image deformation in mesh representation.

ters (i.e., the weights in (3)) are experimentally chosen to ob-
tain a good overall matching performance. The deformable
sheet works cooperatively with deformable curves to infer the
image deformation iteratively. As we can see from Figure 2,
the recovered image deformation is constrained by the thin-
plate-spline functional. The digital phantom study therefore
provides compelling evidence that deformable sheet-curve
models can achieve accurate boundary matching and com-
plex image deformation modeling.

3.2. Registration of breast MR images

We have further applied our deformable sheet-curve model
to register real contrast-enhanced sequential MR breast im-
ages to assess early response to chemoprevention. The data
set of this study consists of serial studies in 29 women at
high risk of breast cancer who received either tamoxifen
or no drug. MR images are acquired with contrast agent
(gadolinium) at 0, 3, and 6 months along with biopsies for
histopathology, RNA, and gene analysis at Lombardi Cancer
Center (LCC) of the Georgetown University Medical Center.
As of October of 2004, we have completed baseline testing
on 26 enrolled women, three MR scans on 26 women and
biopsies on 22 women.

MR images are acquired using Siemens’ Magnetom Vi-
sion with magnetic field strength of 1.5 Tesla. One 3D MR
scan of the patient results in 64 images with pixel resolution
at 512× 512, where pixel spacing is 0.36 mm in both X- and
Y-directions, and slice thickness is 2.0 mm in Z-direction.
Some example images are shown in Figure 3, where pre- and
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(a)

(b)

Figure 3: Sample MR pre- and postcontrast images at (a) 0 month
and (b) 3 months: (left) precontrast image and (right) postcontrast
image.

(a) (b)

Figure 4: A pair of MR breast images: (a) precontrast image, and
(b) postcontrast image.

postcontrast images at 0 and 3 months are shown in Figures
3(a) and 3(b), respectively.

We use fibroglandular tissue as the reference object to
register pre- and postcontrast MR breast images, see Figure 4
for an example. The regions of fibroglandular tissue are ex-
tracted using a stochastic model-based segmentation method
based on the standard finite normal model (SFNM) and a
contextual Bayesian relaxation labeling (CBRL) procedure
[3]. The segmentation result is shown in Figure 5 with all
the regions of fibroglandular tissue identified in both pre-
and postcontrast images. Then all the corner points on
the boundaries of fibroglandular tissue are extracted (see
Figure 5). By establishing the corner point correspondence,
we can partition the boundaries of fibroglandular tissue into
corresponding curves in pre- and postcontrast images. These

(a) (b)

Figure 5: Extracted fibroglandular tissue with corner pointed de-
tected: (a) precontrast image, and (b) postcontrast image.

curves serve as the features in the registration of pre- and
postcontrast MR breast images.

The deformable curves with 4-DOF finite elements are
used to model the extracted boundaries of fibroglandular
tissue, and the deformable sheet with 9-DOF finite elements
is then used to model image deformation. The registration
process is a cooperative procedure by repeating boundary
matching and image deformation inferring. The deformable
curve matching gives us the boundary deformation, and the
recovered boundary deformation is then used to deform
the deformable sheet to derive image deformation. In our
finite-element implementation, we use numerical integra-
tion method described in Section 2 to solve the Lagrangian
motion equations. The final deformation of the image is
recovered when the energies of the deformable sheet-curve
model reach their minima. Figure 6 shows the extracted re-
gions of glandular tissue by subtracting the registered pre-
contrast image from the postcontrast image.

As a comparison, we show the extracted regions of glan-
dular tissue using the registration result of the point-based
TPS method in Figure 7. As we can see, many false regions
of glandular tissue are resulted from the misalignment of the
boundaries of fibroglandular tissue due to the limited num-
ber of the available feature points (25 feature points in this
experiment). The boundary misalignment can be clearly seen
in Figure 7(b), where two regions of fibroglandular tissue are
registered by the point-based TPS method. Figure 7(a) shows
the boundary registration result using our deformable sheet-
curve model, which demonstrates a great improvement in
boundary alignment compared with that of the point-based
TPS method. The experimental results show that our de-
formable sheet-curve model can provide an expected im-
provement in registration accuracy regarding both boundary
alignment and local deformation recovery.

