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A novel fifth-degree cubature Kalman filter is proposed to improve the accuracy of real-time orbit determination by ground-based
radar. A fully symmetric cubature rule, approaching the Gaussian weighted integral of a nonlinear function in general form, is
introduced, and the specific points and weights are calculated by matching the monomials of degree not greater than five with
the exact values. On the basis of the above rule, a novel fifth-degree cubature Kalman filter, which can achieve a higher accuracy
than UKF and CKF, is derived under the Bayesian filtering framework. Then, to describe the nonlinear system more accurately,
the orbital dynamics equation with J2 perturbation is used as the state equation, and the nonlinear relationship between the radar
measurement elements and orbital states is built as the measurement equation. The simulation results show that, compared with
the traditional third-degree algorithm, the proposed fifth-degree algorithm has a higher accuracy of orbit determination.

1. Introduction

With the increasing number of satellites launched into orbit
every year, the monitoring and cataloguing of satellites play
an important role in improving the rate of utilisation of space
resources and alleviating the pressure on orbit resources.
As a type of sensor in space surveillance systems, ground-
based radar is equipped without considering the influence
of the weather and other special circumstances, and the use
of its measurement data for real-time orbit determination is
a key technology in space target tracking [1, 2]. Due to the
nonlinearity of the satellite orbital dynamics model with the
influence of orbital perturbation, the essence of orbit deter-
mination in real-time is to achieve the optimal estimation of
the orbital state by means of nonlinear filtering technology
under the Bayesian framework using the measured ranging,
velocity, and angle data with measurement noise, which has
important research value.

The core issue in nonlinear Kalman filtering is to cal-
culate the intractable multidimensional vector integral such
as the “nonlinear function × Gaussian probability density
function (pdf),” for which it is difficult to achieve the

analytical solution [3, 4]. At present, two methods, includ-
ing the approximation of the nonlinear function and the
approximation of the Gaussian pdf, are mainly taken. In
the former method, the nonlinear function is approximated
by the polynomial and results in an extended Kalman
filter (EKF) [5, 6], divided difference Kalman filter (DDKF)
[7], and polynomial Kalman filter (PKF) [8, 9], where the
first-order Taylor expansion, the multidimensional Stirling
interpolation, and polynomials including Chebyshev and
Fourier-Hermit are adopted to approximate the nonlinear
function, respectively, in EKF, DDKF, and PKF. However,
the aforementioned methods tend to be restricted when the
system has strong nonlinearity with high dimensionality.
For the latter, the Gaussian pdf is approximated using the
deterministic sampling approach, which mainly includes the
unscented transform (UT) and spherical-radial rule (SRR).
Then, the unscentedKalmanfilter (UKF) [10, 11] and cubature
Kalman filter (CKF) [12–14] are obtained by embedding UT
and SRR into the Bayesian filtering framework, respectively,
these have a wide range of applications in engineering [15–
20], but these two types of algorithm have only third-degree
filtering accuracy, which is required to be further improved.
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In this paper, a novel fifth-degree cubature Kalman filter
is proposed without differential operation to improve the
filtering accuracy from third degree to fifth degree. The
integral points with corresponding weights in the general
cubature rule are calculated by matching the monomials
of degree no more than five with their exact values in the
fully symmetric region.Then, the proposed filtering method,
which can achieve a higher accuracy compared to that with
UKF and CKF, is deduced by embedding the novel fifth-
degree cubature rule into the Bayesian filtering framework.
The proposed filtering algorithm is applied in real-time
orbit determination, and a more accurate orbit estimate is
achieved.

The remainder of the paper is organised as follows: the
traditional cubature Kalman filter is described in Section 2,
the novel fifth-degree cubature rule and related Kalman filter
are derived in Section 3, the mathematical models used for
orbit determination are described in Section 4, the numerical
experiment and results are presented in Section 5, and the
conclusions are drawn in Section 6.

2. The Traditional Cubature Kalman Filter

The core problem in any nonlinear Kalman filter is to calcu-
late the integral∫R𝑛 f(x)𝑁(x; x,P𝑥)𝑑x, for which, in general, it
is difficult to find the analytical solution, where f(x) denotes
the arbitrary function,𝑁(x; x,P𝑥) denotes the Gaussian pdf.
Specifically, an integral of the form 𝐼(f) = ∫R𝑛 f(x)𝑒−xΤx𝑑x in
the Cartesian coordinate system is considered. Let x = 𝑟y
with yΤy = 1, where y denotes the direction vector and 𝑟 ≥ 0
denotes the radius, so that xΤx = 𝑟2 and then the integral𝐼(f) can be rewritten in a spherical-radial coordinate system
as follows:

