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High-pressure torsion (HPT), a severe plastic deformation (SPD) method, is rarely used in the manufacturing process of
functional materials. In the present work, the authors creatively proposed using HPT as an alternative method an approach
for high energy ball-milling in the preparation of an Fe

3
O
4
and lamellar graphite nanosheet (GNS) composite material. The

corresponding electrochemical experiments verified that the in situ synthesized Fe
3
O
4
/GNS composite material has good lithium-

storage performance and that it can retain good capacity (548.2mAh g−1) even after several hundred cycles with high current
density (8 C). Meanwhile, this performance has directly confirmed that SPD technique has great potential for the preparation of
anode materials of lithium-ion batteries, especially in manufacturing metallic functional nanomaterials.

1. Introduction

Future high-end communications, portable devices, and elec-
tric vehicles present great demands for lithium-ion batteries
(LIBs) with high power density, high energy density, and
good cycling stability. Tarascon and Armand [1] presented
the development of lithium-based rechargeable batteries and
demonstrated that graphite is the anode material used in
commercial LIBs. Zhu et al. [2] prepared a promising route
for a large-scale production of reduced graphene oxide
platelet/metal oxide nanoparticle composites as electrode
materials for Li-ion batteries. The rate capability of various
lithium-ion half-cells was investigated by Buqa et al. [3]
and the results showed that high current performance of
these cells was restricted with a theoretical capacity of
372mAh g−1, which cannot satisfy the requirements for the
new generation of LIBs. Thus, development of new types of
electrode materials is urgent. Arico et al. [4] describes some
recent developments in the discovery of nanoelectrolytes and

nanoelectrodes for lithium batteries. Jang et al. [5] present a
direct synthesis of ferrite/carbon hybrid nanosheets for high
performance lithium-ion battery anodes. Because of their
merits (high theoretical capacities and abundant resources),
various transition metal oxides have been widely and inten-
sively studied with respect to becoming anode materials
for LIBs, such as 𝛼-Fe

2
O
3
submicron spheres with differ-

ent internal structures [6], nanorod-like Fe
2
O
3
/graphene

nanocomposite [7], bicontinuous mesoporous nanostructure
Fe
3
O
4
[8], carbon-encapsulated Fe

3
O
4
nanoparticles [9],

MnO
2
nanoparticles [10], layered birnessite-type MnO

2
[11],

Co
3
O
4
nanoparticles [12], Co

3
O
4
nanorods [13], mesoporous

TiO
2
thin films [14], and TiO

2
nanoparticles [15]. Wu et

al. [16] verified that these kinds of oxides for lithium-ion
batteries (LIBs) did satisfy the ever-growing demands for
better performance. Reddy et al. [17] also presented their
use in a wide range of applications. Among the transition
metal oxides that have been studied, Fe

3
O
4
has received

much attention because of its high theoretical capacity
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Figure 1: Schematic diagram of high-pressure torsion experiment.

(926mAh⋅g−1) and low cost. However, large structure and
volume changes (around 180%) occur in the material after
the lithium-storage reaction, because the lithium-storage
mechanism of Fe

3
O
4
is a chemical transition that produces

elementary Fe and Li
2
O particles, and the fine particles of

elementary Fe are adsorbed on Li
2
O surface. The substantial

changes lead to structural damage and decrease the electronic
conductivity, thus resulting in a shorter cycling life. In
addition, the irreversible capacity in the first cycle will be
large because of the irreversible formation of Li

2
O (SEI

layer). One of the commonly used modification approaches
is combining Fe

3
O
4
and other materials to relieve and inhibit

the volume expansion. Carbon materials, such as amorphous
carbon, graphene, and carbon nanotubes, are often used in
this approach. Zhuo et al. [18] prepared an Fe

3
O
4
/graphene

nanocomposite, and a capacity of 1026mAh⋅g−1 was main-
tained after 30 charge-discharge cycles at a current density of
35mA⋅g−1 within a voltage range of 0.0–3.0V. Also, a high
reversible capacity of 580mAh⋅g−1 was maintained at a cur-
rent density of 700mA⋅g−1 for 100 cycles, indicating excellent
cycling stability and a high-rate discharging capability. Lian et
al. [19] synthesized an Fe

3
O
4
/graphene nanocomposite using

a hydrothermal method, and the composite also exhibited
excellent performance with a capacity of 1045mA⋅g−1 main-
tained after 40 charge-discharge cycles at a current density of
100mA/g and within a voltage range of 0.01–3.00V.

