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The article is dedicated to the analysis of problems related to design of pedestrian bridges with flexible ribbon bands made of steel.
The study is based on test results of a bridge model that has two spans (each with a length of five meters). A simplified analytical
technique has been proposed for predicting vertical deformations of the bridge structure subjected to symmetrical or asymmetrical
loading patterns.The technique also allows assessing the tension forces in the ribbons, which are very important for design of such
structures. The analysis reveals the importance of the flexural rigidity of the ribbons that might cause significant redistribution of
stresses within the steel bands.

1. Introduction

Monumental engineering structures, particularly bridges, are
omnipresent in every society, regardless of culture, religion,
geographical location, and economic development [1, 2]. The
stress-ribbon structural scheme can be considered as one of
the most efficient for pedestrian bridges [3–5]. A deck (often
prestressed concrete slabs) with a catenary shape forms the
stress-ribbon structure. The load-bearing structure consists
of slightly sagging cables (tensioned bands), bedded in a thin
slab.The traffic is often placed directly on the slab embedding
the cables. Compared with other structural types, the stress-
ribbon system can be considered extremely simple though
requiring massive anchorage blocks due to very large tensile
stresses induced in the cables. The smooth curved shape of
the bridge is well tailored to the environment: the height of
the bridge girder is the smallest among all knownbridge types
[1, 3]. Three common structural schemes exist for the stress-
ribbon bridges [1, 3, 6–8]: prefabricated concrete slabs sus-
pended on steel cables, prestressed concrete structures, and
steel band systems. Due to the specific static and dynamic
characteristics, these constructions are mainly used for pe-
destrian and bicycle traffic [3, 7, 8].

Stress-ribbon bridges are often constructed by using a
multispan layout that is a consequence of exploitation con-
ditions [1, 3, 6]. To avoid stress concentrations, connection
joints of the ribbons are constructed as flexible hinges [1, 8, 9].
The structural behaviour of such bridges, however, is com-
plicated due to the movement (horizontal displacement) of
intermediate supports under traffic load [10, 11]. An ideally
flexible ribbon is also just a theoretical assumption [12, 13]. To
ensure the adequacy of analytical predictions, these nonlinear
effects must be included into mathematical models [9, 10, 14].

The first experimental studies of stress-ribbon bridge
models were carried out in the Czech Republic and Germany
[3, 7, 14–16]. In this context, a scaled model of a combined
(supported arch) bridge over Radbuza river (Czech Republic)
should be mentioned. The model (scale 1 : 10, span length
10.35m) was constructed by using a steel pipe as a bearing
component [14]. A multispan prestressed concrete bridge
model was also tested in the Czech Republic [3]. The first
bridge with ribbons made of carbon fibre reinforced polymer
sheets was constructed in TU Berlin (Germany) in 2007. It
had 13m span [16].

Notwithstanding the current experimental and analytical
studies, the behaviour of bridges with ribbons made of steel
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Figure 1: The calculation scheme of the stress-ribbon system subjected to symmetrical loading.

bands has not been fully explored [7]. The lack of clarity is
mainly related to the absence of experimental studies related
to the structural behaviour of multispan bridges of such
structure. Besides, the frequently neglected flexural stiffness
of the ribbons might be important to ensure adequate assess-
ment of the stress distribution [12]. Therefore, the current
research is dedicated to the deformation analysis of a two-
span pedestrian bridge with flexible steel ribbon bands and a
total length of 10m. A simplified analytical technique is
proposed for predicting vertical deformations of the bridge
structure subjected to symmetrical and asymmetrical loads.
To simplify the iterative calculations, the elastic and kine-
matic deformation components are separated. The predic-
tions are validated against test data of the bridge.

2. Analytical Technique for Deformation
Analysis of the Two-Span Bridge

2.1. Assumptions. Theribbon bands are themain components
of the considered bridge.The deformation state of the ribbon
bands is described by kinematic and elastic components.
The behaviour of the ribbon is assumed to be geometrically
nonlinear. The flexural stiffness of the band is completely
neglected (i.e., EI = 0). A second-order parabolic shape
describes the deformations of the strip subjected to the dead
load. The effect of horizontal movement of the supports and
the initial deformation state (sagging in the middle of a span)
of the ribbons are accounted for as well.

