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This study analyzes the results of monthly and seasonal precipitation forecasting from seven different global climate forecast
models for major basins in Israel within October–April 1982–2010. The six National Multimodel Ensemble (NMME) models
and the ECMWF seasonal model were used to calculate an International Multimodel Ensemble (IMME). The study presents
the performance of both monthly and seasonal predictions of precipitation accumulated over three months, with respect to
different lead times for the ensemble mean values, one per individual model. Additionally, we analyzed the performance of
different combinations of models. We present verification of seasonal forecasting using real forecasts, focusing on a small domain
characterized by complex terrain, high annual precipitation variability, and a sharp precipitation gradient from west to east as well
as from south to north. The results in this study show that, in general, the monthly analysis does not provide very accurate results,
even when using the IMME for one-month lead time. We found that the IMME outperformed any single model prediction. Our
analysis indicates that the optimal combinations with the high correlation values contain at least threemodels.Moreover, prediction
with larger number of models in the ensemble produces more robust predictions. The results obtained in this study highlight the
advantages of using an ensemble of global models over single models for small domain.

1. Introduction

Accurate prediction of precipitation amounts and its spatial
distribution is vital for regional and local-scale hydrological
applications. This is especially true for arid and semiarid
regions such as the Middle East, where estimations and
predictions of the highly variable precipitation amounts
during the rainy season are critical for water resources
planning and management. Therefore, weekly, monthly, and
seasonal forecasting are highly desired by regional policy-
makers, water authorities, and climate-sensitive businesses.
It is especially crucial in the early detection of oncoming
droughts [1]. Seasonal forecasting has made progress in
recent years [2], and the climate models provide increasingly
accurate and reliable seasonal forecasting with up to 6–9
months’ lead time [2, 3]. The accuracy of such forecasts over
land surfaces, however, is still not too favorable [4–6].

Previous studies have applied statistical downscaling
methods for seasonal forecasting in the Middle East ([7,
8]). The analysis, however, was based only on the Climate
Forecast System (CFS) model reanalysis data and not on
real reforecasts, so they did not examine the skill of the
seasonal forecasts for the various meteorological variables
and for different lead times. Global dynamical climate mod-
els are providing forecasts for 6–9 months in advance at
80–100 km grid resolution. Due to the chaotic nature of the
atmosphere and a limited physical understanding of it, the
accuracy of seasonal precipitation forecasting on land is not
so favorable unless performed during a period with strong
oceanic anomalies, such as El Niño [4–6]. An intermediate
solution is the ensemble forecasting technique. This includes
the ensembles of different initial conditions by perturbing
sea surface temperature (SST) and wind stress [9], as well
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as the ensembles from multiple climate forecast models [10].
Ensembles of initial conditions based on a single model do
not necessarily sample the forecast space completely and
usually result in underdispersion errors. Therefore, multi-
model ensemble forecasts are receiving more attentions from
a variety of perspectives, including the applications in the
hydrological forecasting ([11–14]).

Recently, the North American multimodel ensemble
(NMME model forecast) has been launched in the United
States [15], with real-time experimental operational forecasts
out of theNationalOceanic andAtmosphericAdministration
(NOAA)/National Centers for Environmental Prediction
(NCEP). Becker et al. [19] examined the NMME’s skill and
verified it against observations globally. They found that, for
precipitation rate and sea surface temperature, the NMME
skill is higher than that for any single model, although there
may be many regional and seasonal variations. The NMME
usually has better predictions than most, if not all, individ-
ual models. However, both potential predictability and real
forecast skill vary depending on geographical region and
season. DelSole et al. [16] explored the skill of a combination
of forecasts and whether the improvement is dominated
by reduction of noise associated with ensemble averaging,
or by addition of new predictable signals. They revealed
that, for the El Niño–Southern Oscillation hindcasts, the
skill of the North American Multimodel Ensemble (NMME)
compared to individual models is substantially greater than
that expected from increased ensemble size alone; thus one
can conclude that the improvement is due to the addition of
new signals. Shirvani and Landman [17] examined the skill of
seasonal precipitation forecasts over Iran using the NMME
models and two other coupled ocean–atmosphere models.
Retroactive validations for lead times of up to three months
were performed over a 15-year test period from 1995/1996
to 2009/2010. They found that downscaling forecasts from
all NMME models generally produces the highest skill
forecast at lead times of up to three months. Thober et al.
[18] investigated the performance of a seasonal hydrologic
prediction system for soil moisture drought forecasting over
Europe based on theNMME forecast.They showed that using
theNMMEyields better results than using climatology values
for hydrological forecasting. Moreover, they found that the
NMME based forecasts with the full ensemble outperform
even the single best-performing model (CFSv2 in this study).