𝐼 (f) = ∫∞
0
∫
𝑈𝑛

f (𝑟y) 𝑟𝑛−1𝑒−𝑟2𝑑𝜎 (y) 𝑑𝑟, (1)

where 𝑈𝑛 is the surface of the sphere defined by 𝑈𝑛 = {y ∈
R𝑛 : yΤy = 1} and 𝜎(⋅) is the area element on 𝑈𝑛. Thus, the
integral is decomposed into spherical integral 𝑆(𝑟) and radial
integral 𝑅, respectively, and approximately represented using
numerical integration as follows:

𝑆 (𝑟) = ∫
𝑈𝑛

f (𝑟y) 𝑑𝜎 (y) ≈ 𝐿𝑠∑
𝑖=1

𝜔𝑠,𝑖f (𝑟y𝑖)

𝑅 = ∫∞
0
𝑆 (𝑟) 𝑟𝑛−1𝑒−𝑟2𝑑𝑟 ≈ 𝐿𝑟∑

𝑗=1

𝜔𝑟,𝑗𝑆 (𝑟𝑗) ,
(2)

where (y𝑖, 𝜔𝑠,𝑖) denote the integral points and weights of the
spherical integral and 𝐿 𝑠 denotes the number of integral
points. Similarly, (𝑟𝑗, 𝜔𝑟,𝑗) denote the integral points and
weights of the radial integral, and 𝐿𝑟 denotes the number of
points. From the third-degree spherical-radial cubature rule

used in [12], we obtain that

𝑆 (𝑟) = 𝐴𝑛2𝑛
𝑛∑
𝑖=1

[f (𝑟𝜉𝑖) + f (−𝑟𝜉𝑖)]

𝑅 = 12Γ (𝑛2) 𝑆(√𝑛2) ,
(3)

where 𝐴𝑛 = 2√𝜋𝑛/Γ(𝑛/2) is the surface area of the unit
sphere, Γ(𝑧) = ∫∞

0
𝑒−𝑡𝑡𝑧−1𝑑𝑡 is the Gamma function, and 𝜉𝑖

denotes the unit vector with the 𝑖th element being 1. 𝑆(𝑟) is
substituted into 𝑅, to get

𝐼 (f) = 𝐿𝑟∑
𝑗=1

𝐿𝑠∑
𝑖=1

𝜔𝑟,𝑗𝜔𝑠,𝑖f (𝑟𝑗y𝑖)

= 𝐿∑
𝑗=1

12Γ (𝑛2)
𝑛∑
𝑖=1

𝐴𝑛2𝑛 [f (𝑟𝑗𝜉𝑖) + f (−𝑟𝑗𝜉𝑖)]

= √𝜋𝑛2𝑛
𝑛∑
𝑖=1

[f (√𝑛2𝜉𝑖) + f (−√𝑛2𝜉𝑖)] ,

(4)

Due to identity equation

∫
R𝑛
f (x)𝑁 (x; x,P𝑥) 𝑑x
= 1√𝜋𝑛 ∫R𝑛 f (√2P𝑥x + x) 𝑒−x

Τx𝑑x,
(5)

it may be seen that

∫
R𝑛
f (x)𝑁 (x; x,P𝑥) 𝑑x
= 12𝑛

𝑛∑
𝑖=1

[f (√𝑛P𝑥𝜉𝑖 + x) + f (−√𝑛P𝑥𝜉𝑖 + x)] .
(6)

The calculation process used in the traditional CKF is
listed as follows.

Time Update. Evaluate the cubature points x̂(𝑖)
𝑘−1

.

x̂(𝑖)𝑘−1 = x̂+𝑘−1 + √𝑛P+𝑘−1𝜉𝑖
x̂(𝑛+𝑖)𝑘−1 = x̂+𝑘−1 − √𝑛P+𝑘−1𝜉𝑖,

𝑖 = 1, 2, . . . , 𝑛.
(7)

Evaluate the propagated cubature points X(𝑖)
𝑘
.

X(𝑖)𝑘 = f (x̂(𝑖)𝑘−1) . (8)

Estimate the predicted state x̂−𝑘 .

x̂−𝑘 = 12𝑛
2𝑛∑
𝑖=1

X(𝑖)𝑘 . (9)
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Estimate the predicted error covariance P−𝑘 .

P−𝑘 = 12𝑛
2𝑛∑
𝑖=1

(X(𝑖)𝑘 − x̂−𝑘) (X(𝑖)𝑘 − x̂−𝑘)Τ +Q𝑘−1. (10)

Measurement Update. Evaluate the cubature points x̂(𝑖)
𝑘
.

x̂(𝑖)𝑘 = x̂−𝑘 + √𝑛P−𝑘𝜉𝑖.
x̂(𝑛+𝑖)𝑘 = x̂−𝑘 − √𝑛P−𝑘𝜉𝑖,

𝑖 = 1, 2, . . . , 𝑛.
(11)

Evaluate the propagated cubature points Z(𝑖)
𝑘
.

Z(𝑖)𝑘 = h (x̂(𝑖)𝑘 ) . (12)

Estimate the predicted measurement ẑ𝑘.