4. CONCLUSION

We have developed deformable sheet-curve models for non-
rigid medical image registration. The registration method
supported by our deformable sheet-curve models is a
feature-based approach in that (1) deformable curves are
used to model curve features—the boundaries of objects,



Jianhua Xuan et al. 7

(a) (b)

Figure 6: Extracted glandular tissue: (a) using the deformable
sheet-curve model, and (b) using TPS with feature points alone.

(a) (b)

Figure 7: Registered boundaries of two selected regions: (a) using
the deformable sheet-curve model, and (b) using TPS with feature
points alone.

and (2) the thin-plate-spline sheet is used to model the
local deformation over the image. The deformable sheet-
curve model is also a dynamic system that is governed by
Lagrangian motion equations. The model has been imple-
mented in finite-element method with 9-DOF triangular
sheet elements and 4-DOF curve elements. By solving La-
grangian motion equations iteratively, we can recover the de-
formation over the whole image. We have applied the de-
formable sheet-curve model to register MR breast images
for the assessment of early response to chemoprevention.
The experimental results have demonstrated a significant im-
provement in the registration accuracy with reliable bound-
ary alignment and accurate local deformation recovery. We
believe that our comparative studies provide useful informa-
tion on the utility of the proposed method for nonrigid im-
age registration. Given the difficulty of the task, while the op-
timality of the method may be data or modality dependent,
we would expect it to be an important tool in change detec-
tion across temporal image sequences.

ACKNOWLEDGMENT

This work was supported in part by the Department of De-
fense under Grant DAMD17-03-0448.

REFERENCES

[1] G. J. Kelloff, “Perspectives on cancer chemoprevention re-
search and drug development,” Advances in Cancer Research,
vol. 78, pp. 199–334, 1999.

[2] S. M. Lippman, J. J. Lee, and A. L. Sabichi, “Cancer chemopre-
vention: progress and promise,” Journal of the National Cancer
Institute, vol. 90, no. 20, pp. 1514–1528, 1998.

[3] D. S. Alberts, O. M. Colvin, A. H. Conney, et al., “Prevention of
cancer in the next millennium: report of the chemoprevention
working group to the American Association for Cancer Re-
search,” Cancer Research, vol. 59, no. 19, pp. 4743–4758, 1999.

[4] B. Fisher, J. P. Costantino, D. L. Wicherham, et al., “Tamoxifen
for prevention of breast cancer: report of the national surgi-
cal adjuvant breast and bowl project P-1 study,” Journal of the
National Cancer Institute, vol. 90, no. 18, pp. 1371–1388, 1998.

[5] K. Meister, “Chemoprevention of breast cancer,” American
Council on Science and Health, March 2000, http://www.acsh.
org.

[6] M. T. Freedman, J. S. Martin, J. O’Gorman, et al., “Digitized
mammography: a clinical trial of postmenopausal women
randomly assigned to receive raloxifene, estrogen, or placebo,”
Journal of the National Cancer Institute, vol. 93, no. 1, pp. 51–
56, 2001.

[7] G. A. Greendale, B. A. Reboussin, A. Sie, et al., “Ef-
fects of estrogen and estrogen-progestin on mammographic
parenchymal density. Postmenopausal Estrogen/Progestin In-
terventions (PEPI) Investigators,” Annals of Internal Medicine,
vol. 130, pp. 262–269, 1999.

[8] U. Veronesi, P. Maisonneuve, A. Costa, et al., “Prevention
of breast cancer with tamoxifen: preliminary findings from
the Italian randomise trial among hysterectomised women,”
Lancet, vol. 352, pp. 93–101, 1998.

[9] L. G. Brown, “A survey of image registration techniques,” ACM
Computing Surveys, vol. 24, no. 4, pp. 325–376, 1992.

[10] J. S. Duncan and N. Ayache, “Medical image analysis: progress
over two decades and the challenges ahead,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp.
85–106, 2000.

[11] P. A. van den Elsen, E. J. D. Pol, and M. A. Viergever, “Medical
image matching - a review with classification,” IEEE Engineer-
ing in Medicine and Biology Magazine, vol. 12, no. 1, pp. 26–39,
1993.
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