The objective of this paper is to examine the performance
and the accuracy of the International Multimodel Ensemble
(IMME, a combination of six North American and the
ECMWF seasonal models), with respect to the individual
models in the ensemble. The study deals only with ensemble
mean values (one per individual model, member of the
multimodel ensemble, and one for the multimodel ensemble
as a whole).

We examined the question of whether the multimodel
was able to improve the monthly and seasonal forecast
for a relatively small domain, at a country like Israel for
different lead times (1 to 5 months). We also examined the
best combination of the models to achieve the best results.
Until now, examination of global models was done solely for
global and large scale domains. Here, we present results for a

multimodel ensemble (the NMME and the ECMWFmodels)
for a small scale domain (100 × 300 km) that contains various
climate conditions: transition fromMediterranean climate to
semiarid conditions.

2. Methodology and the Study Areas

2.1. Analysis of Various Seasonal Forecast Models. In this
study, we have used seven precipitation models: the six
NMME models’ ensemble (CFSV2, CMC1, CMC2, GFDL,
NASA, and NCAR) and the ECMWF model. The NMME
data are available in 1 × 1 degree, around 100 km grid
resolution, while the ECMWF model runs at 80 km grid
resolution. Hindcast data is available for models for the
period 1982–2010. We analyzed the rainy season months
in Israel, which are October through April. Two types of
forecasts were examined:

(a) One to five months’ lead time
(b) Seasonal forecasting (three months’ accumulated

forecasts).

Each Forecast value from each model was statistically down-
scaled using regression versus the observed monthly due to
the fact that global models are too coarse to predict the local
precipitation.

The one-month lead means, for example, forecasts that
were issued inOctober for themonth ofNovember, and so on.
A three-month accumulated precipitation forecasting means
forecasting for the coming three months (e.g., a forecast
that was issued in October for the accumulated period of
November–January).

The NMME ensemble, as considered in Becker et al. [19],
is the simple average of all six models. In this study, we
calculated a multimodel ensemble composed of the average
of all the NMME individual models and the ECMWFmodel.
The monthly precipitation from the models was compared to
observed rain gauge values from the Israeli Meteorological
Service (IMS) database. The analysis was done for grid
locations at both Northern and Central Israel (Figure 1).
The models’ forecast point 33N/35E was used to represent
the northern part of the domain and 32N/35E was used to
represent the central part. The models’ hindcast at the north
and the center was verified against an average value calculated
from a cluster of rain gauges (areal average) that is close to
forecast grid points at each area. These areas include three
rain gauges in the north and four in the center. The rain
gauge locations are provided in Figure 1(a) and the rain
gauge details are provided in Table 1. Figure 1(b) presents
the NMME and the ECMWF forecast grid, which outlines
the domain (circular for the NMME and triangular for the
ECMWF locations).

The model performance was validated using Pearson
Correlation (𝑅), Root of Mean Square error (RMSE), and the
Nash-Sutcliffe Efficiency (NSE), a normalized statistic that
determines the relative magnitude of the residual variance
compared to the measured data variance. Additionally, we
tested each model and the multi-IMMEmodel scores against
the climatology (the average observed values considering the
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Figure 1: (a) Rain gauges locations and the major Aquifers in Israel: Western Galilee, Kinneret, mountain Aquifer (Yarqon-Taninim), and
coastal Aquifer; (b) NMME and ECMWF gird points in the study area.

Table 1: The rain gauges details.