ẑ𝑘 = 12𝑛
2𝑛∑
𝑖=1

Z(𝑖)𝑘 . (13)

Estimate the measurement covariance matrix P𝑧.

P𝑧 = 12𝑛
2𝑛∑
𝑖=1

(Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ + R𝑘. (14)

Estimate the cross-covariance matrix P𝑥𝑧.

P𝑥𝑧 = 12𝑛
2𝑛∑
𝑖=1

(x̂(𝑖)𝑘 − x̂−𝑘 ) (Z(𝑖)𝑘 − ẑ𝑘)Τ . (15)

Estimate the Kalman gain K𝑘.

K𝑘 = P𝑥𝑧P
−1
𝑧 . (16)

Estimate the updated state x̂+𝑘 .

x̂+𝑘 = x̂−𝑘 + K𝑘 (z𝑘 − ẑ𝑘) . (17)

Estimate the corresponding error covariance P+𝑘 .

P+𝑘 = P−𝑘 − K𝑘P𝑧KΤ𝑘 . (18)

From the algorithm we see that 2n points are adopted
when approximating the Gaussian pdf. To improve the
filtering accuracy, more points, with corresponding weights,
are needed.

3. Fifth-Degree Cubature Rule and Cubature
Filtering Algorithm

3.1. Fifth-Degree Cubature Rule. The integral 𝐼(f), for which it
is difficult to find the analytical solution, can be approximated
using the cubature rule 𝑅(f) = ∑𝐿𝑖=1 𝜔𝑖f(x𝑖) by selecting

the appropriate cubature points and corresponding weights,
where x𝑖 denotes the cubature points, 𝜔𝑖 denotes the weights
that do not depend on the integrand, and L denotes the num-
ber of cubature points. We will write x = (𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛)
to denote an arbitrary point in real n-dimensional space. By
a monomial of degree d, we mean a function of the form𝑥𝑖11 𝑥𝑖22 ⋅ ⋅ ⋅ 𝑥𝑖𝑛𝑛 , where the indices are nonnegative integers such
that 𝑖1 + 𝑖2 + ⋅ ⋅ ⋅ + 𝑖𝑛 = 𝑑. The following definitions and lemma
are introduced.

Definition 1 (see [21]). 𝑆 is a region in 𝑛-dimensional space;
given x ∈ 𝑆, the fully symmetric set of x, 𝜎(x), is the set of
all points (±𝑥𝑗1 ±𝑥𝑗2 ⋅ ⋅ ⋅ ±𝑥𝑗𝑛), where (𝑗1 𝑗2 ⋅ ⋅ ⋅ 𝑗𝑛) is any
permutation of (1 2 ⋅ ⋅ ⋅ 𝑛).
Definition 2 (see [21]). A region 𝑆 is said to be fully symmetric
if and only if x ∈ 𝑆 implies 𝜎(x) ⊂ 𝑆.
Definition 3 (see [21]). An integration ruleR is said to be fully
symmetric if and only if, whenever x is an abscissa of the
rule R, every element of 𝜎(x) is an abscissa of R and the same
weight corresponds to all abscissas belonging to a given fully
symmetric set.

Lemma4 (see [21]). A fully symmetric rule𝑅 applied to a fully
symmetric 𝑛-dimensional region 𝑆 is of degree 𝑑 if and only if
it is exact for all monomials of degree ≤ 𝑑 of the form

𝑥2𝑖11 𝑥2𝑖22 ⋅ ⋅ ⋅ 𝑥2𝑖𝑛𝑛 , 𝑖1 ≥ 𝑖2 ≥ ⋅ ⋅ ⋅ ≥ 𝑖𝑛. (19)

The following cubature rule is considered:

𝑅 (f) = 𝜔1f (0 ⋅ ⋅ ⋅ 0) + 𝜔2 ∑
full sym

f (±𝜆 0 ⋅ ⋅ ⋅ 0)
+ 𝜔3 ∑

full sym
f (±𝜆 ±𝜆 0 ⋅ ⋅ ⋅ 0) . (20)

The above rule is fully symmetric; therefore, it will be of
degree five if it is exact for the monomials 1, 𝑥21, 𝑥41, and 𝑥21𝑥22;
thus the following equations are obtained:

𝐼 (1) = 𝜔1 + 2𝑛𝜔2 + 2𝑛 (𝑛 − 1) 𝜔3
𝐼 (𝑥21) = 2𝜆2𝜔2 + 4 (𝑛 − 1) 𝜆2𝜔3
𝐼 (𝑥41) = 2𝜆4𝜔2 + 4 (𝑛 − 1) 𝜆4𝜔3

𝐼 (𝑥21𝑥22) = 4𝜆4𝜔3.

