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Predicting the performance of solar water heater (SWH) is challenging due to the complexity of the system. Fortunately,
knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive
power of machine learning models, we can further solve a more challenging question: how to cost-effectively design a high-
performance SWH? Here, we summarize our recent studies and propose a general framework of SWH design using a machine
learning-based high-throughput screening (HTS) method. Design of water-in-glass evacuated tube solar water heater (WGET-
SWH) is selected as a case study to show the potential application of machine learning-based HTS to the design and

optimization of solar energy systems.

1. Introduction

How to cost-effectively design a high-performance solar
energy conversion system has long been a challenge. Solar
water heater (SWH), as a typical solar energy conversion sys-
tem, has complicated heat transfer and storage properties
that are not easy to be measured and predicted by conven-
tional ways. In general, an SWH system uses solar collectors
and concentrators to gather, store, and use solar radiation to
heat air or water in domestic, commercial, or industrial
plants [1]. For the design of high-performance SWH, the
knowledge about correlations between the external settings
and coefficients of thermal performance (CTP) is required.
However, some of the correlations are hard to know for the
following reasons: (i) measurements are time-consuming
[2]; (ii) control experiments are usually difficult to perform;
and (iii) there is no current physical model that can precisely

connect the relationships between external settings and
intrinsic properties for SWH. Currently, there are some
state-of-the-art methods for the estimation of energy system
properties [3-5] and for the optimization of performances
[6-11]. However, most of them are not suitable for the solar
energy system. These problems, together with the economic
concerns, significantly hinder the rational design of high-
performance SWH.

Fortunately, machine learning, as a powerful technique
for nonlinear fitting, is able to help us precisely acquire the
values of CTP with the knowledge of some easy-measured
independent variables. With a sufficiently large database, a
machine learning technique with appropriate algorithms
can “learn” from the numerical correlations hidden in the
dataset via a nonlinear fitting process and perform precise
predictions. With such a technique, we do not need to exactly
find out the physical models for each CTP and can directly
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acquire a precise prediction with a well-developed predictive
model. During the past decades, Kalogirou et al. have done a
large number of machine learning-based numerical predic-
tions of some important CTPs for solar energy systems
[12-19]. Their results show that there is a huge potential
application of machine learning techniques to energy sys-
tems. Based on their successful works, we recently developed
a series of machine learning models for the predictions of
heat collection rates (daily heat collection per square meter
of a solar water system, MJ/m?) and heat loss coefficients
(the average heat loss per unit, W/(m’K)) to a water-in-
glass evacuated tube solar water heater (WGET-SWH)
system [2, 20, 21]. Our results show that with some easy-
measured independent variables (e.g., number of tubes and
tube length), both heat collection rates and heat loss coeffi-
cients can be precisely predicted after some proper trainings
from the datasets, with proper algorithms (e.g., artificial neu-
ral networks (ANNSs) [2, 20], support vector machine (SVM)
[2], and extreme learning machine (ELM) [21]). An ANN-
based user-friendly software was also developed for quick
measurements [20]. These novel machine learning-assisted
measurements dramatically shorten the measurement period
from weeks to seconds, which has good industrial benefits.
However, all the machine learning studies mentioned here
are only the predictions and/or measurements. So far, very
few industries really put these methods into practical applica-
tions. To the best of our knowledge, very few references
concern about the optimization of thermal performance of
energy systems using such a powerful knowledge-based tech-
nique [22]. To address this challenge, we recently used a
high-throughput screening (HTS) method combined with a
well-trained ANN model to screen 3.5x10° possible
designs of new WGET-SWH settings, in good agreement
with the subsequent experimental validations [23]. This
is so far the first trial of HTS to a solar energy system
design. The HTS method (roughly defined as the screening
of the candidates with the best target properties using
advanced high-throughput experimental and/or computa-
tional techniques) has already been widely used in biolog-
ical [24-28] and computational [29-31] areas. With the
basic concept that screening thousands or even millions
of possible cases to discover the candidates with the best
target functions or performances, HTS helps people dra-
matically reduce the required regular experiments, saving
much economic cost and manpower.