Station Basin Area Location Elevation
Haifa Western Galilee North 32.82N, 35.00E 5
Kefar Giladi Kineret North 33.23N, 35.56E 340
Meron Kineret North 32.98N, 35.43E 680
Qiryat Anavim Tarqon-Taninim Center 31.81N, 35.11E 700
Bet Dagan Coast Center 32.01N, 34.81E 30
Elkana Tarqon-Taninim Center 32.11N, 35.03E 212
En Ha Horesh Coast Center 32.39N, 34.94E 18

seasonality) in order to quantify their added value over the
naı̈ve climatology prediction.

2.2. The Study Area. The study area covers the northern and
central parts of Israel. Israel is located in the eastern part of

the Mediterranean, between about 30∘ and 33∘ north and 34∘
and 36∘ east. The northern part of the country is relatively
wet with annual precipitation around 800–1000mm/y in the
mountain regions, which provides the major water resources
for the country. The central parts are drier with annual
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Table 2: Correlation, RMSE, and NSE for observed monthly precipitation versus the models predictions: one to five months’ lead times,
Northern Israel, Latitude: 33.0, Longitude: 35.0.

Lead Measure Model
CFSV2 CMC1 CMC2 GFDL NASA NCAR ECMWF IMME

1
𝑅 0.65 0.60 0.64 0.67 0.64 0.58 0.65 0.67

RMSE 65.2 72.7 65 64 66.2 73.8 65.5 63
NSE 0.43 0.37 0.43 0.43 0.42 0.34 0.43 0.45

2
𝑅 0.67 0.59 0.62 0.61 0.62 0.58 0.61 0.67

RMSE 66.4 67.7 66.5 68.2 69.8 71.4 67.7 66.3
NSE 0.44 0.3 0.41 0.35 0.36 0.29 0.36 0.44

3
𝑅 0.63 0.51 0.57 0.58 0.63 0.52 0.62 0.63

RMSE 66.6 74 72 70.4 67.4 71.8 66.5 67.6
NSE 0.42 0.24 0.39 0.4 0.43 0.34 0.42 0.43

4
𝑅 0.54 0.50 0.56 0.49 0.51 0.56 0.58 0.60

RMSE 72.9 87.8 72.2 88.2 86.7 71.9 68.1 68
NSE 0.33 0.22 0.35 0.09 0.24 0.35 0.39 0.4

5
𝑅 0.57 0.49 0.59 0.57 0.55 0.52 0.54 0.58

RMSE 70.7 88 69.1 70.7 72.8 76 75.2 70.4
NSE 0.37 0.22 0.4 0.37 0.35 0.3 0.32 0.39

Table 3: Correlation, RMSE, and NSE for observed monthly precipitation versus the models predictions: one to five months’ lead times,
Central Israel, Latitude: 32.0, Longitude: 35.0.

Lead Measure Model
CFSV2 CMC1 CMC2 GFDL NASA NCAR ECMWF IMME

1
𝑅 0.62 0.55 0.58 0.62 0.6 0.55 0.60 0.64

RMSE 51 57.4 55.7 56.7 54.7 57.7 53.5 50.3
NSE 0.4 0.35 0.37 0.4 0.38 0.35 0.38 0.42

2
𝑅 0.59 0.54 0.58 0.56 0.57 0.54 0.57 0.62

RMSE 54.1 59.1 55.1 57.8 56.9 61.5 59 53.6
NSE 0.38 0.35 0.38 0.35 0.36 0.33 0.35 0.4

3
𝑅 0.56 0.49 0.56 0.56 0.61 0.52 0.54 0.60

RMSE 58.5 65 59.9 57.7 54.4 63 64.6 55.1
NSE 0.35 0.22 0.35 0.36 0.39 0.33 0.34 0.39

4
𝑅 0.47 0.48 0.52 0.48 0.51 0.50 0.51 0.56

RMSE 66.5 67.9 62.1 68.3 54.3 65.3 54.1 58.7
NSE 0.22 0.21 0.33 0.21 0.23 0.22 0.23 0.35

5
𝑅 0.5 0.45 0.57 0.53 0.57 0.50 0.501 0.56

RMSE 67.6 65.7 56.9 63.3 57 23.1 65.6 59.5
NSE 0.23 0.22 0.35 0.32 0.34 0.36 0.23 0.35

precipitation of around 550 to 700mm/y. Four major water
resources are responsible for the majority of the water supply
in the country (see their locations in Figure 1(a)): the Lake
of Kinneret (Sea of Galilee), the Western Galilee Aquifer,
the Costal Aquifer, and the Mountain Aquifer. As described
in the previous section, seven rain gauges were chosen to
represent the rainfall amounts in those basins. These rain
gauges were also used for the seasonal analysis by Wu et al.
[7] and Rostkier-Edelstein et al. [8].