2.2. Symmetrical Loading. The calculation scheme is pre-
sented in Figure 1.The vertical displacements of the strips, the
horizontal displacements of the supports, and the tension for-
ces in the bands are the unknowns.The length of the leftmost
strip due to the elastic deformation can be calculated by the
following formula [17–19]:

𝑠1 = 𝐿1 − Δℎ − Δ𝐿1 + 8 ⋅ (𝑓01 + Δ𝑓1)23 ⋅ 𝐿1 , (1)

where 𝑓01 is the sag of the leftmost ribbon; Δ𝑓1 is the vertical
displacement of themiddle point of the leftmost ribbon; 𝐿1 is
the span; Δ𝐿1 is the horizontal displacement of the leftmost
support;Δℎ is the displacement of themiddle support. Taking
an expression of the length of the unloaded strip into account,
(1) can be rearranged as

Δ𝑓21 + 2𝑓01 ⋅ Δ𝑓1 − 38𝐿1 (Δℎ + Δ𝐿1)
− 3 (𝐻1 − 𝐻01) 𝐿218 ⋅ 𝐸𝐴 = 0,

(2)

where the tension (thrust) forces in the leftmost strip due to
the complex action of the distributed dead and live loads (𝑔+𝑝) can be expressed as

𝐻1 = (𝑔 + 𝑝) (𝐿1 − Δℎ − Δ𝐿1)28 (𝑓01 + Δ𝑓1) , (3)

while the thrust force associated with the effect of the dead
load 𝑔 can be obtained from the following:

𝐻01 = 𝑔 ⋅ 𝐿128 ⋅ 𝑓01 . (4)

Here EA is the axial stiffness of the band; 𝑝 is the effective
(live) load.

Using expressions (3) and (4), (2) can be expressed as a
third-order polynomial

Δ𝑓31 + 3𝑓01Δ𝑓21 + 2𝑓201Δ𝑓1
− 3𝐿18 (Δℎ + Δ𝐿1) (𝑓01 + Δ𝑓1)
+ 3𝐿21 (𝐿1 − Δℎ − Δ𝐿1)264𝐸𝐴 [𝑔 + 𝑝 − 𝑔 (𝑓01 + Δ𝑓1)𝑓01 ]

= 0

(5)
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that can be solved with regard to the vertical displacementΔ𝑓1 of the middle point of the strip:

𝐶3Δ𝑓31 + 𝐶2Δ𝑓21 + 𝐶1Δ𝑓1 + 𝐶0 = 0, (6)

where the coefficients are given as

𝐶3 = 1;
𝐶2 = 3𝑓01;
𝐶1 = 2𝑓21 − 38𝐿1 (Δℎ + Δ𝐿1)

+ 3𝑔𝐿21 (𝐿1 − Δℎ − Δ𝐿1)264𝐸𝐴 ⋅ 𝑓01 ;

𝐶0 = −3𝐿18 [𝑓01 (Δℎ + Δ𝐿1)

+ (𝑔 + 𝑝) 𝐿1 (𝐿1 − Δℎ − Δ𝐿1)28𝐸𝐴 − 𝑔𝐿318𝐸𝐴] .

(7)

The polynomial (6) has three roots. From the condition
that the minimum root should be a positive number, the
solution becomes as follows:

Δ𝑓1 = 13𝐶3 (2𝐶

⋅ cos{13 arccos[−27𝐶23𝐶0 − 9𝐶3𝐶2𝐶1 + 2𝐶32
2𝐶3 ]}

− 𝐶2) , 𝐶 = √𝐶2
2
− 3𝐶3𝐶1.

(8)

However, the solution process could be iterative as the
variation of Δ𝑓1 causes changes in the support displacementsΔℎ and Δ𝐿1.

If Δ𝑓1 is known, the displacement of the middle point of
the rightmost strip can be defined as

Δ𝑓2 = −𝑓02
+ (𝑔 + 𝑝)𝑓01 ⋅ 𝑓02 (𝑓01 + Δ𝑓1) 𝐿21(𝑔 + 𝑝)𝑓01𝑓02𝐿21 + 𝑔 (𝑓01 + Δ𝑓1) (𝐿22𝑓01 − 𝐿2

1
𝑓02) .