(21)

For the case 𝐼(f) = ∫R𝑛 f(x)𝑒−xΤx𝑑x, we have 𝐼(𝑥2𝑖11 𝑥2𝑖22 ⋅ ⋅ ⋅𝑥2𝑖𝑛𝑛 ) = Γ(𝑖1 + 1/2)(𝑖2 + 1/2) ⋅ ⋅ ⋅ (𝑖𝑛 + 1/2), where the Gamma
function Γ(𝑧) satisfies Γ(1/2) = √𝜋 and Γ(𝑧+1) = 𝑧Γ(𝑧); thus
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we obtain

𝐼 (1) = Γ (12) ⋅ ⋅ ⋅ Γ (12)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

= 𝜋𝑛/2

𝐼 (𝑥21) = Γ (1 + 12) Γ (12) ⋅ ⋅ ⋅ Γ (12)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

= 12𝜋𝑛/2

𝐼 (𝑥41) = Γ (2 + 12) Γ (12) ⋅ ⋅ ⋅ Γ (12)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

= 34𝜋𝑛/2

𝐼 (𝑥21𝑥22) = Γ (1 + 12) Γ (1 + 12) Γ (12) ⋅ ⋅ ⋅ Γ (12)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

= 14𝜋𝑛/2.

(22)

Formula (21) is combined with formula (22) to solve the
following parameters as

𝜆2 = 32
𝜔1 = 𝑛2 − 7𝑛 + 1818 𝜋𝑛/2

𝜔2 = 4 − 𝑛18 𝜋𝑛/2

𝜔3 = 136𝜋𝑛/2.

(23)

Thus the specific form of rule 𝑅(f) is achieved by substi-
tuting formula (23) into formula (20), and the total number of
cubature points required for the rule is 1+2𝐶1𝑛+4𝐶2𝑛 = 2𝑛2+1.
Furthermore, the integral ∫R𝑛 f(x)𝑒−xΤx𝑑x is written using the
rule in the following form:

∫
R𝑛
f (x) 𝑒−xΤx𝑑x

= 𝑛2 − 7𝑛 + 1818 𝜋𝑛/2f (0 ⋅ ⋅ ⋅ 0)

+ 4 − 𝑛18 𝜋𝑛/2 ∑full sym
f (√32 0 ⋅ ⋅ ⋅ 0)

+ 136𝜋𝑛/2 ∑full sym
f (√32 √32 0 ⋅ ⋅ ⋅ 0) .

(24)

The following vectors are defined:

e𝑖 = √32 ×
[[[[[[
[

1 0 0
0 1 0
... ... d

...
0 0 1

]]]]]]
]𝑖

p+𝑖 = e𝑖 + e𝑗, 𝑖 < 𝑗
p−𝑖 = e𝑖 − e𝑗, 𝑖 < 𝑗

𝑖, 𝑗 = 1, 2, . . . , 𝑛,

(25)

where [⋅]𝑖 denotes the 𝑖th column of the matrix. From
formula (5), the fifth-degree cubature rule approximating
the Gaussian weighted integral of the nonlinear function is
obtained by combining formula (24) with the vectors defined
in formulae (25) as follows:

∫
R𝑛
f (x)𝑁 (x; x,P𝑥) 𝑑x = 𝑛2 − 7𝑛 + 1818 f (x) + 4 − 𝑛18
⋅ 𝑛∑
𝑖=1

[f (√2P𝑥e𝑖 + x) + f (−√2P𝑥e𝑖 + x)] + 136

⋅ 𝑛(𝑛−1)/2∑
𝑖=1

[f (√2P𝑥p+𝑖 + x) + f (−√2P𝑥p+𝑖 + x)

+ f (√2P𝑥p−𝑖 + x) + f (−√2P𝑥p−𝑖 + x)] .

(26)

3.2. Fifth-Degree Cubature Kalman Filter. The following dis-
crete nonlinear dynamic system is considered:

x𝑘 = f (x𝑘−1) + w𝑘−1
z𝑘 = h (x𝑘) + k𝑘
w𝑘 ∼ (0,Q𝑘) , k𝑘 ∼ (0,R𝑘) ,

(27)

where x𝑘 ∈ R𝑛𝑥 denotes the state vector, z𝑘 ∈ R𝑛𝑧 denotes
the measurement vector, f(⋅) and h(⋅) are known nonlinear
functions, and the process noise w𝑘 and measurement noise
k𝑘 are uncorrelated zero mean Gaussian white noise with
covariance matrixesQ𝑘 and R𝑘, respectively.

The cubature points x̂ and corresponding weights 𝜔
are obtained from the fifth-degree cubature rule shown in
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formula (26) as follows:

x̂1 = x

x̂1+𝑖 = x + √2P𝑥e𝑖
x̂𝑛+1+𝑖 = x − √2P𝑥e𝑖,

𝑖 = 1, 2, . . . , 𝑛
x̂2𝑛+1+𝑖 = x + √2P𝑥p+𝑖
x̂(𝑛2+3𝑛+2)/2+𝑖 = x − √2P𝑥p+𝑖
x̂𝑛2+𝑛+1+𝑖 = x + √2P𝑥p−𝑖
x̂(3𝑛2+𝑛+2)/2+𝑖 = x − √2P𝑥p−𝑖 ,

𝑖 = 1, 2, . . . , 𝑛 (𝑛 − 1)2

𝜔𝑖 =
{{{{{{{{{{{{{{{{{

𝑛2 − 7𝑛 + 1818 , 𝑖 = 1
4 − 𝑛18 , 𝑖 = 2, 3, . . . , 2𝑛 + 1
136 , 𝑖 = 2𝑛 + 2, . . . , 2𝑛2 + 1.