3. Results

3.1. Monthly Precipitation. Tables 2 and 3 and Figures
2(a)–2(f) present the correlation, RMSE, and NSE for the

observed monthly precipitation at the northern (Table 2) and
central (Table 3) forecast points versus each single model and
the IMME model for lead one to five months’ hindcast. The
results demonstrate the spread between the seven models’
performances. For example, as can be seen in Table 1, for
the northern domain with one-month lead time, the NCAR
models’ results were 𝑅 = 0.58, RMSE = 74, and NSE = 0.38.
For the CFSV2 and ECMWF models, 𝑅 = 0.64, RMSE =
65, and NSE = 0.43. It should be noted that, as expected, the
models’ performances areworsened as the lead time increases
(Figures 3(a) and 3(b)).

Our results indicate that the IMME, quantified by the
three performance measures, outperforms any individual
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Figure 2:The correlation, RMSE, and NSE for 1–5 months’ lead times for each individual model and the IMME ensemble at the northern (a,
c, e) and central (b, d, f) parts of the domain.
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Figure 3: The correlation and NSE for 1–5 months’ lead time for the IMME at the northern (a) and central (b) parts of the domain.

Table 4: Correlation, RMSE, and NSE for observed three months’
precipitation versus the models predictions: Northern Israel, Lati-
tude: 33.0, Longitude: 35.0.

Model Correlation RMSE NSE
CFSV2 0.709 139.0 0.45
CMC1 0.661 141.8 0.43
CMC2 0.697 133.8 0.49
GFDL 0.710 133.2 0.49
NASA 0.700 139.7 0.44
NCAR 0.643 144.0 0.41
ECMWF 0.700 138.2 0.46
IMME 0.731 132.8 0.51

model for all lead times considered in the analysis. The
IMME had the highest correlation, lowest RMSE, and highest
NSE. Comparing the northern and the central part of the
domain shows that both the individualmodels and the IMME
performance are inferior in the central part of the domain;
however the IMME still outperforms any individual model
in the ensemble.

3.2. Seasonal Precipitation (Three Months Accumulated).
Tables 4 and 5 and Figures 4(a)–4(f) present the correlation,
RMSE, and NSE for the observed versus model precipitation
at the northern (Table 4) and central (Table 5) areas for accu-
mulated three months’ precipitation. All the performance
measures for the accumulated three-month forecasts showed
better performance for all models compared to the monthly
analysis. Comparing the performances of the IMME reveals
similar conclusions to those in the monthly analysis. That is,
the score of the IMME is better than all individual models

Table 5: Correlation, RMSE, and NSE for observed three months’
precipitation versus the models predictions: Central Israel, Latitude:
32.0, Longitude: 35.0.

Model Correlation RMSE NSE
CFSV2 0.661 115.0 0.39
CMC1 0.621 120.4 0.33
CMC2 0.653 117.8 0.36
GFDL 0.656 117.6 0.36
NASA 0.644 115.7 0.38
NCAR 0.631 118.3 0.35
ECMWF 0.656 118.6 0.35
IMME 0.681 110.2 0.44

in the three performance measures in the entire domain. It
should be also noted that, as in the monthly analysis, the
model performances for the northern part of the domain are
better than the central part.

