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Copyright © 2016 K. S. Nisar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The object of this paper is to study and develop the generalized fractional calculus operators involving Appell’s function 𝐹
3
(⋅) due to

Marichev-Saigo-Maeda. Here, we establish the generalized fractional calculus formulas involving Bessel-Struve kernel function
𝑆
𝛼
(𝜆𝑧), 𝜆, 𝑧 ∈ C to obtain the results in terms of generalized Wright functions. The representations of Bessel-Struve kernel

function in terms of exponential function and its relation with Bessel and Struve function are also discussed. The pathway integral
representations of Bessel-Struve kernel function are also given in this study.

1. Introduction

Fractional calculus has found applications in various and
extensive fields of engineering and science such as electro-
magnetics, fluid mechanics, signals processing, and control
theory. It has been used to model physical and engineering
processes that are found to be best described by fractional dif-
ferential equations. Recent researches observed that the solu-
tions of fractional-order differential equations could model
real-life situations better, particularly in reaction-diffusion-
type problems. Due to the potential applicability to a wide
variety of problems, fractional calculus is developed to a large
area of mathematics and other engineering applications [1–
4]. The fractional integral operator involving several special
functions has found great importance and applications in
many subfields such as statistical distribution theory, control
theory, fluid dynamics, stochastic dynamical system, nonlin-
ear biological systems, astrophysics, and quantummechanics
(see [5–7]).

The influence of fractional integral operators involv-
ing various special functions in fractional calculus is very
important due to its significance and applications in various
subfields of applied mathematical analysis. Many studies
related to the fractional calculus are found in the papers of

Love [8], McBride [9], Agarwal and Nieto [10], Kalla [11],
Kalla and Saxena [12, 13], Saigo [14–16], Saigo andMaeda [17],
and Kiryakova [18]. A comprehensive explanation of such
operators is given byMiller and Ross [19] and Kiryakova [18].

Recently, researchers investigated and studied about the
fractional integration formulas for the Bessel function and
generalized Bessel functions (see [20, 21]). The generaliza-
tion of Bessel function and its applications in fractional
transforms are found in [22, 23]. A useful generalization of
the hypergeometric fractional integrals, including the Saigo
operators ([14–16]), has been introduced by Marichev [24]
(see details in Samko et al. [25, page 194]) and later extended
and studied by Saigo and Maeda ([17, page 393]) in terms of
any complex order with Appell function 𝐹

3
(⋅) in the kernel,

as follows.
Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾 ∈ C and 𝑥 > 0; then the generalized

fractional calculus operators involving the Appell function
are defined as follows:

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑓) (𝑥) =

𝑥
−𝛼

Γ (𝛾)
∫

𝑥

0

(𝑥 − 𝑡)
𝛾−1

⋅ 𝑡
−𝛼
󸀠

𝐹
3
(𝛼, 𝛼
󸀠
, 𝛽, 𝛽
󸀠
; 𝛾; 1 −

𝑡

𝑥
, 1 −

𝑥

𝑡
)𝑓 (𝑡) 𝑑𝑡,

(1)
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(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,−
𝑓) (𝑥) =

𝑥
−𝛼
󸀠

Γ (𝛾)
∫

∞

𝑥

(𝑡 − 𝑥)
𝛾−1

⋅ 𝑡
−𝛼
𝐹
3
(𝛼, 𝛼
󸀠
, 𝛽, 𝛽
󸀠
; 𝛾; 1 −

𝑡

𝑥
, 1 −

𝑥

𝑡
)𝑓 (𝑡) 𝑑𝑡,

(2)

with Re(𝛾) > 0. For more details about the above operators,
see [17, 24]. The generalized fractional integral operators
of the type (1) and (2) have been introduced by Marichev
[24] and later extended and studied by Saigo and Maeda
[17] (this operator known as the Marichev-Saigo-Maeda
operator). For the definition of the Appell function 𝐹

3
(
⋅

⋅ ) the
interested readers may refer to the monograph by Srivastava
and Karlson [26] (see also Erdélyi et al. [27] and Prudnikov et
al. [28]). The applications of fractional integral operators are
found in many papers ([19, 22, 29–31]). The following results
given in [17, 32] are needed in sequel.