In this paper, we aim to propose an HTS framework for
optimizing a solar energy system. Picking SWH as a case
study, we show how this optimization strategy can be applied
to a novel solar energy system design. Different from the
study by Liu et al. [23], this paper shows the predictive power
of machine learning and the development of a general HTS
framework. Instead of listing tedious mathematical works,
in this paper, we provide vital details about the general
modeling and HTS process. Since tube solar collectors have
a substantially lower heat loss coeflicient than other types of
collectors [12, 32], WGET-SWHs gradually become popular
during the past decades [33-35], with the advantages of
excellent thermal performance and easy transportability
[36, 37]. With this reason, we chose the WGET-SWH system

International Journal of Photoenergy

as a typical SWH, to show how a well-developed ANN model
can be used to cost-effectively optimize the thermal perfor-
mance of an SWH system, using an HTS method.

2. Machine Learning Methods

2.1. Principles of an ANN. There are various machine
learning algorithms that have been effectively applied to the
prediction of properties for energy systems, such as ANN
(12, 13, 17, 18, 20, 38], SVM [20, 39, 40], and ELM [21, 41].
Because the ANN method is the most popular algorithm
for numerical predictions [42], we only introduce the basic
principle of ANN here. A general schematic ANN structure
is shown in Figure 1, with the input, hidden, and output
layers constructed by certain numbers of “neurons.” Each
neuron (also called a “node”) in the input layer, respectively,
represents a specific independent variable. The neuron in the
output layer represents the dependent variable that is needed
to be predicted. Usually, the independent variables should be
the easy-measured variables that have a potential relation-
ship with the dependent variable. The dependent variable is
usually the variable that is hard to be detected from experi-
ments and is expected to be precisely predicted. The layer
between the input and output layers shown in Figure 1 is
the hidden layer. The optimal number of neurons in the
hidden layer depends on the study object and the scale of
the dataset. Each neuron connects to all the neurons in the
adjacent layer, with the connection called the weight (usually
represented as w), which directly decides the predictive
performance of the ANN, using the activation functions.
For the training of an ANN, the initial weights will be first
selected randomly, and then following iterations would help
find out the optimal weight values that fulfill the prediction
criterions. All the data move only in the same direction (from
left to right, as shown in Figure 1). A well-trained ANN
should consist of the optimal numbers of hidden layer neu-
rons, hidden layer(s), and weight values, which sufficiently
avoid the risk of either under- or overfitting. In practical
applications, there is a large number of neural networks
with modified algorithms, such as ELM [43-45], back-
propagation neural network (BPNN) [46-48], and general
regression neural network (GRNN) [49-51]. Though there
are various network models, the basic principles for model
training are similar.

2.2. Training of an ANN. To train a robust ANN, several fac-
tors should be considered: (i) percentages of the training and
testing sets; (ii) number of hidden neurons; (iii) number of
hidden layers; and (iv) required time for training. When
training a practical ANN for real applications, a large training
set is recommended. For predicting the heat collection rates
of WGET-SWHs, we found that with a relatively large dataset
(>900 data groups), the training set higher than 85% could
help acquire a model with good predictive performance in
the testing set [2]. Another reason to use a large training set
is that if the training set percentage is small, it would be a
waste of data for practical applications. The reason is simple:
more data groups for training would usually lead to a better
predictive performance. For the selection of the number of
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hidden neurons, it is quite important to try the neuron num-
bers from low to high. If the number of hidden neurons is not
enough, there would be a risk of underfitting; if it is too
many, there would be a risk of overfitting and time-
consuming. Therefore, finding the best number of neurons
by comparison is particularly important. It should be noted
that in some special neural network methods (e.g., GRNN),
the number of hidden neurons can be a fixed value once
the dataset is defined in some software packages. Under this
circumstance, it is no longer necessary to worry about the
hidden neuron settings. In addition to the hidden neuron
numbers, same tests should be done on the number of layers,
in order to avoid either under- or overfitting. The last factor
we need to consider is the training time. According to the
basic principle of an ANN (Figure 1), the interconnection
among neurons would become more complicated with
higher numbers of neuron. Therefore, with larger database
and larger numbers of independent variables and hidden
neurons, the training time would be longer. This means that
sometimes an ordinary personal computer (PC) cannot
sustain a tedious cross-validation test. From our previous
studies with an ANN training [2, 51], we found that if
the database was sufficiently large, repeated training and/
or cross-validation training would lead to insignificant
fluctuation. In other words, for practical applications, the
ANN training and testing results would be robust if the
database is large, and so a cross-validation process can
be rationally skipped after a simple sensitivity test, in
order to save computational cost.