3.3. Models Performance with respect to Climatology. Up to
this point, we have used the correlation, the RMSE, and
the NSE performances to quantify the performance of the
different models. The reality is that these performance mea-
sures, while convenient and well known by most researchers
in the field, do not provide a reliable basis for comparing
the results in respect to the näıve climatology prediction.
For example, the NSE is a normalized measurement (–inf
to 1) that compares the mean square error generated by
the model to the variance of the observations. As such, it
represents a form of noise-to-signal ratio, comparing the
average variability of model residuals to the variability of the
observation. It is implicitly comparing the performance of the
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Figure 4: Correlation, RMSE, and NSE for three months’ accumulated predicted versus observed precipitation for the NMME ensemble,
CFSV2, CMC1, CMC2, GFDL, NASA, and NCAR models for Northern Figure 2(a) and Central Israel Figure 2(b).
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particular model to that of the simple model, which uses the
mean of all the observation as its prediction. This means that
if this simple mean is a very bad predictor, it is easy to obtain
a good performance of the particular model compared to it.

We claim in our analysis that the reference model hidden
in the NSE value (i.e., the simple constant mean) is not the
best simplemodel to have as reference in theNSE calculation.
The use of the mean observed value as a reference is a
very poor predictor for a set of observations that contain
strong seasonal patterns, as is the case in the analysis herein.
Since our performance analysis is formed around the lead
time, every set of observations contains different months. For
example, when considering lead one’s observations set, we
have values from the various rainy months in Israel (October
to April). As such, the constant mean of all of these months is
not a good referencemodel. One can show that a näıvemodel
corresponding just to the use of the mean observations in
different months (i.e., climatology) yields already higher NSE
values. To deal with this challenge, we adopt the Benchmark
Efficiency (BE) measure suggested by Schaefli and Gupta
[20]. In this measurement, we use the climatology as the
simplest reference model instead of the constant mean in the
NSE calculation. The BE measure is defined in

BE = 1 −
∑𝑁𝑖=1 (𝑃

𝑖
obs − 𝑃

𝑖
pred)
2

∑𝑁𝑖=1 (𝑃𝑖obs − 𝑃
𝑖
ref)
2
, (1)

where 𝑃𝑖obs is the observed precipitation, 𝑃
𝑖
pred is the predicted

precipitation, 𝑃𝑖ref is the precipitation from the best bench-
mark, and𝑁 is the number of observations.

Table 6 provides the correlation, the NSE, and the BE
between the models and the observations for one month of
lead time, as well as seasonal prediction at the northern part
of the domain. As is evident from the results, the climatology
obtained very good results due to the reasons explained
above.The negative BE indicates that the model is worse than
the climatology prediction. It can be seen that the correlation
between the climatology and the observation is relatively high
(𝑅 = 0.653, NSE = 0.42), which is higher than the correlation
for the fourmodels (CMC1, CMS2, NASA, andNCAR) in the
monthly analysis. Thus the BE for these models is negative.
In the monthly analysis, the IMME obtained the best BE
of 0.052. The second best are the CFVS2 and GFDL, which
obtained the same BE of 0.036. In the seasonal prediction, the
climatology outperformed all single models (as indicated by
the negative BE) except for the CMC2 model. The seasonal
IMME obtained the highest BE of 0.094, which is double the
CMC2 performance.

3.4. Combination Analysis of All Models. Up to this point, we
have presented the IMME performance as compared to the
individual models. In this section we provide a comprehen-
sive analysis that explores the possible combinations between
the different models. Using the seven individual models, one
can construct 127 possible combinations. The prediction of
the combination is the simple mean of the selected models.
The correlation of these combination ranges between 0.57
and 0.68. Table 7 presents the rank and correlation from each

Table 6: Models’ results in respect to the observed climatology
quantified by the Benchmark Efficiency (BE), Northern Israel,
Latitude: 33.0, Longitude: 35.0.