(9)

Hereafter all symbols are similar to the previously described
notations with the subscripts “2” and “02,” which are related
to the rightmost span. The above expression was defined
under the equality condition of the thrust forces in both
strips:

𝐻1 − 𝐻01 = 𝐻2 − 𝐻02. (10)

The thrust force in the deformed rightmost strip under the
common action of the dead and live load can be determined
as

𝐻2 = (𝑔 + 𝑝) (𝐿2 + Δℎ − Δ𝐿2)28 (𝑓02 + Δ𝑓2) . (11)

The initial force (induced by the dead load) can be assessed
as

𝐻02 = 𝑔 ⋅ 𝐿228 ⋅ 𝑓02 . (12)

The horizontal displacement of the intermediate supportΔℎ can be obtained by accounting for the differences of the
initial and final elongations of the strips:

Δℎ = 𝑠01 − 𝑠02 = (𝑠1 − Δ𝑠el,1) − (𝑠2 − Δ𝑠el,2) . (13)

HereΔ𝑠el,1 andΔ𝑠el,2 are the elastic elongations of the ribbons.
Formula (13) can be expressed in terms of vertical displace-
ments and thrust forces as follows:

Δℎ = Δ𝐿2 − Δ𝐿12
+ 43 (2𝑓01 ⋅ Δ𝑓1 + Δ𝑓21𝐿1 − 2𝑓02 ⋅ Δ𝑓2 + Δ𝑓22𝐿2 )
− (𝐻1 − 𝐻01) ⋅ 𝐿12 ⋅ 𝐸𝐴 + (𝐻2 − 𝐻02) ⋅ 𝐿22 ⋅ 𝐸𝐴 .

(14)

Horizontal displacements of the boundary supports can
be obtained from

Δ𝐿1 = 𝐻1𝑐1 ;
Δ𝐿2 = 𝐻2𝑐2 ,

(15)

where 𝑐1 and 𝑐2 are the stiffness values of the left and right
supports, respectively.

Since the vertical displacements Δ𝑓1 and Δ𝑓2 are known,
the respective displacements at the quarters of the spans (𝑥1 =𝐿1/4 and 𝑥2 = 𝐿2/4; see Figure 1) can be calculated by using
the following relationships:

𝑧1 (𝑥1) = 4Δ𝑓1 ⋅ 𝑥1𝐿1 (1 − 𝑥1𝐿1) ;
𝑧2 (𝑥2) = 4Δ𝑓2 ⋅ 𝑥2𝐿2 (1 − 𝑥2𝐿2) .

(16)

The iterative calculations are started by assuming hori-
zontal displacements of all supports equal to zero (i.e., Δℎ =Δ𝐿1 = Δ𝐿2 = 0). The vertical displacements of the
middle points of both strips are determined by using (8) and
(9). Then, the horizontal displacements of the supports are
obtained through expressions (14) and (15).The iterations are
repeated until the variation of the displacement of the inter-
mediate support falls within the assumed convergence toler-
ance Δ:

󵄨󵄨󵄨󵄨Δℎ𝑛 − Δℎ𝑛+1󵄨󵄨󵄨󵄨 ≤ Δ. (17)

Here 𝑛 and 𝑛 + 1 define the iteration numbers.
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Figure 2: The calculation scheme of the stress-ribbon system subjected to asymmetrical loading.

2.3. Asymmetrical Loading. Theasymmetrical loading scheme
is shown in Figure 2. As can be observed, the loading layout
is related to the distribution of the live load 𝑝 over the
leftmost span of the bridge. As mentioned in Section 2.1, the
deformation behaviour of the stress-ribbon is closely related
to the elastic and kinematic displacement components. In the
case of asymmetrical loading, the contribution of the latter
component becomes more significant.

2.3.1. Kinematic Displacements. For simplicity, the kinematic
displacements are determined by neglecting the elastic elon-
gations of the ribbons (i.e., Δ𝑠el,1 = Δ𝑠el,2 = 0). Accounting
only for the effect of the dead load in expression (11), the

vertical kinematic displacement of the middle point of the
leftmost strip can be assessed from condition (10) asΔ𝑓1𝑘

= −𝑓01
+ (𝑔 + 𝑝)𝑓01 ⋅ 𝑓02 (𝑓02 + Δ𝑓2𝑘) 𝐿21𝑔𝑓01𝑓02𝐿22 + 𝑔 (𝑓02 + Δ𝑓2𝑘) (𝐿21𝑓02 − 𝐿2

2
𝑓01) .