Lemma 1. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌 ∈ C such that Re(𝛾) > 0 and

Re (𝜌) > max {0,Re (𝛼 − 𝛼
󸀠
− 𝛽 − 𝛾) ,Re (𝛼󸀠 − 𝛽

󸀠
)} . (3)

Then there exists the relation

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

) (𝑥)

= Γ[

𝜌, 𝜌 + 𝛾 − 𝛼 − 𝛼
󸀠
− 𝛽, 𝜌 + 𝛽

󸀠
− 𝛼
󸀠

𝜌 + 𝛽
󸀠
, 𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
, 𝜌 + 𝛾 − 𝛼

󸀠
− 𝛽

]𝑥
𝜌−𝛼−𝛼

󸀠
+𝛾−1

,

(4)

where

Γ [

𝑎, 𝑏, 𝑐

𝑑, 𝑒, 𝑓
] =

Γ (𝑎) Γ (𝑏) Γ (𝑐)

Γ (𝑑) Γ (𝑒) Γ (𝑓)
. (5)

Lemma 2. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌 ∈ C such that Re(𝛾) > 0 and

Re (𝜌) < 1

+min {Re (−𝛽) ,Re (𝛼 + 𝛼
󸀠
− 𝛾) ,Re (𝛼 + 𝛽

󸀠
− 𝛾)} .

(6)

Then there exists the relation

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,−
𝑡
𝜌−1

) (𝑥) = Γ[

1 − 𝜌 − 𝛾 + 𝛼 + 𝛼
󸀠
, 1 − 𝜌 + 𝛼 + 𝛽

󸀠
, 1 − 𝜌 − 𝛽

1 − 𝜌, 1 − 𝜌 + 𝛼 + 𝛼
󸀠
+ 𝛽 + 𝛽

󸀠
− 𝛾, 1 − 𝜌 + 𝛼 − 𝛽

]𝑥
𝜌−𝛼−𝛼

󸀠
+𝛾−1

. (7)

The generalized Wright hypergeometric function
𝑝
𝜓
𝑞
(𝑧)

is defined by the series

𝑝
𝜓
𝑞
(𝑧) =

𝑝
𝜓
𝑞
[

[

(𝑎
𝑖
, 𝛼
𝑖
)
1,𝑝

(𝑏
𝑗
, 𝛽
𝑗
)
1,𝑞

𝑧 ]

]

=

∞

∑

𝑘=0

∏
𝑝

𝑖=1
Γ (𝑎
𝑖
+ 𝛼
𝑖
𝑘)

∏
𝑞

𝑗=1
Γ (𝑏
𝑗
+ 𝛽
𝑗
𝑘)

𝑧
𝑘

𝑘!
.

(8)

Here 𝑎
𝑖
, 𝑏
𝑗

∈ C, and 𝛼
𝑖
, 𝛽
𝑗

∈ R (𝑖 = 1, 2, . . . , 𝑝; 𝑗 =

1, 2, . . . , 𝑞). Asymptotic behavior of this function for large
values of argument of 𝑧 ∈ C was studied in [33] and under
the condition

𝑞

∑

𝑗=1

𝛽
𝑗
−

𝑝

∑

𝑖=1

𝛼
𝑖
> −1 (9)

in [34–38]. The Bessel and modified Bessel functions of
first kind, the Struve function 𝐻

𝜐
(𝑧), and modified Struve

function 𝐿
𝜐
(𝑧) possess power series representation of the

form [39]

𝐽
𝜐 (𝑧) =

∞

∑

𝑘=0

(−1)
𝑘
(𝑧/2)
2𝑘+𝜐

Γ (𝑘 + 𝜐 + 1) 𝑘!
,

𝐼
𝜐 (𝑧) =

∞

∑

𝑘=0

(𝑧/2)
2𝑘+𝜐

Γ (𝑘 + 𝜐 + 1) 𝑘!
,

𝐻
𝜐 (𝑧)

= (
𝑧

2
)

𝜐+1 ∞

∑

𝑘=0

(−1)
𝑘

Γ (𝑘 + 3/2) Γ (𝑘 + 𝜐 + 1/2)
(
𝑧

2
)

2𝑘

,

𝐿
𝜐 (𝑧)

= (
𝑧

2
)

𝜐+1 ∞

∑

𝑘=0

1

Γ (𝑘 + 3/2) Γ (𝑘 + 𝜐 + 1/2)
(
𝑧

2
)

2𝑘

.