Indeed, hydrothermal synthesis and surface modification
following preparation can provide a valid approach for a
conventional Fe

3
O
4
nanostructure. However, yield and cost

restrict this approach.Therefore, this approachmay currently
only be achieved in lab environments and is still a long way
from large-scale industrial manufacturing. In comparison,

severe plastic deformation (SPD) is novel technology that
can be used to prepare bulk ultrafine crystalline materials
via a mechanical method. The SPD method can be used in
the preparation of a relatively large volume of ultrafine grain
samples that have nanoscale grain size microstructure. High-
pressure torsion (HPT) is an SPDmethod that applies torque
at the cross-section along with axial compression to change
the frictional resistance into frictional force. Therefore, the
HPT method simultaneously achieves a certain torsional
deflection and simple compressive torsion. The schematic
diagram of this method can be seen in Figure 1. This method
was modified by Valiev [20] to study phase changes under
SPD and changes in organizational structure after SPD. They
found that, after HPT, a uniform nanostructure with large-
angle grain boundaries appeared and that qualitative changes
greatly enhanced the corresponding mechanical properties.
These findings led to the HPT method to become a new
approach for synthesizing nanomaterials and is considered to
be one of the promising ways to achieve industrial scale man-
ufacturing of bulk nanomaterials. In the past, this method
was commonly applied in the modification of structural
materials such as aluminum alloy (Xu et al., 2008), titanium
alloy (Shaman et al., 2015), and tungsten alloy [21], but its
application in the preparation of functional materials has
rarely been reported.

Because high energy ball-milling technology has been
widely used in the synthesis of functional materials, even
in the exfoliation of graphene [22], in this work, the author
assumed that high-pressure torsion (HPT) technique has
a similar mechanism (mechanical alloying) but with even
higher energy input it may be also used in the synthesis of
functional materials.
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2. Experiment

2.1. Materials and Pretreatment. First, pure Fe foils (99.5%,
Goodwill, Beijing) that had dimensions of 2 cm × 2 cm
and a thickness of 0.05mm were used as the raw mate-
rial. Flake graphite (100 mesh, Sigma-Aldrich) was placed
within the multiple layers of the Fe foils for the initial
rolling pretreatment, and the mass ratio of flake graphite-
to-Fe foil was 14 : 1. The obtained material was then treated
with HPT. The HPT chamber was 9.8mm long and had a
cavity height of 1.6mm. The treatment pressure was 11 GPa,
the treatment cycle number was 10, and the experiment
temperature was room temperature (20∘C). Tungsten carbide
(WC) balls-assisted high energy ball-milling was conducted
as a comparison group, and the ball-milling process was
carried out under Ar atmosphere. The mass ratio of the balls
to powders was 10 : 1 (same composite ratio as HPT sample),
and the high energy ball-millingwas conductedwith a Fritsch
Pulverisette-5 machine at a rotation rate of 500 rpm lasting
for 15 h.

2.2. Chemical Oxidation and Dispersion. Acidic solution was
used to oxidize the lamellar Fe nanosheets after HPT and
the high energy ball-milling treatment to obtain Fe

3
O
4

nanosheets. The formulation of the oxidizing solution was
0.04mL25%HCl added to 0.1MKCl to obtain a solutionwith
a pH value of 3. After the active HPT and high energy ball-
milling, 0.5 g of the powder sample was mixed with 15mL of
solvent and stirred at 70∘C for 24 h using magnetic stirring
with a rate of 120 rpm. The sample was then washed with
50mL of distilled water, filtered, and dried under N

2
for 1 h

at room temperature.