(18)

The respective thrust force is determined by using (3) with
the elastic displacements Δℎ, Δ𝐿1, and Δ𝑓1 replaced by the
kinematic equivalents.

Similar conditions result in the following expression of
the vertical kinematic displacement of the rightmost strip:

Δ𝑓2𝑘 = −𝑓02 + 𝑔 ⋅ 𝑓01𝑓02𝐿22√𝑓2
01
+ 3/8𝐿1 (Δ𝐿1 + Δℎ𝑘)

(𝑔 + 𝑝)𝑓01𝑓02𝐿21 + 𝑔 (𝐿2
2
𝑓01 − 𝐿2

1
𝑓02)√𝑓2

01
+ 3/8𝐿1 (Δ𝐿1 + Δℎ𝑘) . (19)

The horizontal kinematic displacement of the intermedi-
ate support is determined from (13) by accounting for the
aforementioned simplification (Δ𝑠el,1 = Δ𝑠el,2 = 0) and as-
suming that the length of the rightmost strip is defined as

𝑠2 = 𝐿2 + Δℎ𝑘 − Δ𝐿2 + 8 ⋅ (𝑓02 + Δ𝑓2𝑘)23 ⋅ 𝐿2 . (20)

The resultant expression of the kinematic displacement is
then determined by

Δℎ𝑘
= 0.5 (Δ𝐿2 − Δ𝐿1)

+ 43 (Δ𝑓21𝑘 + 2Δ𝑓1𝑘 ⋅ 𝑓01𝐿1 − Δ𝑓22𝑘 + 2Δ𝑓2𝑘 ⋅ 𝑓02𝐿2 ) .
(21)

The iterative calculation principles are identical to the
described ones in the previous section. In the first iteration,
all horizontal displacements of the supports are neglected.
The vertical kinematic displacements of both strips are
determined by using (18) and (19). Expressions (15) and (21)
define the respective displacement of the supports. The iter-
ations are carried out until the convergence criterion (17) is
satisfied.

2.3.2. Total Displacements. The total displacements are deter-
mined by accounting for the kinematic and elastic compo-
nents, while the initial state is associated with the release of
the kinematic deformations [9, 10]. Consequently, the initial
length of the leftmost strip is determined as

𝑠01𝑘 = 𝐿1 − Δℎ𝑘 − Δ𝐿1 + 83
𝑓201𝑘𝐿1 , (22)
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where 𝑓01𝑘 is the initial sag of the leftmost strip that is cal-
culated as

𝑓01𝑘 = 𝑓01 + Δ𝑓1𝑘. (23)

The same expressions (replacing the respective indices) are
used for determining the length 𝑠02𝑘 and the sag𝑓02𝑘 of the
rightmost strip.

The length of the leftmost strip after the elastic deforma-
tion is defined as

𝑠1 = 𝐿1 − Δℎ − Δ𝐿1 + 8 ⋅ (𝑓01𝑘 + Δ𝑓1el)23 ⋅ 𝐿1 . (24)

This formula can be rearranged as

Δ𝑓21el + 2𝑓01𝑘 ⋅ Δ𝑓1el − 38𝐿1el (Δℎ − Δℎ𝑘)
− 3 (𝐻1 − 𝐻01) ⋅ 𝐿218 ⋅ 𝐸𝐴 = 0, (25)

where, similarly to (3), the thrust force is expressed as

𝐻1 = (𝑔 + 𝑝) (𝐿1 − Δℎ − Δ𝐿1)28 (𝑓01𝑘 + Δ𝑓1el) , (26)

and, in the same manner as it was done in Section 2.2, the
third-order polynomial can be obtained:

Δ𝑓31el + 3𝑓01𝑘Δ𝑓21el + 2𝑓201𝑘Δ𝑓1el
+ 3𝐿21 (𝑓01𝑘 + Δ𝑓1el)8 [Δℎ𝑘 − Δℎ − Δ𝐿1 + Δ𝐿1𝑘𝐿1
+ 𝑔𝐿218𝑓01𝐸𝐴 − (𝑔 + 𝑝) (𝐿1 − Δℎ − Δ𝐿1)28𝐸𝐴 (𝑓01𝑘 + Δ𝑓1el) ] = 0.