(10)

The Bessel-Struve kernel 𝑆
𝛼
(𝜆𝑧), 𝜆 ∈ C, [40] which

is unique solution of the initial value problem 𝑙
𝛼
𝑢(𝑧) =

𝜆
2
𝑢(𝑧) with the initial conditions 𝑢(0) = 1 and 𝑢

󸀠
(0) =

𝜆Γ(𝛼 + 1)/(√𝜋Γ(𝛼 + 3/2)), is given by 𝑆
𝛼
(𝜆𝑧) = 𝑗

𝛼
(𝑖𝜆𝑧) −

𝑖ℎ
𝛼
(𝑖𝜆𝑧), ∀𝑧 ∈ 𝐶, where 𝑗

𝛼
and ℎ
𝛼
are the normalized Bessel

and Struve functions.
Moreover, the Bessel-Struve kernel is a holomorphic

function on C × C and it can be expanded in a power series
in the form

𝑆
𝛼
(𝜆𝑧) =

∞

∑

𝑛=0

(𝜆𝑧)
𝑛
Γ (𝛼 + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + 𝛼 + 1)
. (11)

The present paper is organized as follows. The com-
position of integral transforms (1) and (2) with Bessel-
Struve kernel function and the relation between Bessel-
Struve function and other functions are given in Section 2.
Section 3 investigates the pathway fractional integration of
the Bessel-Struve kernel function and finally the concluding
remark is drawn in Section 4.
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2. Fractional Integral Formulas

In this section we will investigate the composition of integral
transforms (1) and (2) with the Bessel-Struve kernel function
defined in (11).

Theorem 3. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌, 𝑝, 𝑏, 𝑐, 𝜆, ] ∈ C. Suppose that
Re(𝛾) > 0 and Re(𝜌 + 𝑛) > max{0,Re(𝛼 + 𝛼󸀠 +𝛽− 𝛾),Re(𝛼󸀠 −
𝛽
󸀠
)}.Then

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

𝑆] (𝜆𝑡)) (𝑥) = 𝑥
𝜌+𝛾−𝛼−𝛼

󸀠
−1 Γ (] + 1)

√𝜋

×
4Ψ4

[
[
[

[

(
1

2
,
1

2
) , (𝜌, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
− 𝛽, 1) , (𝜌 + 𝛽

󸀠
− 𝛼
󸀠
, 1)

(] + 1,
1

2
) , (𝜌 + 𝛽

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼

󸀠
− 𝛽, 𝑛)

𝜆𝑥

]
]
]

]

.

(12)

Proof. Applying (11) and using the definition (1) to (12), we
get

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

𝑆] (𝜆𝑡)) (𝑥)

= (𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+

∞

∑

𝑛=0

(𝜆)
𝑛
Γ (] + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + ] + 1)
𝑡
𝜌+𝑛−1

)

⋅ (𝑥) .

(13)

By changing the order of integration and summation,

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

𝑆] (𝜆𝑡)) (𝑥)

=

∞

∑

𝑛=0

(𝜆)
𝑛
Γ (] + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + ] + 1)
(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌+𝑛−1

)

⋅ (𝑥) .

(14)

Hence replacing 𝜌 by 𝜌 + 𝑛 in Lemma 1, after some simplifi-
cation, we obtain the following expression:

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

𝑆] (𝜆𝑡)) (𝑥) =

∞

∑

𝑛=0

Γ (] + 1) Γ ((𝑛 + 1) /2) 𝜆
𝑛

√𝜋𝑛!Γ (𝑛/2 + ] + 1)

⋅

Γ (𝜌 + 𝑛) Γ (𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼
󸀠
− 𝛽) Γ (𝜌 + 𝑛 + 𝛽

󸀠
− 𝛼
󸀠
)

Γ (𝜌 + 𝑛 + 𝛽󸀠) Γ (𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼󸀠) Γ (𝜌 + 𝑛 + 𝛾 − 𝛼󸀠 − 𝛽)