2.3. Testing of an ANN. Using a testing result with an ANN
for the prediction of heat collection rate as an example
(Figure 2), we can see that a well-trained ANN can precisely
predict the heat collection rates of the data in the testing set,
with relatively low absolute residual values. Though there are
still deviations exist in some predicted points, the overall
accuracy is still relatively high and acceptable to practical
applications. It should be noted that for a solar energy sys-
tem, the independent variables for modeling should always
include some environmental variables, such as solar radia-
tion intensity and ambient temperature [2]. These variables
are highly dependent to the external temperature, location,
and season. That is to say, the external conditions of the
predicted data should be in the similar environmental

conditions as the data used for the model training. Otherwise,
the ANN may not perform good predictive performance. In
all of our recent studies, all the data measurements were per-
formed in very similar season, temperature, and location,
which can sufficiently ensure precise predicted results in both
the testing set and subsequent experimental validation.

3. High-Throughput Screening (HTS)

The basic idea of computational HTS is simple: the calcula-
tions of all possible systems in a certain time period (using
fast algorithms) and the screening of the candidates with tar-
get performances. Previously, Greeley et al. used density
functional theory (DFT) calculations to screen and design
high-performance metallic catalysts for hydrogen evolution
reaction via an HTS method, in good agreement with
experimental validations [29]. Hautier et al. combined DFT
calculations, machine learning, and HTS methods to predict
the missing ternary oxide compounds in nature and develop
a completed ternary oxide database [31], which shows that a
machine learning-assisted HTS process can be precisely used
for new material prediction and discovery. However, though
the HT'S method has been widely used in many areas, its con-
ceptional applications to energy system optimization is not
reported during the past decade.

Very recently, our studies show that the machine
learning-assisted HTS process can be effectively performed
on the optimization of solar energy system [23]. Choosing
WGET-SWH as a case study, our results show that an HTS
process with a well-trained ANN model can be used for the
optimization of heat collection rate of SWH. The first step
was to generate an extremely large number of independent
variable combinations (3.5x 10° possible design combina-
tions) as the input of a well-trained ANN model. The heat
collection rates of all these combinations were then,
respectively, predicted by the ANN. After that, the new
designs with high predicted heat collection rates were
recorded as the candidate database. For validation, we
installed two screened cases and performed rigorous mea-
surements. The experimental results showed that the two
selected cases had higher average heat collection rates than
all the existing cases in our previous measurement database.
Being similar to a previous chemical HTS concept proposed
by Pyzer-Knapp et al. [52], we reconstruct the process of this
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FIGURE 2: Testing results using an ANN model for the prediction of heat collection rate for WGET-SWHs. (a) Predicted values versus actual
values; (b) residual values versus actual values; and (c) residual values versus predicted values. Reproduced with permission from Liu et al. [2].

optimization method, as shown in Figure 3. More modeling
and experimental details can be found in [23].

4. HTS-Based Optimization Framework

Based on the recent trials on the HTS-based optimization
method to the SWH system, here, we propose a framework
for the design and optimization of solar energy systems.
Though the machine learning-based HTS method is a quick
design strategy, the preconditions should be fulfilled rigor-
ously. That means, two vital conditions should be fulfilled,
including (i) a well-trained machine learning model and (ii)
a rational generation of possible inputs.

4.1. A Well-Trained Machine Learning Model. To acquire a
well-trained machine learning model, in addition to the reg-
ular training and testing processes as shown in Sections 2.2
and 2.3, another key step is to define the independent vari-
ables for training. Since the dependent variable is usually
the quantified performance of the energy system, the selec-
tion of an independent variable which has potential relation-
ships with the dependent variable would directly decide the
predictive precision of the model. In our previous case [23],

we chose seven independent variables as the inputs, includ-
ing tube length, number of tubes, tube center distance, tank
volume, collector area, final temperature, and tilting angle
(the angle between tubes and the ground). A 3-D schematic
design of a WGET-SWH system is shown in Figure 4 [23],
which shows that only with these independent variables can
we reconstruct a WGET-SWH system quickly with some
other minor empirical settings. Unlike a physical model
(which requires rigorous mathematical deduction and
hypothesis), machine learning does not require the user to
know exactly about the potential relationships between the
independent and dependent variables. This feature also leads
to the fact that machine learning prediction method is more
flexible than conventional methods. From these seven inputs,
we can see that except for the final temperature, all the other
six variables are the important parameters of a WGET-SWH.
In terms of the final temperature, we found that this is
extremely important to ensure a precise model for heat col-
lection rate prediction. The reason is simple: the heat collec-
tion performance of a WGET-SWH is not only decided by
the mechanical settings of the system but also depends on
the environmental conditions such as solar radiation inten-
sity, ambient temperature, and the final temperature. Since
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FIGURE 4: A 3-D schematic design for WGET-SWH installation. Reproduced with permission from Liu et al. [23].