(27)

The equation with regard to the elastic displacement Δ𝑓1el,
identical to formula (6), has the following coefficients:

𝐶3 = 1;
𝐶2 = 3𝑓01𝑘;
𝐶1 = 2𝑓201𝑘 + 38𝐿21 [Δℎ𝑘 − Δℎ − Δ𝐿1 + Δ𝐿1𝑘𝐿1

+ 𝑔𝐿218𝑓01𝐸𝐴] ;
𝐶0 = 38

⋅ 𝐿21 [𝑓01𝑘 (Δℎ𝑘 − Δℎ − Δ𝐿1 + Δ𝐿1𝑘𝐿1 + 𝑔𝐿218𝑓01𝐸𝐴)

− (𝑔 + 𝑝) (𝐿1 − Δℎ − Δ𝐿1)28𝐸𝐴 ] .

(28)

Equation (8) determines the solution of the polynomial (27).

In case of asymmetrical loading (Figure 2), the thrust
force in the rightmost strip, similar to (8), is determined by
accounting for the effect of dead load only:

𝐻2 = 𝑔 (𝐿2 + Δℎ − Δ𝐿2)28 (𝑓02𝑘 + Δ𝑓2el) . (29)

A formula similar to (9) describes the vertical displace-
ment of the rightmost strip related to the elastic deformation
component:

Δ𝑓2el = −𝑓02𝑘
+ 𝑔 (𝑓01𝑘 + Δ𝑓1el) 𝑓02𝑓01𝐿22(𝑔 + 𝑝) 𝑓02𝑓01𝐿21 − 𝑔 (𝑓01𝑘 + Δ𝑓1el) (𝐿21 ⋅ 𝑓02 − 𝐿2

2
⋅ 𝑓01) .

(30)

If kinematic Δ𝑓1𝑘 and Δ𝑓2𝑘, and elastic Δ𝑓1el and Δ𝑓2el
displacements are known, the total vertical displacements of
both strips are determined as

Δ𝑓1 = Δ𝑓1𝑘 + Δ𝑓1el;
Δ𝑓2 = Δ𝑓2𝑘 + Δ𝑓2el. (31)

The horizontal displacement of the intermediate support
due to the combined action of the kinematic and elastic com-
ponents is obtained from

Δℎ
= Δℎ𝑘 + Δ𝐿2 − Δ𝐿1 − Δ𝐿2𝑘 + Δ𝐿1𝑘2

+ 43 (2𝑓01𝑘Δ𝑓1el + Δ𝑓21el𝐿1 − 2𝑓02𝑘Δ𝑓2el + Δ𝑓22el𝐿2 )
− (𝐻1 − 𝐻01) 𝐿12 ⋅ 𝐸𝐴 + (𝐻2 − 𝐻02) 𝐿22 ⋅ 𝐸𝐴 .

(32)

The same iterative calculation principles as described pre-
viously are used for achieving convergence that is described
by (17). The total vertical displacements are determined by
(31).

3. Tests of the Bridge Model

A physical model of the stress-ribbon bridge with two spans
(each of them equal to five meters) has been tested in 2014 in
the Structural Laboratory at VGTU.Themain aim of this test
was to validate the adequacy of the proposed analytical
technique for the case when flexural steel bands are used as
the stress-ribbons.

A two-span stress-ribbon 3D structure shown in Figure 3
represents the bridge model. The layout of the ribbons and
supports is schematically presented in Figure 4. As shown,
the total length of the model is equal to 10m. The boundary
supports allow for the rotation of the bands but prevent
horizontal displacement of the connection joints, whereas the
intermediate support allows both, rotation and horizontal
displacement of the ribbons. The steel bands were made of
6mm thickness sheets with a width of 80mm.The steel grade
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Figure 3: Steel bands (numbered items) of the bridge model (a) and ribbon anchorage joint (b).
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Figure 4: The structural layout of the stress-ribbon bridge model.

S355 was used for this purpose. The elasticity modulus of the
steel was determined experimentally by following EN 10002-1
standard methodology. Three steel samples were tested
revealing the average modulus of elasticity 𝐸𝑐 = 208GPa. It is
assumed that the initial shape of the bands can be defined by
a second-order polynomial. Due to production inaccuracies,
the length of the bandswas slightly different. Before construc-
tion of the model, the bands were grouped in two spans by
length. The following initial sags, induced by the self-weight
of the strips (equal to 23.5 kg for each band), were determined
for themodel:𝑓

01
≈ 𝑓
02

= 𝐿/40.48 and𝑓
03

≈ 𝑓
04

= 𝐿/39.77.
The bridge model was subjected to uniformly distributed

loads of different configuration. Symmetrical and asymmet-
rical loading layouts were applied over several steps. The
ultimate load was set as 40% of the theoretical load carrying
capacity of the model. At the first load step, a wooden deck
was placed on the bridge model. At the successive load steps,
each span of the model was loaded by approximately 365 kg.
The loading was induced by using metal weights with an
average weight of 23.5 kg.