(28)

The proposed fifth-degree cubature Kalman filter is
deduced by using the points andweights, shown, respectively,
in formulae (28), under the Bayesian filtering framework
with reference to the third-degree algorithm in [12], and the
specific calculation steps are listed as follows.

Step 1 (filter initialisation).

x̂+0 = 𝐸 (x0)
P+0 = 𝐸 [(x0 − x̂+0 ) (x0 − x̂+0 )Τ] . (29)

Cycle 𝑘 = 1, 2, . . ., and complete the following steps.

Step 2 (time update). Calculate the points x̂(𝑖)
𝑘−1

using the
a posteriori state estimation x̂+𝑘−1 and a posteriori error
covariance matrix P+𝑘−1.

x̂(1)𝑘−1 = x̂+𝑘−1

x̂(1+𝑖)𝑘−1 = x̂+𝑘−1 + √2P+𝑘−1e𝑖
x̂(𝑛+1+𝑖)𝑘−1 = x̂+𝑘−1 − √2P+𝑘−1e𝑖,

𝑖 = 1, 2, . . . , 𝑛

x̂(2𝑛+1+𝑖)𝑘−1 = x̂+𝑘−1 + √2P+𝑘−1p+𝑖
x̂((𝑛
2+3𝑛+2)/2+𝑖)
𝑘−1 = x̂+𝑘−1 − √2P+𝑘−1p+𝑖

x̂(𝑛
2+𝑛+1+𝑖)
𝑘−1 = x̂+𝑘−1 + √2P+𝑘−1p−𝑖

x̂((3𝑛
2+𝑛+2)/2+𝑖)

𝑘−1 = x̂+𝑘−1 − √2P+𝑘−1p−𝑖 ,
𝑖 = 1, 2, . . . , 𝑛 (𝑛 − 1)2 .

(30)

Calculate the nonlinear propagation of x̂(𝑖)
𝑘−1

using f(⋅).
X(𝑖)𝑘 = f (x̂(𝑖)𝑘−1) . (31)

Calculate the a priori state estimation x̂−𝑘 by weighted
merging X(𝑖)

𝑘
.

x̂−𝑘 = 𝑛
2 − 7𝑛 + 1818 X(1)𝑘 +

2𝑛+1∑
𝑖=2

4 − 𝑛18 X(𝑖)𝑘

+ 2𝑛
2+1∑
𝑖=2𝑛+2

136X(𝑖)𝑘 .
(32)

Calculate the a priori error covariance matrix P−𝑘 .

P−𝑘 = 𝑛
2 − 7𝑛 + 1818 (X(1)𝑘 − x̂−𝑘 ) (X(1)𝑘 − x̂−𝑘)Τ

+ 2𝑛+1∑
𝑖=2

4 − 𝑛18 (X(𝑖)𝑘 − x̂−𝑘) (X(𝑖)𝑘 − x̂−𝑘)Τ

+ 2𝑛
2+1∑
𝑖=2𝑛+2

136 (X(𝑖)𝑘 − x̂−𝑘) (X(𝑖)𝑘 − x̂−𝑘)
Τ +Q𝑘−1.

(33)

Step 3 (measurement update). Calculate the points x̂(𝑖)
𝑘
using

the a priori state estimation x̂−𝑘 and a priori error covariance
matrix P−𝑘 .

x̂(1)𝑘 = x̂−𝑘

x̂(1+𝑖)𝑘 = x̂−𝑘 + √2P−𝑘e𝑖
x̂(𝑛+1+𝑖)𝑘 = x̂−𝑘 − √2P−𝑘e𝑖,

𝑖 = 1, 2, . . . , 𝑛
x̂(2𝑛+1+𝑖)𝑘 = x̂−𝑘 + √2P−𝑘p+𝑖

x̂((𝑛
2+3𝑛+2)/2+𝑖)
𝑘 = x̂−𝑘 − √2P−𝑘p+𝑖
x̂(𝑛
2+𝑛+1+𝑖)
𝑘 = x̂−𝑘 + √2P−𝑘p−𝑖

x̂((3𝑛
2+𝑛+2)/2+𝑖)

𝑘 = x̂−𝑘 − √2P−𝑘p−𝑖 ,
𝑖 = 1, 2, . . . , 𝑛 (𝑛 − 1)2 .