⋅ 𝑥
𝜌+𝑛+𝛾−𝛼−𝛼

󸀠
−1

=
𝑥
𝜌+𝛾−𝛼−𝛼

󸀠
−1

√𝜋
Γ (] + 1)

∞

∑

𝑛=0

Γ (𝑛/2 + 1/2)

Γ (𝑛/2 + ] + 1)

⋅

Γ (𝜌 + 𝑛) Γ (𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼
󸀠
− 𝛽) Γ (𝜌 + 𝑛 + 𝛽

󸀠
− 𝛼
󸀠
)

Γ (𝜌 + 𝑛 + 𝛽󸀠) Γ (𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼󸀠) Γ (𝜌 + 𝑛 + 𝛾 − 𝛼󸀠 − 𝛽)

⋅
(𝑥𝜆)
𝑛

𝑛!

(15)

whose last summation, in view of (8), is easily seen to arrive
at the expression (12).

Theorem 4. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌, 𝑝, 𝑏, 𝑐, 𝜆, ] ∈ C. Suppose that
Re(𝛾) > 0 and Re(𝜌 − 𝑛) < 1 + min{Re(−𝛽),Re(𝛼 + 𝛼

󸀠
−

𝛾),Re(𝛼 + 𝛽
󸀠
− 𝛾)}.Then

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,−
𝑡
𝜌−1

𝑆] (
𝜆

𝑡
)) (𝑥)

=
𝑥
𝜌−𝛼−𝛼

󸀠
+𝛾−1

√𝜋
Γ (] + 1)

×
4Ψ4

[
[
[

[

(
1

2
,
1

2
) , (1 − 𝜌 − 𝛾 + 𝛼 + 𝛼

󸀠
, 1) , (1 − 𝜌 + 𝛼 + 𝛽

󸀠
, 1) , (1 − 𝜌 − 𝛽

󸀠
, 1)

(] + 1,
1

2
) , (1 − 𝜌, 1) , (1 − 𝜌 + 𝛼 + 𝛼

󸀠
+ 𝛽 + 𝛽

󸀠
− 𝛾, 1) , (1 − 𝜌 + 𝑛 + 𝛼 + 𝛽, 1)

𝜆𝑥

]
]
]

]

.

(16)
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Proof. Using (2) and (11) and then changing the order of
integration and summation,

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,−
𝑡
𝜌−1

𝑆] (
𝜆

𝑡
)) (𝑥)

=

∞

∑

𝑛=0

(𝜆)
𝑛
Γ (] + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + ] + 1)
(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,−
𝑡
𝜌−𝑛−1

)

⋅ (𝑥) .

(17)

Using Lemma 2, after a little simplification, we obtain the
following expression:

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,−
𝑡
𝜌−1

𝑆] (
𝜆

𝑡
)) (𝑥)

=

∞

∑

𝑛=0

(𝜆)
𝑛
Γ (] + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + ] + 1)

Γ (1 − 𝜌 − 𝑛 − 𝛾 + 𝛼 + 𝛼
󸀠
) Γ (1 − 𝜌 − 𝑛 + 𝛼 + 𝛽

󸀠
) Γ (1 − 𝜌 − 𝑛 − 𝛽)

Γ (1 − 𝜌 − 𝑛) Γ (1 − 𝜌 − 𝑛 + 𝛼 + 𝛼󸀠 + 𝛽 + 𝛽󸀠 − 𝛾) Γ (1 − 𝜌 − 𝑛 + 𝛼 + 𝛽)
𝑥
𝜌−𝑛−𝛼−𝛼

󸀠
+𝛾−1

=
𝑥
𝜌−𝛼−𝛼

󸀠
+𝛾−1

√𝜋

Γ (] + 1) Γ ((𝑛 + 1) /2)

Γ (𝑛/2 + ] + 1)

Γ (1 − 𝜌 + 𝑛 − 𝛾 + 𝛼 + 𝛼
󸀠
) Γ (1 − 𝜌 + 𝑛 + 𝛼 + 𝛽

󸀠
) Γ (1 − 𝜌 + 𝑛 − 𝛽)

Γ (1 − 𝜌 + 𝑛) Γ (1 − 𝜌 + 𝑛 + 𝛼 + 𝛼󸀠 + 𝛽 + 𝛽󸀠 − 𝛾) Γ (1 − 𝜌 + 𝑛 + 𝛼 + 𝛽)

(𝑥𝜆)
𝑛

𝑛!
.