Themaximum symmetrical load was reached within nine
loading steps. The first step induced a distributed load of
81.1 N/m, the second step – 813.6N/m, and so on. The final
loading step shown in Figure 5(a) results in a 5.915 kN/m
load. The loads include the deal load of the wooden spreader
beam, while the self-weight of the ribbons is neglected.
The asymmetrical load was applied on the bridge model
with different ratios of the live and dead load components(𝛾 = 𝑝/𝑔). Initially, the bridge was subjected to a dead load

distributed through both spans, then the live load component
was distributed over the leftmost span (Figure 4). The max-
imum asymmetrical load was applied in two configurations:
(1) 𝑝 = 2.982 kN/m and 𝑔 = 3.005 kN/m (𝛾 ≈ 1); (2) 𝑝 =4.006 kN/m and 𝑔 = 1.987 kN/m (𝛾 ≈ 2). The latter loading
layout is shown in Figure 5(b).

Two types of devices were used for monitoring deforma-
tions and displacements of the ribbons. The displacements
were measured by using 25mm linear variable displace-
ment transducers (LVTD, with 0.01mm accuracy), while
the deformations were monitored by 20mm strain gauges
(with 0.01% accuracy). The arrangement schemes of devices
are shown in Figure 6 with geometrical properties given in
Figure 7. As can be observed in Figure 6(a), 23 LVDT were
distributed below the stress-bands and near the supports:
twelve indicators measured vertical displacements of the
ribbons; six LVDT were used to monitor horizontal displace-
ments of the supports (two per support); the remaining five
devices were used to control the position of the supports
during the test. The strain gauges (Figure 6(b)) were used to
monitor deformations of the steel bands.Monitoring datawas
recorded at both, loading and unloading stages.

The deformation monitoring results reveal that the flexi-
bility parameter

𝑘𝐿 = 𝐿√ 𝐻𝐸𝐼 (33)

varied from 64 to 71 (depending on the loading conditions).
In the above equation, 𝐻 is the thrust force and EI is the
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(a)

(b)

Figure 5: The maximum loading stages: symmetrical load (a);
asymmetrical load (b).

flexural stiffness of the band. Since kL is well above 10, the
band can be considered as fully flexible, that is, 𝐸𝐼 → 0 [9].
4. Discussion of the Results

The analysis is based onmonitoring results of II and IV bands
(Figure 4) as the symmetric ribbons (i.e., I and III) possess
identical outputs. The vertical displacements of the bridge
subjected to symmetrical loading (𝑔 + 𝑝 = 5.915 kN/m) are
presented in Table 1 (location of the indicators is shown in
Figure 6(a)). The analytical calculations (Section 2.2) were
carried out by referring the initial analysis stage to the stress-
strain state realized after application of the dead load (𝑔 =3.0 kN/m). Therefore, Table 1 presents two components of
the vertical displacement: the initial component related to
the dead load was identified as the sag (𝑓0), while the incre-
ment Δ𝑓 was attributed to the application of the live load.
Experimental values of horizontal boundary support dis-
placements, corresponding to the load 𝑝, are presented in
Table 2.

The results presented in Table 1 reveal that the maximum
inaccuracy of the predictions reaches 11.6%. This might be
associated with a certain disagreement between the initial
outline of the band and the parabolic shape assumed in the

Table 1: Test results and analytical predictions of vertical displace-
ments due to symmetrical load.

Indicator Sag𝑓0, mm Δ𝑓, mm
Test Prediction Error, %

I2 — −8.92 −8.99 −0.8
I3 −138.80 −10.74 −11.99 11.6
I4 — −8.18 −8.80 9.9
I11 — −9.65 −8.60 −10.9
I12 −140.10 −11.77 −11.46 −2.6
I13 — −8.85 −8.60 −2.8

Table 2: Horizontal displacement of boundary supports ΔL, mm.