Model One-month Seasonal
𝑅 NSE BE 𝑅 NSE BE

Climatology 0.653 0.420 0.000 0.682 0.470 0.000
CFSV2 0.664 0.441 0.036 0.713 0.450 −0.038
CMC1 0.598 0.357 −0.109 0.666 0.427 −0.081
CMC2 0.628 0.395 −0.043 0.701 0.490 0.038
GFDL 0.65 0.441 0.036 0.717 0.450 −0.038
NASA 0.647 0.326 −0.162 0.708 0.410 −0.113
NCAR 0.571 0.419 −0.002 0.646 0.444 −0.049
ECMWF 0.651 0.424 0.007 0.713 0.456 −0.026
IMME 0.673 0.450 0.052 0.73 0.520 0.094

combination of the northern part of the domain and lead
onemonthly forecast.The results show that the combinations
with the high correlation values contain at least three models.
Interestingly, the combination that uses every model is not
even in the top 10 combinations. The correlation of the
combination that uses all the models is very close to the best
combination correlation (𝑅 = 0.67 instead of 𝑅 = 0.68 in
the best combination). Further analysis shows that, unlike
the top 10 combinations in Table 7 (which are optimal for
the northern part and lead one), the combination that uses
every model always produces high correlation independently
of the lead and the locations, and, as such, it is a more robust
predictor.

Figure 5 summarizes the combination analysis in Table 7
for average, maximum, and minimum correlation of one-
month lead time in the northern part of the domain as
a function of the number of models in the ensemble. It
can be seen that the average, maximum, and minimum
corrections increase as a function of the number of models.
It is interesting to note the range, that is, the difference
between the maximum (best case) and the minimum (worst
case) correlation, as a function of the number of models
in the ensemble. This relationship shows that the range is
decreasing rapidly with the number of models, indicating
that the prediction is becoming less uncertain. Using only
one model results in a range of correlations between 0.57
and 0.66, with an average correlation of 0.63, while using the
seven models ensemble provides a correlation of 0.67. This
highlights the advantage of using IMME predictions.

4. Discussion and Conclusions

In this paper, we have analyzed the performance of IMME
ensemble (the NMME and the ECMWF models) for a small
scale domain (100 × 300 km) that contains various climate
conditions (transition from Mediterranean climate to semi-
arid conditions with a sharp decrease in precipitation from
north to south). The analysis was focused on (1) analyzing
the performance of monthly prediction with respect to dif-
ferent lead times, (2) analyzing the performance for seasonal
forecasts of accumulated three months of precipitation, and
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Table 7: Possible models combinations and their rank in the
northern part of the domain and lead one forecast.

Comb.∗ 𝑅 Rank
[1, 4, 5, 7] 0.682 1
[1, 3, 4, 5, 7] 0.681 2
[1, 2, 4, 5, 7] 0.680 3
[1, 3, 4, 5] 0.680 4
[1, 2, 3, 4, 5, 7] 0.680 5
[1, 4, 5] 0.679 6
[1, 3, 4, 7] 0.679 7
[1, 4, 7] 0.679 8
[1, 3, 5, 7] 0.678 9
[1, 3, 4] 0.678 10
[1, 2, 4, 7] 0.678 11
[1, 2, 4, 5] 0.678 12
[1, 2, 3, 4, 5] 0.678 13
[1, 5, 7] 0.678 14
[4, 5, 7] 0.678 15
[1, 2, 3, 4, 7] 0.677 16
[3, 4, 5, 7] 0.677 17
[1, 2, 5, 7] 0.677 18
[1, 2, 3, 5, 7] 0.676 19
[1, 4] 0.676 20
[1, 2, 3, 4] 0.675 21
[1, 2, 4] 0.675 22
[2, 4, 5, 7] 0.675 23
[1, 3, 4, 5, 6, 7] 0.675 24
[1, 3, 7] 0.675 25
[1, 3, 5] 0.675 26
[1, 4, 5, 6, 7] 0.674 27
[2, 3, 4, 5, 7] 0.674 28
[1, 2, 3, 4, 5, 6, 7] 0.674 29
[1, 2, 4, 5, 6, 7] 0.674 30
[3, 4, 5] 0.674 31
[1, 7] 0.673 32
[1, 2, 3, 7] 0.673 33
[1, 2, 7] 0.673 34
[1, 2, 3, 5] 0.673 35
[1, 3, 4, 6, 7] 0.672 36
[1, 5] 0.672 37
[1, 2, 5] 0.672 38
[4, 5] 0.671 39
[1, 4, 6, 7] 0.671 40
[1, 3, 5, 6, 7] 0.671 41
[3, 5, 7] 0.671 42
[1, 2, 3, 4, 6, 7] 0.671 43
[1, 2, 4, 6, 7] 0.671 44
[1, 2, 3, 5, 6, 7] 0.671 45
[1, 5, 6, 7] 0.670 46
[1, 3] 0.670 47
[1, 2, 5, 6, 7] 0.670 48
[1, 3, 4, 5, 6] 0.670 49
[5, 7] 0.670 50
[3, 4, 7] 0.670 51
[1, 2, 3, 4, 5, 6] 0.669 52
[1, 2, 3] 0.669 53
[2, 3, 5, 7] 0.669 54
[3, 4, 5, 6, 7] 0.669 55
[2, 3, 4, 5] 0.669 56
[2, 5, 7] 0.668 57
[1, 2, 4, 5, 6] 0.668 58