the solar radiation intensity correlates well with the final
temperature in a nonphotovoltaic heat transfer system,
and it is not easy to be measured, we did not consider this
as a variable for model training. Also, because the ambient
temperatures are very similar during the measurements of
all the SWHs in our database (we performed all the mea-
surements in the similar months and locations), we also
removed it from the variable list. It should be noted that
for the measurements gathered from various seasons and
unstable weathers, the ambient temperature sometimes is
important and should not be neglected for modeling.
Results show that without the solar radiation intensity
and ambient temperature, our predictive models were still
precise and robust enough [2]. Reducing the number of
independent variables like these not only helps us dramat-
ically reduce the required time for model training but also
simplifies the input generation process at the following

HTS application. Another vital step is the scale and size
of the database. Due to the complexity of the energy col-
lection and transfer system, there are usually a large num-
ber of independent variables. To ensure a good training, a
large and wide database should be used. If the size of the data-
base for training is too small, it would generate high error rates
during fittings; if the range of database is too narrow, the
trained model would only have good performance in a very
local data range, scarifying the precision of the data in a rela-
tively remote region. In many previous cases, we can see that
a large and wide database is crucial to ensure a good practical
prediction [53]. In our case study, the ranges of the indepen-
dent variables were wide enough to ensure a good predictive
performance of the ANN [2]. Detailed descriptive statistics
(maximum, minimum, data range, average value, and stan-
dard deviation) of the WGET-SWH database we used for
training are shown in Table 1.
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TaBLE 1: Descriptive statistics of the variables for 915 samples of in service WGET-SWHs. Reproduced with permission from Liu et al. [2].

Ttems Tube length Number of TCD Tank volume Collectozr area Anogle Finala temp.  op
(mm) tubes (mm) (kg) (m”) O (O

Maximum 2200 64 151 403 8.24 85 62 11.3

Minimum 1600 5 60 70 1.27 30 46 6.7

Data range 600 59 91 333 6.97 55 16 4.6

Average value 1811 21 76.2 172 2.69 46 53 8.9

Zteajllai?;i 87.8 5.8 5.1 47.0 0.73 3.89 2.0 0.48

TCD: tube center distance; final temp.: final temperature; HCR: heat collection rate (M]J/ m?). Tank volume was defined as the maximum mass of water in tank (kg).

TABLE 2: Number of selected values of different independent variables (extrinsic properties). Reproduced with permission from Liu et al. [23].

Tube length Number of TCD Tank volume Collector area Angle  Final temp.
(mm) tubes (mm) (kg) (m?) ") (o)
Number of selected 5 30 111 50 5 17

values

TCD: tube center distance; final temp.: final temperature.

TaBLE 3: Input variables of two newly designed WGET-SWHs. Reproduced with permission from Liu et al. [23].

Tube length (mm) Number of tubes TCD (mm) Tank volume (kg) Collector area (m?) Angle (°)  Final temp. (°C)
Design A 1800 18 105.5 163 1.27 30 52-62
Design B 1800 20 105.5 307 1.27 30 52-62

TCD: tube center distance; final temp.: final temperature.

TABLE 4: Measured heat collection rates (MJ/m?) of the two novel
designs. All the measurements were performed under the
environmental conditions similar to those of the measurements
for the previous database (Table 1). Reproduced with permission
from Liu et al. [23].