2.3. Characterization of Microstructure. XRD measurements
were conducted on a Rigaku D/max-rA instrument using
CuK𝛼 radiation with an accelerating voltage of 40 kV, a
scanning range of 10∘–90∘, and a step size of 0.02∘ at the
scan rate of 2.5∘min−1. The scanning electron microscope
(SEM) was an Hitachi SU70 field emission SEM, and the
transmission electron microscope (TEM) was a Fei Tecnai
G2 F30 high resolution TEM. The specific surface area
and pore size were analyzed using a specific surface area
analyzer (Autosorb 1C, Quantachrome Co., Ltd.).The sample
was degassed at 80∘C for 24 h, and then the adsorption-
desorption of N

2
at low temperature was tested to obtain

theN
2
adsorption-desorption isothermal curve.TheBET and

BJHmethodswere used to calculate the specific area and pore
size distribution of each sample.

2.4. Preparation of Coin Cell and Cycling Measurements. The
obtained powder was dispersed in an appropriate amount of
1-methyl-2-pyrrolidone as a liquid slurry solvent and mixed
well in a mortar. The slurry was then pasted onto Cu foil to
form the electrode plates, and this was followed by a drying
treatment in an oven at 60∘C for 12 h and in vacuum oven
at 120∘C for 2 h. The electrode plates were placed in a glove
box filled with high purity Ar. The prepared electrode plate
was used as the working electrode, and pure lithium metal
was used as the counter electrode. A Celgard 2325 diaphragm

was used to separate the working electrode and counter
electrode. Finally, electrolyte was infused, and a LIR2025 type
coin cell was assembled in a sealing machine. The prepared
coin cell was left to stand for 12 h, and then the charge-
discharge measurements of the cells were carried out at room
temperature using the Xinwei battery testing system at a
current density of 175mAg−1 or at higher rates within a
voltage window of 0.01–3.00V.

3. Results and Discussion

In contrast to previous work on the synthesis of lamellar
Fe
3
O
4
nanosheets prepared by one-pot solution method [23]

and two-stepmicroemulsion solvothermal approach [24], the
strategy in this work is based on a purely mechanical synthe-
sis. Especially, the Fe foil/flake graphite composite material
is firstly in situ transited into lamellar Fe nanosheets/GNS
composite after HPT treatment. The high energy influx by
HPT further activated functional groups on the edges of
flake graphite, made the flake graphite slip to the specific
crystal orientation, and achieved the in situ generation of
quasi-two-dimensional (2D) graphite nanosheets. We then
used the specific chemical oxidation method to obtain
Fe
3
O
4
nanosheets and turned the original compositematerial

system into the porous Fe
3
O
4
/GNS composites after short-

time dispersion and drying. The approach introduced here is
different from the conventional exfoliation approaches of 2D
materials nanosheets in the activation process by using Li+
insertion [25] and liquid stirring [26], and it is also different
from the Hummers method for obtaining common graphene
oxide [27].

3.1. Microstructure Characterization. Figure 2(a) shows the
XRD pattern of the prepared sample, and it is consis-
tent with the XRD patterns of the hydrothermal prepared
Fe
3
O
4
/graphene nanosheets composite [28]. The diffraction

peaks of Fe
3
O
4
are in agreement with those of a face-

centered cubic (FCC) structure of Fe
3
O
4
(JCPDS no. 75-

0033) and the expanded reflection peak of GNS indicates
the low crystallinity and nanocrystal characteristics of HPT-
processed sample.

SEM and TEM were used to characterize the surface
morphology andmicrostructure of the dispersed Fe

3
O
4
/GNS

material, as shown in Figure 2. In Figures 2(b)–2(d), it can be
clearly seen that the sample contained a Fe

3
O
4
/GNS flower-

like secondary structure due to no surfactant treatment. Each
corresponding flower-like structure had the porous lamellar
structure that was composed of many crinkled nanosheets
connected to each other, as shown in Figure 2(b). TEM was
used to further verify that the lamellar sheets are composite
of Fe
3
O
4
and GNS with large substrate sizes (Figure 2(c)).