Table 7: Continued.
Comb.∗ 𝑅 Rank
[1, 4, 5, 6] 0.668 59
[4, 5, 6, 7] 0.668 60
[2, 4, 5] 0.668 61
[1, 3, 6, 7] 0.668 62
[4, 7] 0.668 63
[2, 3, 4, 7] 0.667 64
[2, 3, 4, 5, 6, 7] 0.667 65
[1, 2, 3, 6, 7] 0.667 66
[1, 2] 0.667 67
[2, 4, 7] 0.667 68
[2, 4, 5, 6, 7] 0.667 69
[1, 2, 6, 7] 0.666 70
[1, 6, 7] 0.666 71
[1, 3, 4, 6] 0.666 72
[1, 2, 3, 4, 6] 0.666 73
[1, 3, 5, 6] 0.664 74
[1, 2, 3, 5, 6] 0.664 75
1 0.664 76
[1, 2, 4, 6] 0.664 77
[3, 4] 0.663 78
[1, 4, 6] 0.663 79
[3, 5, 6, 7] 0.663 80
[1, 2, 5, 6] 0.663 81
[2, 3, 5, 6, 7] 0.662 82
[3, 4, 6, 7] 0.662 83
[1, 5, 6] 0.661 84
[2, 3, 4, 6, 7] 0.661 85
[2, 5, 6, 7] 0.661 86
[5, 6, 7] 0.661 87
[3, 5] 0.661 88
[2, 4, 6, 7] 0.660 89
[4, 6, 7] 0.660 90
[1, 2, 3, 6] 0.659 91
[3, 7] 0.659 92
[2, 3, 7] 0.659 93
[1, 3, 6] 0.658 94
[3, 4, 5, 6] 0.658 95
[2, 3, 4, 5, 6] 0.657 96
[2, 3, 5] 0.657 97
[1, 2, 6] 0.656 98
[2, 3, 4] 0.656 99
[2, 7] 0.656 100
[2, 4, 5, 6] 0.654 101
[2, 3, 6, 7] 0.654 102
[3, 6, 7] 0.653 103
[1, 6] 0.652 104
[4, 5, 6] 0.652 105
[2, 5] 0.652 106
7 0.651 107
[2, 6, 7] 0.651 108
[2, 4] 0.651 109
4 0.650 110
[6, 7] 0.648 111
5 0.647 112
[2, 3, 5, 6] 0.647 113
[3, 5, 6] 0.645 114
[2, 3, 4, 6] 0.645 115
[3, 4, 6] 0.642 116
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Table 7: Continued.
Comb.∗ 𝑅 Rank
[2, 5, 6] 0.640 117
[2, 4, 6] 0.637 118
[5, 6] 0.633 119
[2, 3] 0.630 120
3 0.628 121
[2, 3, 6] 0.627 122
[4, 6] 0.626 123
[3, 6] 0.616 124
[2, 6] 0.608 125
2 0.598 126
6 0.571 127
∗Note: combination [1, 2, 3, 4, 5, 6, 7] corresponds tomodels [CFSv2, CMC1,
CMC2, GFDL, NASA, NCAR, ECMWF], respectively.
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Figure 5: Combination analysis for average, maximum, and min-
imum correlation for 1-month lead time precipitation between the
models and the reforecast, as a function of the number of models in
the ensemble in the northern part of the domain.

(3) investigating the performance of different combinations
of models as predictors.