(34)
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Calculate the nonlinear propagation of x̂(𝑖)
𝑘
using h(⋅).

Z(𝑖)𝑘 = h (x̂(𝑖)𝑘 ) . (35)

Calculate the predicted measurement value ẑ𝑘 by weight-
ed merging Z(𝑖)

𝑘
.

ẑ𝑘 = 𝑛2 − 7𝑛 + 1818 Z(1)𝑘 +
2𝑛+1∑
𝑖=2

4 − 𝑛18 Z(𝑖)𝑘 +
2𝑛2+1∑
𝑖=2𝑛+2

136Z(𝑖)𝑘 . (36)

Calculate the predicted measurement covariance matrix
P𝑧.

P𝑧 = 𝑛2 − 7𝑛 + 1818 (Z(1)𝑘 − ẑ𝑘) (Z(1)𝑘 − ẑ𝑘)Τ

+ 2𝑛+1∑
𝑖=2

4 − 𝑛18 (Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ

+ 2𝑛
2+1∑
𝑖=2𝑛+2

136 (Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)
Τ + R𝑘.

(37)

Calculate the cross-covariance matrix P𝑥𝑧.

P𝑥𝑧 = 𝑛2 − 7𝑛 + 1818 (x̂(𝑖)𝑘 − x̂−𝑘 ) (Z(𝑖)𝑘 − ẑ𝑘)Τ

+ 2𝑛+1∑
𝑖=2

4 − 𝑛18 (x̂(𝑖)𝑘 − x̂−𝑘 ) (Z(𝑖)𝑘 − ẑ𝑘)Τ

+ 2𝑛
2+1∑
𝑖=2𝑛+2

136 (x̂(𝑖)𝑘 − x̂−𝑘 ) (Z(𝑖)𝑘 − ẑ𝑘)
Τ .

(38)

Calculate the Kalman filtering gain K𝑘.

K𝑘 = P𝑥𝑧P
−1
𝑧 . (39)

Calculate the a posteriori state estimation x̂+𝑘 .

x̂+𝑘 = x̂−𝑘 + K𝑘 (z𝑘 − ẑ𝑘) . (40)

Calculate the a posteriori error covariance matrix P+𝑘 .

P+𝑘 = P−𝑘 − K𝑘P𝑧KΤ𝑘 . (41)

The pseudocode representing the proposed algorithm is
given in Algorithm 1.

Remark 5. The proposed method is differential free; that is,
there is no need to calculate the Jacobian matrix.

Remark 6. Compared with CKF of third degree, the filtering
accuracy of the proposed method is improved to fifth degree.

Remark 7. The general method of computation of the cuba-
ture rule is given in the proposed filtering method, without
dividing the intractable integral into spherical integral and
radial integral.

4. Mathematical Model for
Orbit Determination

4.1. Orbital Dynamics Model. Satellites in orbit are subjected
to various perturbations, mainly including nonspherical
gravitational perturbation, third body gravitational pertur-
bation, atmospheric drag perturbation, and solar radiation
pressure perturbation, among which the J2 nonspherical
gravitational perturbation is the most influential perturba-
tion. To describe the in-orbit motion of the satellite more
accurately, the orbital dynamics model with J2 perturbation
in the earth central fixed (ECF) coordinate system is used as
follows to describe the orbit of the satellite [22]:

𝑥̇ = V𝑥

̇𝑦 = V𝑦

𝑧̇ = V𝑧

V̇𝑥 = 𝜔2𝑒𝑥 + 2𝜔𝑒 ⋅ V𝑦
+ 𝜇𝑥𝑟3 [𝐽2 (

𝑅𝑒𝑟 )(7.5𝑧
2

𝑟2 − 1.5) − 1] + 𝑓𝑥
V̇𝑦 = 𝜔2𝑒𝑦 − 2𝜔𝑒 ⋅ V𝑥

+ 𝜇𝑦𝑟3 [𝐽2 (
𝑅𝑒𝑟 )(7.5𝑧

2

𝑟2 − 1.5) − 1] + 𝑓𝑦
V̇𝑧 = 𝜇𝑧𝑟3 [𝐽2 (

𝑅𝑒𝑟 )(7.5𝑧
2

𝑟2 − 4.5) − 1] + 𝑓𝑧
𝑟 = √𝑥2 + 𝑦2 + 𝑧2,

(42)

where (𝑥 𝑦 𝑧 V𝑥 V𝑦 V𝑧)Τ denotes the position and veloc-
ity of satellite in ECF, 𝜇 denotes the earth gravity constant,𝐽2 denotes the harmonic coefficient, 𝑅𝑒 denotes the radius of
the earth, 𝜔𝑒 denotes the angular velocity of the earth, and
(𝑓𝑥 𝑓𝑦 𝑓𝑧)Τ is the sum of other perturbations, which can be
approximated as zeromeanGaussianwhite noise in the study.
Formula (42) can be written in discrete state equation form as
follows:

x𝑘 = f (x𝑘−1) + w𝑘−1, (43)

where x𝑘 = (𝑥𝑘 𝑦𝑘 𝑧𝑘 V𝑥,𝑘 V𝑦,𝑘 V𝑧,𝑘)Τ denotes the orbital
state at time 𝑘 and w𝑘 denotes the process noise.