Interestingly, from the HRTEM image (Figure 2(d)), it can
be verified that the interplanar spacing of (2 2 0) was con-
sistent with the XRD results shown in Figure 2(a). The large
mechanical energy influx via HPT can uniformly expand the
interplanar distance, and this is beneficial for forming the
transmission path of Li+. In addition, the porous Fe

3
O
4
/GNS

structure is most likely to be an ideal Li storage material
because of the potential of the high specific surface area and
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Figure 2: XRD pattern and microstructural characterization: (a) XRD pattern; (b) SEM image; (c) TEM image; (d) HRTEM image.

highly exposed 2D lamellarmorphology to generatemore Li+
adsorption sites on the surface.

Next, N
2
adsorption/desorption experiments at 77Kwere

used to measure the specific surface area and pore structures.
The curves in Figure 3 depict a typical type IV isothermal
curve, indicating mesoporous characteristics. The Brunauer-
Emmett-Teller (BET) specific surface area was determined to
be 324m2 g−1 and the pore volume was 1.34 cm3 g−1.The pore
distribution diagram (the inset of Figure 3) exhibits the size
distribution of mesopores. The distributions concentrated
at around 80 nm and 200 nm, which verified the existence
of the nanosize pores as proposed. This porous Fe

3
O
4
/GNS

composite material can increase the electrode/electrolyte
contacting interface and shorten the diffusion path of Li+,
thus relieving the volume change during Li+ extraction and
insertion process, and improve the lithium-storage simulta-
neously.

3.2. Electrochemical Properties. The electrochemical proper-
ties of the prepared Fe

3
O
4
/GNS composite were evaluated

using a lithiumhalf-cell. For comparison, the electrochemical
performance of the composite prepared by high energy
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Figure 3: Specific surface area curves andpore distribution situation
of as-achieved sample.

ball-milling method was also tested. Figure 4(a) shows the
first three cycles of cyclic voltammetry (CV) curves of
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Figure 4: Electrochemical performance of as-prepared Fe
3
O
4
composite materials: (a) CV curve of first three cycles tested at 0.1mV s−1, (b)

first three discharge-charge curves at 1 C (350mAh g−1), (c) cycling performance at 1 C, and (d) rate capacity.

the Fe
3
O
4
/GNS composite sample. The voltage ranges from

0.01 V to 3V at the scan rate of 0.1mV s−1. It can be clearly
observed that the sharp oxidation-reduction peaks of the
Fe
3
O
4
phase mainly include a couple of sharp reduction

peaks for Fe3+ to Fe0 at 0.1 V and Fe2+ to Fe0 at 0.6V, as
well as oxidation peaks for Fe0 to Fe2+ at 1.6 V and Fe2+
to Fe3+ at 1.98V. These findings indicate that there was an
explicit ordering during the Li+ insertion/extraction, and this
can be related to the high energy influx from HPT within
a short period of time. This energy input was transformed
into a high density dislocation but did not drive surface
amorphization of the Fe

3
O
4
nanosheets. It can be seen from

the corresponding capacitance performance that the graphite
flakes in the samples are also partially exfoliated by HPT.
The structure deflection and low crystallinity of GNS can

provide a good inhibitor for volume expansion of crystalline
Fe
3
O
4
nanosheets.Then the corrugated ultrathin Fe

3
O
4
/GNS

nanosheets composite formed the interpenetrating porous
framework, which made the Li+ and electron rapid transfer
becomepossible.The large overlap ofCVcurves in the second
and third cycles indicates improved reaction kinetics and
the reversibility of the Fe

3
O
4
/GNS electrode. Figure 4(b)

depicts the tilt charge/discharge curves of Fe
3
O
4
/GNS com-

posite processed by HPT in the first three cycles. It can
be seen from the first and second cycles that the HPT-
processed Fe