The monthly analysis shows a decrease in model perfor-
mance with an increase in lead time. While there is only
a slight difference between one and two months’ lead time,
going further to four or five months’ lead time results in
decreased accuracy (𝑅 = 0.50 for most of the models). In
general, the monthly analysis does not provide very high
results, even when using the IMME for one-month lead time.
It has added value in respect to climatology, but this added
value is limited to 3% increase in the correlation values. The
results for the three months’ accumulated precipitation are
higher, and it is recommended to use it over the monthly
forecasts. In the combination analysis, using the mean of
the combination of models outperformed any single model
prediction. The results show that the optimal combinations
with the high correlation values contain at least three models’
ensemble. Our analysis indicates that although the IMME

prediction (i.e., a combination that contains all models) was
not the optimal combination for the lead one prediction
in the northern part of the domain, it is favorable over
combinations which use fewer models. This is because the
difference between the optimal combination and the IMME
performance is very small, but the IMME produces high
correlation independently of the lead and the locations.

It is interesting to note that the models’ performances are
better for the northern part of the domain with respect to
the center part. For the IMME, the correlation for one-month
lead time is 0.67 for the northern domain compared to 0.63
in the center. For three months’ accumulated precipitation,
the correlation decreases from 0.71 to 0.66 from the north to
the center. The same trend is also noted for the RMSE and
NSE. To expand the analysis, we tested the model results in
the southern domain (latitude 31/35). The results showed a
decreasing trend of the model’s performance as we headed
south. The correlation for IMME for one-month lead time is
0.55 and 0.58 for the threemonths’ accumulated precipitation
in the south.

A possible explanation for this trend could be the cli-
mate characteristics of the Eastern Mediterranean. As was
described in Section 2.2, Israel is located in the eastern part
of the Mediterranean, between about 30∘ and 33∘ north. The
northern part of the country is relativelywet, while the central
parts are drier. As we go south to around latitude 31, the
climate becomes semiarid with annual precipitation around
300 to 200mm. According to Goldreich [21], more than 90%
of the rainfall in Central and Northern Israel is caused by
cold fronts, and the air masses that follow these fronts are
associated with extratropical cyclones that pass through the
northeastern corner of the Mediterranean Sea (Cyprus low).
There are also differences between Northern and Central
Israel in the cloud systems contributing to precipitation. In
the north (Galilee plain), 40% of the precipitation originates
from stationary and cold fronts, compared to 19% in the
central plains. On the other hand, Benard cells and coastal
fronts contribute only 19% in the north compared to 41% in
the center [22].

Due to the shape of Israeli’s coastline (see Figure 1), the
air mass coming from the west during Cyprus’s low synoptic
systems affects mostly the northern part of the country, while
the center and the southern arid parts of the county are more
influenced by moisture coming from the south and the east
(smaller scale, convective systems like the red sea trough, and
jet stream). The standard deviation of monthly precipitation
with respect to the average increases strongly as we go from
north to south: 84mm standard deviation with respect to an
average of 100mm in the north, 78mmwith respect to 84mm
in the center, and 78mm with respect to 70mm in the south,
which is actually higher than the average.

Numerical models with a coarse resolution of ∼100 km
may resolve better large scale weather systems as cold fronts
compared to local convergence like Benard cells and coastal
fronts [23].Therefore, the lower skill in the south may be due
to the current coarse model resolution.

Israel and the surrounding countries are experiencing
a significant decrease in water availability. Better precipi-
tation and hydrological forecasts can help decision-makers
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in the region better plan and manage their water resources
systems. This would lead to more informed decisions such
as allocation amounts for agriculture, Aquifer and lakes
withdrawal amounts, reservoirs operations, and managing
the desalination facilities and the reclaimed water facilities.
In this study, we quantified the accuracy of the seasonal and
themonthly forecasting in Israel and showed the advantage of
using an ensemble of global models. Water related decision-
makers, such as the Israeli Water Authority (IWA), will be
able to decide whether to take action or not, knowing the
forecast skill for the different lead times.Thesemethodologies
can also work for other countries that use an integrated water
resources management approach, which requires precipita-
tion forecasting in order to derive the optimal management
policy.
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