4.2. Radar Measurement Model. The radar measurement
model is described in local horizontal (LH) coordinate
system, and the transformation matrix from ECF to LH is as
follows:

M = [[
[

− sin 𝜆 cos 𝜆 0
− sin𝜑 cos 𝜆 − sin𝜑 sin 𝜆 cos𝜑
cos𝜑 cos 𝜆 cos𝜑 sin 𝜆 sin𝜑

]]
]
, (44)

where 𝜆 and 𝜑 denote the geocentric longitude and the
geocentric latitude of radar, respectively, which can also be
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(1) Compute e𝑖 = √3/2 × (I𝑛)𝑖, p+𝑖 = e𝑖 + e𝑗, 𝑖 < 𝑗 and p−𝑖 = e𝑖 − e𝑗, 𝑖 < 𝑗;
(2) Input: x̂+0 , P+0 , z𝑘
(3) for 𝑘 = 1 to 𝑧 𝑙𝑒𝑛𝑔𝑡ℎ do
(4) S+𝑘−1 ← 𝑐ℎ𝑜𝑙(P+𝑘−1);
(5) for 𝑖 = 1 to 2𝑛2 + 1 do
(6) Calculate x̂(𝑖)

𝑘−1
using x̂+𝑘−1, S

+
𝑘−1, e𝑖, p

+
𝑖 and p−𝑖 ;

(7) X(𝑖)
𝑘
← f(x̂(𝑖)

𝑘−1
);

(8) end
(9) x̂−𝑘 ← ∑2𝑛2+1𝑖=1 𝜔𝑖X(𝑖)𝑘 ;
(10) P−𝑘 ← ∑2𝑛2+1𝑖=1 𝜔𝑖(X(𝑖)𝑘 − x̂−𝑘 )(X(𝑖)𝑘 − x̂−𝑘 )Τ +Q𝑘−1;
(11) S−𝑘 ← 𝑐ℎ𝑜𝑙(P−𝑘 );
(12) for 𝑖 = 1 to 2𝑛2 + 1 do
(13) Calculate x̂(𝑖)

𝑘
using x̂−𝑘 , S

−
𝑘 , e𝑖, p

+
𝑖 and p−𝑖 ;

(14) Z(𝑖)
𝑘
← h(x̂(𝑖)

𝑘
);

(15) end
(16) ẑ𝑘 ← ∑2𝑛2+1𝑖=1 Z(𝑖)

𝑘
;

(17) P𝑧 ← ∑2𝑛2+1𝑖=1 𝜔𝑖(Z(𝑖)𝑘 − ẑ𝑘)(Z(𝑖)𝑘 − ẑ𝑘)Τ + R𝑘;
(18) P𝑥𝑧 ← ∑2𝑛2+1𝑖=1 𝜔𝑖(x̂(𝑖)𝑘 − x̂−𝑘 )(Z(𝑖)𝑘 − ẑ𝑘)Τ;
(19) K𝑘 ← P𝑥𝑧P−1𝑧 ;
(20) x̂+𝑘 ← x̂−𝑘 + K𝑘(z𝑘 − ẑ𝑘);
(21) P+𝑘 ← P−𝑘 − K𝑘P𝑧KΤ𝑘 ;
(22) end
(23)Output: x̂+𝑘 , P

+
𝑘

Algorithm 1: The pseudocode of the proposed algorithm. The fifth-degree cubature Kalman filter.

represented by geocentric coordinates (𝑥𝑐 𝑦𝑐 𝑧𝑐). We define
𝜌 = (𝜌𝑥 𝜌𝑦 𝜌𝑧 ̇𝜌𝑥 ̇𝜌𝑦 ̇𝜌𝑧)Τ as the satellite orbital states in
LH, and the following equations are obtained:

[[
[

𝜌𝑥
𝜌𝑦
𝜌𝑧
]]
]
= M ⋅ [[

[

𝑥 − 𝑥𝑐
𝑦 − 𝑦𝑐
𝑧 − 𝑧𝑐

]]
]
,

[[
[

̇𝜌𝑥
̇𝜌𝑦
̇𝜌𝑧
]]
]
= M ⋅ [[

[

V𝑥
V𝑦
V𝑧

]]
]
.