Indicator Symmetrical load Asymmetrical load
𝛾 ≈ 1 𝛾 ≈ 2

I1 0.13 0.07 0.11
I14 0.75 0.09 0.20

analytical model. However, the average prediction error (less
than 1%) indicates the accuracy of the analytical model to be
adequate for predicting displacements of the stress-ribbons.
The comparative analysis of the mean stresses in the ribbons
(using the strain gauge data) reveals improved accuracy
over results obtained from the displacements: all inade-
quacies fall within the 1.5% interval with the exception of
one result (associatedwith the gauges T1/T2, Figure 6(b)) that
the prediction error was equal to 5.0%. It might be addressed
to local effects due to friction in the support joint. Assess-
ment of the thrust forces is precise: the difference between
experimental (60.89 kN) and analytical (60.94 kN) load is
marginal (0.1%). This load was calculated by (3) and (11).

The displacement results obtained under different live
and dead load ratios 𝛾 are compared in Table 3. The vertical
displacement results of the bridge subjected to asymmetrical
loading (𝛾 ≈ 2) are shown in Figure 8. The analytical mod-
elling (Section 2.3), similarly to the symmetrical loading case,
is related to the stressed state realized after the application of
the dead load 𝑔 and characterized by the sag𝑓0 (Table 3).The
horizontal displacements Δ𝐿 associated with the application
of the load 𝑝 are given in Table 2.

As can be observed in Table 3, the prediction accuracy is
similar to that observed for the symmetrical loading: the aver-
age prediction error varies from 0.6% to 2.3% (depending on
the ratio 𝛾), while the respective maximum errors are equal
to 7.4% and 13.1%. The observed maximal error values are
related to the span that was not subjected to the live load
(Figure 5(b)). It is also evident that the deformed shape of
the band differs from the theoretical model (Figure 8). The
construction imperfections, including friction in the support
joints (Figure 3(b)) and uneven distribution of the stresses
in parallel ribbons, may cause such an outcome. In contrast
to the vertical displacement results, the horizontal displace-
ments of the intermediate support are predicted precisely: the
prediction error varies from 0.4% to 2.3% depending on the
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Figure 6: Distribution of the monitoring devices: LVDT (a); strain gauges (b).

ratio between live and dead loads. The thrust forces are also
assessed accurately: the prediction errors are equal to −0.6%
and −3.1% for the loading cases with the ratios 𝛾 ≈ 1 and𝛾 ≈ 2, respectively.

Horizontal displacements of the supports and the pre-
dicted vertical displacements of the mid-point of the ribbon
are correlated. The maximum experimental displacements of
the supports during the symmetrical and asymmetrical load-
ings were approximately evaluated as 𝐿/1500 and 𝐿/1800,

respectively. Theoretical modelling revealed that such dis-
placements cause a 20%–24% increase of the vertical dis-
placement.

The test results reveal that the maximum thrust forces
(60.89 kN) are associated with the symmetrical loading. In
asymmetrical combinations with different 𝛾, the respective
values of the force were equal to 51.04 kN and 49.14 kN.
However, themaximumvertical displacement is related to the
asymmetrical distribution of the load. It is a consequence of
the kinematic deformations.
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Table 3: Test results and analytical predictions of vertical displacements due to asymmetrical load.

Indicator
𝛾 ≈ 1 𝛾 ≈ 2

Sag𝑓0, mm Δf, mm Error, % Sag𝑓0, mm Δ𝑓, mm Error, %
Test Prediction Test Prediction

I2 — −33.77 −32.91 −2.5 — −45.38 −44.69 −3.7
I3 −142.67 −46.67 −43.90 −5.9 −137.84 −60.82 −58.25 −4.2
I4 — −33.47 −32.91 −1.7 — −44.92 −44.69 −2.7
I11 — 34.34 35.75 4.1 — 50.81 54.39 7.0
I12 –141.25 46.55 47.67 2.4 −138.06 69.78 72.52 3.9
I13 — 33.28 35.75 7.4 — 48.10 54.39 13.1

Horizontal displacement Δℎ, mm
I5 — −6.90 −6.84 −0.9 — −9.14 −9.16 0.2
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Figure 7: Geometrical properties of distribution of the monitoring devices: LVDT (a); strain gauges (b).
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metrical loading (𝛾 ≈ 2).