Day Day Day D Tor

ay Average Predicted Er

1 2 3 4 rate
Design A 11.38 11.26 11.34 11.29 11.32 1147  1.35%
Design B 11.47 11.43 11.42 11.45 11.44 11.66 1.90%

4.2. A Rational Generation of Possible Inputs. A rational gen-
eration of inputs of the ANN during the HTS process is also
crucial to ensure a quick HTS with less time consumption.
Without a rational criterion, there will be infinite possible
combinations, which will lead to infinite computational
cost. In our current study, we found that a quick way is
to generate the inputs according to the trained weights
of each independent variables: the independent variable
with a higher numerical weight of the model will be
assigned more possible values as the input of ANN during
prediction. The basic assumption is that a larger value of
weight will lead to a more significant change to the
predicted results. In Liu et al. [23], we show that the tank
volume has the highest weight to determine the heat
collection rate, which also qualitatively agreed with the
empirical knowledge. Thus, we generated more inputs of
tank volume with different numerical values for the HTS

process. Table 2 shows the numbers of selected values of
independent variables for screening the optimized WGET-
SWHs via an HTS process [23]. Except for the final temper-
ature, the number of values of all the independent variables
was assigned according to their sequences of weight after a
typical and robust ANN training. In terms of the inputs of
final temperature, since it is not a part of the SWH installa-
tion, we consider all its possible integers shown in the data-
base (Table 1) as the inputs for HTS. It should be noted that
the weight values of a trained ANN do not contain exact
physical meanings because the initial weights for an ANN
training were usually selected randomly. Multiple trainings
of ANN will lead to different final weight values. Thus, in
addition to referring to the trained weight values, sometimes
we should artificially assign more possible input values
for the independent variables that are physically more
influential to the predicted results. For other weight-free
algorithms (e.g., SVM), artificial choices for inputs are
particularly important.

4.3. Experimental Validation. With the inputs of the gener-
ated independent variable values, the machine learning
model is able to output their predicted heat collection
rates in an extremely short timescale. After screening,
those designs with high predicted heat collection rates
can be recorded as the candidates for future applications.
In our recent studies, two typical designs after an HTS
process were selected for experimental installations, with
their independent variables summarized in Table 3.
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FIGURE 5: A proposed framework of machine learning-assisted HTS process for target performance optimization. Independent variables are
assigned as “ind.” Dependent variables are assigned as “dep.” {A,,} represents the original experimental database. {B;,} represents the
generated independent variables as the inputs. {B;,(new)} represents the generated independent variables and their predicted dependent
variables. {C,,} represents the new experimental database combining the original experimental database and the experimental validation

results of the screened candidates.

Rigorous experimental measurements on these two new
designs validated that both of them outperformed all our
915 WGET-SWHs in the previous database under similar
environmental conditions (Table 4). More comparative
results are shown in [23].

4.4. A Framework for HTS-Based Optimization. The pro-
posed framework for HTS-based optimization mainly con-
sists of two parts: (i) developing a predictive model and (ii)
screening possible candidates. The machine learning model
is described as a “black box” in this framework since we
do not need to know what really happens inside the
training for real applications (and usually we care more
about the fitting results). The concrete algorithmic and
experimental processes of the proposed framework can
be summarized as follows:

Step 1: Select the independent and dependent variables
for the machine learning model.

Step 2: Train and test a predictive machine learning
model with a proper experimental database.

Step 3: Generate a large number of the combinations of
independent variable values.

Step 4: Input the generated independent variables into
the well-trained predictive model.

Step 5: Screen and record the outputted dependent vari-
able values and their corresponding independent
variable values that fulfill all the screening
criterions.

Step 6: Select the candidates from the results of Step 5 for
experimental validation.

Step 7: Record the experimental results from Step 6.

To sum up, the proposed framework is shown in Figure 5.
It can be seen that once all the preconditions of the



“cylinders” discussed above are fulfilled, a completed
machine learning-assisted process can be achieved. The ulti-
mate goal of the screening is to find out better candidates
with optimized target performance. These candidates will
have the independent variables different (or partially differ-
ent) from the previous experimental database. Combining
the previous experimental database with the experimental
validation on new designed candidates, we can construct a
new experimental database with more informative knowl-
edge for future applications. It should be noted that this
framework not only works for solar energy systems but also
works for the optimization cases of other devices. We expect
that this framework can be expanded to other optimization
demands in the future.

5. Conclusions

In this paper, we have summarized our recent studies on the
predictive performance of machine learning on an energy
system and proposed a framework of SWH design using a
machine learning-based HTS method. This framework con-
sists of (i) developing a predictive model and (ii) screening
possible candidates. A combined computational and experi-
mental case study on WGET-SWH shows that this frame-
work can help efficiently design new WGET-SWH with
optimized performance without knowing the complicated
knowledge of the physical relationship between the SWH set-
tings and the target performances. We expect that this study
can fill the blank of the HTS applications on optimizing
energy systems and provide new insight on the design of
high-performance energy systems.
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