(45)

The geometric relationship between orbital states and
radar measurement values (𝑅 𝑅̇ 𝐴 𝐸) is obtained as fol-
lows:

𝑅 = √𝜌2𝑥 + 𝜌2𝑦 + 𝜌2𝑧
𝑅̇ = (𝜌𝑥 ̇𝜌𝑥 + 𝜌𝑦 ̇𝜌𝑦 + 𝜌𝑧 ̇𝜌𝑧)√𝜌2𝑥 + 𝜌2𝑦 + 𝜌2𝑧
𝐴 = arctan

𝜌𝑦𝜌𝑥
𝐸 = arctan

𝜌𝑧
√𝜌2𝑥 + 𝜌2𝑦 ,

(46)

where 𝑅 denotes the ranging value, 𝑅̇ denotes the velocity
value, 𝐴 denotes the azimuth angle, and 𝐸 denotes the
elevation angle. Formula (46) is written in the following
measurement equation form:

z𝑘 = h (x𝑘) + k𝑘, (47)

where z𝑘 = (𝑅𝑘 𝑅̇𝑘 𝐴𝑘 𝐸𝑘)Τ denotes the measurement
values at time 𝑘 and k𝑘 denotes the measurement noise.

5. The Numerical Experiment

The simulation platform is built using the Satellite Tool Kit
(STK) and MATLAB, the satellite runs in low-earth sun-
synchronous orbit, and the reference orbit data is generated
by the High-Precision Orbit Prediction (HPOP) algorithm.
In HPOP, the 21-order earth gravity model is taken into
account, the atmospheric drag coefficient 𝐶𝑑 = 2.2, the
Jacchia-Roberts model is adopted as the atmospheric density
model, the solar radiation pressure coefficient 𝐶𝑟 = 1, the
area-mass ratio is 0.02m2/kg, the third body gravitational
perturbations of sun and moon are considered, and the tidal
perturbation is considered.The accuracy of ranging, velocity,
and angle values is assumed to be 20m, 0.1m/s, and 0.015∘,
respectively. The six orbital elements, including semimajor
axis (𝑎), eccentricity (𝑒), inclination (𝑖), Right Ascension of
Ascending Node (RAAN), argument of perigee (𝜔), true
anomaly (𝑓), and the latitude and longitude of the radar
station, are listed in Table 1.
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Figure 1: Orbit determination RMSEs of three algorithms.

Table 1: The Six orbital elements and the latitude and longitude of the radar station.

Epoch time/UTCG 𝑎/km 𝑒 𝑖/∘ Ω/∘ 𝜔/∘ 𝑓/∘ Longitude/∘ Latitude/∘

1 Jul, 2015, 13:05:00 6778.137 0 97.035 279.066 0 0 108.261 29.783

Table 2: Average RMSE of three algorithms.

Algorithm Position RMSE (m) Velocity RMSE (m⋅s−1)
UKF 27.180 0.362
CKF 27.148 0.347
Proposed algorithm 23.944 0.307

The initial filter state x̂+0 =
(−2705129 5945598 1820143 2177 −1252 7324)Τ.

The initial covariance matrix P+0 =
diag (106 106 106 102 102 102).

The access time from radar station to satellite is from
1 July, 2015, 16:14:00 to 1 July, 2015, 16:21:00, and the root
mean square error (RMSE) is adopted to evaluate the real-
time orbit determination results. The filtering cycle is 1 s, and
we ran 200 Monte-Carlo simulations. The UKF and CKF are
compared in this experiment to validate the performance of
the proposed algorithm. The RMSEs of the three algorithms
are shown in Figure 1, and the statistical average RMSEs
are summarised in Table 2. From the results it may be seen
that the orbit determination accuracy obtained by UKF is
almost consistent with that of CKF due to the two algorithms
being made to adopt the third-degree deterministic sampling
method. By contrast with CKF, the proposed fifth-degree
cubature Kalman filter is capable of achieving a higher

accuracy, and the position accuracy is increased by 3.204m
with velocity accuracy increased by 0.04m/s. For a low-
earth-orbit satellite, the atmospheric drag perturbation has
an influence on the orbit, meaning that the state equation
(formula (42)) cannot describe the orbit exactly, and if the
high-precision orbit perturbationmodel is used, the excessive
computation demand will impair the filtering algorithm’s
real-time performance; however, the errors caused by the
orbital model are generally acceptable due to the access time
of the LEO satellite being short.

6. Conclusion

In this paper, a novel fifth-degree cubature Kalman filter is
proposed to improve the accuracy of real-time orbit deter-
mination by ground-based radar. The integral points and
weights in the general cubature rule are solved by matching
the monomials with degree not greater than five with their
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exact values, and then the fifth-degree cubature rule is
deduced. The proposed novel fifth-degree cubature Kalman
filter, which can achieve a higher filtering accuracy than UKF
and CKF, is derived by using the aforementioned rule based
on the Bayesian filtering framework. The simulation results
show that the position accuracies achieved by CKF and the
proposed algorithm are 27.148m and 23.944m, respectively,
with the velocity accuracies being 0.347m/s and 0.307m/s,
respectively. Compared with the results of CKF, the position
accuracy and velocity accuracy are improved by 3.204m
and 0.04m/s, respectively, thus verifying the validity of the
proposed algorithm.
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