3
O
4
/GNS composite electrode shows a high

initial discharge capacity, charge capacities of 926mAh⋅g−1
and 1241mAh⋅g−1, respectively, with a Coulombic efficiency
of 75%. The initial irreversible capacity loss can be mainly
ascribed to the decomposition of the trace water adsorbed
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on electrode surface and to insertion of Li+ ions to some
unexfoliated sites. The Coulombic efficiency of the second
discharging process rapidly increased to 96.5%, suggesting an
excellent reversibility of the electrode. Figure 4(c) shows the
cycling performance of bothHPT-processed and high energy
ball-milling processed electrode under 1 C (350mA⋅g−1).
Obviously, the HPT-processed electrode shows a higher
storage capacity of Li+ and high cycling stability. After 500
cycles, the reversible charge/discharge capacity remains at
783.1mAh⋅g−1, and the retention rate is 88.8%, with respect
to capacity value in the second cycle. In comparison, the high
energy ball-milling processed electrode exhibits a similar
capacity at 813.4mAh⋅g−1 in the second cycle, the reversible
capacity after 500 cycles drops significantly to 592.8mAh g−1,
and the retention rate is only 72.9%. In addition, the HPT-
processed electrode shows superior rate capacities of 881.5,
802.3, 712.4, 646.5, and 548.2mAh⋅g−1 at rates of 0.5, 1, 2,
4, and 8C, respectively. The reversible capacity remains at
798.7mAh⋅g−1 as the rate is decreased back to 0.5 C, and
this verifies the excellent rate capacity of the HPT-processed
electrode. In comparison, for the high energy ball-milling
processed electrode, the capacities at the rates of 0.5, 1, 2, 4,
and 8C are only 803.4, 702.8, 613.9, 572.4, and 505.3mAh⋅g−1.
The capacity remains at 764.3mAh g−1 as the cycling rate
is decreased back to 0.5 C. The outstanding electrochemical
performance of the HPT-processed Fe

3
O
4
/GNS composite

nanosheet structure can be ascribed to the unique lamel-
lar porous structure, ultrathin two-dimensional nanosheet
morphology, and the entangled high density of dislocation
(caused by HPT). Aforementioned factors greatly promoted
the permeation of the electrolyte, largely decreased the
Li+/electron conduction path, and provided a large amount
of surface sites for the rapid insertion/extraction of Li+.
Furthermore, comparing to hydrothermal and ball-milling
synthesis, the highly dense bulk nanomaterial processed
by the HPT is the electrode material with higher packing
density, better electronic contacting, and shorter distance
of ion transportation. Finally and importantly, the highly
porous framework can effectively relieve the large volume
change during insertion/extraction period, and the ultrahigh
strength of the nanocrystal framework generated by HPT
could also substantially improve the mechanical strength
tolerance of the framework during the insertion/extraction
period.

4. Conclusions

In this work, an efficient in situ preparation method for
lamellar porous Fe

3
O
4
/GNS composite was introduced by

using pure mechanical HPT processingmethod.The relevant
electrochemical experiments confirmed that the obtained
material has excellent high-rate capacity and cycling stability.
The main advantages could be concluded as follows: the
interconnected porous nanostructure and amorphous GNS
provided high reversible capacity; high strength nanocrys-
talline framework generated byHPT confined volume expan-
sion during Li+ insertion period; the entangled high den-
sity dislocation created the rapid pathway for Li+/electron
diffusion.

Hereon, one of the most important concerns regarding
using HPT to treat metallic materials is the HPT-induced
physical phase transformation. In this case, specifically for
iron-carbon system, we examine the carbide existence right
after finishing the HPT treatment. From Fig. S1 in Supple-
mentaryMaterials, with the lowmetal versus carbonmaterial
mass ratio, only trivial amount of Fe

3
C has been found in

the XRD pattern. The reason can be concluded in following:
(1) grain refinement instead of second phase hardening is
the main cold hardening mechanism during this process; (2)
the generation of carbide needs at least 600–700∘C annealing
heat treatment and long time in iron-carbon system, but
our process was under room temperature and completed
in several minutes. Based on aforementioned evidence, the
mechanical properties and phase transformation should be a
factor to consider during raw material selection and experi-
mental design stage. Even if the small amount of carbide is
existing in the system, they will not affect the performance of
alloy anode for lithium-ion batteries. On the other side, they
can in fact contribute to capacity in some cases [29].

It is expected that the current SPD methods and equip-
ment could be extended to manufacture many different
functional metallic composite materials with application in
energy storage and harvesting. However, as a top-down
synthesis method for bulk nanomaterials, this approach is
still restricted by some crucial important prerequisites, such
as material plasticity and working hardening requirements,
where further investigation and implementation is needed.
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