Another important finding related to the redistribution
of deformations within the stress-band (assumed to be a per-
fectly flexible element). The tensile stresses assessed by using
strain gauges are given in Table 4 (the location of the gauges is
indicated in Figures 6(b) and 7(b)). The mean stresses in the
strips (determined by averaging results of two gauges placed
at opposite surfaces of the band) are assessed accurately:
all prediction errors fall within a 4% interval. The stresses
were theoretically estimated by relating the axial (cable) force
with the cross-section area of the band. However, predic-
tion inaccuracies noticeably increase by accounting for the
redistribution of strains within the depth of the ribbon. The
results of the gauges located at themost tensioned surfaces are
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Figure 9: Geometry imperfection of the bands.

shown in italic font in Table 4. As can be observed the strain
redistribution increases local stresses in the ribbons though
the flexural stiffness is marginal (𝐸𝐼 → 0).

The effect of shape imperfections of the bands on defor-
mation behaviour of the stress-ribbon structures might also
be identified as an important aspect that requires clarification.
Figure 9 presents the difference 𝛿 between an ideal square
parabola (with the samemaximum sag𝑓

0
as a real band) and

the actual geometric shape of the bands. The relative mag-
nitude of such imperfections (Figure 9) might be noticeable
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Table 4: Tensile stresses in ribbons due to asymmetrical load [MPa].

Gauge
𝛾 ≈ 1 𝛾 ≈ 2

Test Prediction Error, % Test Prediction Error, %Actual, 𝜎𝑖 Mean, 𝜎𝑚 Mean, 𝜎𝑚 Actual, 𝜎𝑖 Mean, 𝜎𝑚 Mean, 𝜎𝑚
T3 78.44 104.47 105.15 0.7 80.19 100.20 99.44 –0.8T4 130.51 120.22
T7 111.75 106.11 104.85 –1.2 104.44 101.61 99.13 –2.4T8 100.47 98.79
T9 84.54 106.34 104.56 –1.7 79.28 102.38 98.81 –3.5T10 128.14 125.48
T14 111.75 103.10 104.77 1.6 116.78 102.11 99.08 –3.0T15 94.45 87.44
T18 121.28 105.48 104.89 –0.6 122.20 102.30 99.13 –3.1T19 89.68 82.40
T20 107.79 106.19 104.94 –1.2 105.88 102.57 99.17 –3.3T21 104.59 99.25

since the self-weight induced a sag𝑓
0

≈ 125mm. Shape
imperfection effects are also closely related to the flexural
stiffness of bands. Further research, therefore, should be
dedicated to the analysis of such intertwined characteristics.

Due to the lack of relevant data published in the literature,
the present experimental program could be considered as an
important reference of the test data of stress-ribbon struc-
tures. The obtained results will have an impact on further
research dedicated to the development of efficient composite
structures [5].

5. Conclusions

The paper investigates the deformation behaviour of a two-
span pedestrian stress-ribbon bridge with ribbons made
of steel sheets, which are assumed to be perfectly flexible
elements. An analytical technique was proposed for struc-
tural design. The predictions were validated against the
experimental data of the bridgewith a total span equal to 10m
tested within the framework of this study.The analysis reveals
that

(1) adequacy of the proposed analytical technique was
found to be acceptable for predicting the deforma-
tions and thrust forces of the stress-band: in most
cases the prediction errors fall within a 5% interval;

(2) To simplify the iterative calculations, the elastic and
kinematic deformation components were separated;

(3) The kinematic component must be accounted for
when carrying out analysis of an asymmetrical config-
uration of the loading scheme that could be related to
the load distribution or structural characteristics (e.g.,
uneven spans, different stiffness of supports);

(4) Comparative analysis of the theoretical predictions
reveals the importance of two commonly neglected
factors related to the deformation behaviour of the
stress-ribbon structures, namely, the production inac-
curacies and flexural stiffness of the ribbons. Both
factors cause a noticeable increase of the differences

between an idealized and actual response of the
bridge: errors of the predictions were doubled. In
some cases, such an increase might lead to dra-
matic outcomes. Both aforementioned factors must
be accounted for when developing mathematical
models.
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[8] J. Soria, I.M.Dı́az, J.H.Garćıa-Palacios, andN. Ibán, “Vibration
monitoring of a steel-plated stress-ribbon footbridge: uncer-
tainties in the modal estimation,” ASCE Journal of Bridge
Engineering, vol. 21, no. 8, article C5015002, 2016.
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