(18)

In view of (8), we obtained the desired result (16).

2.1. Representation of Bessel-Struve Kernel Function in terms
of Exponential Function. In this subsection we represent
the Bessel-Struve function in terms of exponential func-
tion. Also, we derive the Marichev-Saigo-Maeda operator
representation of these special cases. The representation
of Bessel-Struve kernel function in terms of exponential
function is

𝑆
−1/2 (𝑥) = 𝑒

𝑥
, (19)

𝑆
1/2 (𝑥) =

−1 + 𝑒
𝑥

𝑥
. (20)

Now, we have the following theorems.

Theorem 5. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌, 𝑝, 𝑏, 𝑐, 𝜆 ∈ C. Suppose that
Re(𝛾) > 0 and Re(𝜌 + 𝑛) > max{0,Re(𝛼 + 𝛼󸀠 +𝛽− 𝛾),Re(𝛼󸀠 −
𝛽
󸀠
)}.Then

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

𝑒
𝑡
) (𝑥) = 𝑥

𝜌−𝛼−𝛼
󸀠
+𝛾−1

×
3Ψ3

[

[

(𝜌, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼
󸀠
− 𝛽, 1) , (𝜌 + 𝛽

󸀠
− 𝛼
󸀠
, 1) , (1 − 𝜌 − 𝛽

󸀠
, 1)

(𝜌 + 𝛽
󸀠
, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼

󸀠
− 𝛽, 1)

𝑥]

]

. (21)

Proof. From (1), (19), and the definition of Bessel-Struve
kernel function (11), we have

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

𝑒
𝑡
) (𝑥)

= (𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

∞

∑

𝑛=0

Γ (−1/2 + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 − 1/2 + 1)
𝑡
𝑛
)

⋅ (𝑥)

=

∞

∑

𝑛=0

Γ (1/2) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ ((𝑛 + 1) /2)
(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌+𝑛−1

) (𝑥) .

(22)

This together with Lemma 1 yields

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

𝑒
𝑡
) (𝑥) = 𝑥

𝜌−𝛼−𝛼
󸀠
+𝛾−1

∞

∑

𝑛=0

𝑥
𝑛

𝑛!
Γ [

𝜌 + 𝑛, 𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼
󸀠
− 𝛽, 𝜌 + 𝑛 + 𝛽

󸀠
− 𝛼
󸀠

𝜌 + 𝑛 + 𝛽
󸀠
, 𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼

󸀠
, 𝜌 + 𝑛 + 𝛾 − 𝛼

󸀠
− 𝛽

] (23)

which is the desired result.

Theorem 6. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌, 𝑝, 𝑏, 𝑐, 𝜆 ∈ C. Suppose that
Re(𝛾) > 0 and Re(𝜌 + 𝑛) > max{0,Re(𝛼 + 𝛼󸀠 +𝛽− 𝛾),Re(𝛼󸀠 −
𝛽
󸀠
)}.Then
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(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

(
−1 + 𝑒

𝑡

𝑡
)) (𝑥) = 𝑥

𝜌−𝛼−𝛼
󸀠
+𝛾−1

×
4Ψ4

[
[
[

[

(
1

2
,
1

2
) , (𝜌, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
− 𝛽, 1) , (𝜌 + 𝛽

󸀠
− 𝛼
󸀠
, 1)

(
1

2
,
3

2
) , (𝜌 + 𝛽

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼

󸀠
− 𝛽, 1)

𝑥

]
]
]

]

.

(24)

Proof. The proof of the fractional integration formula (24)
would run parallel to the proof of (21) by considering (20).
Therefore, we omit the details.

2.2. Relation between Bessel-Struve Kernel Function and Bessel
and Struve Function of First Kind. In this subsection we show
the relation between 𝑆

𝛼
(𝑥) andmodifiedBessel function 𝐼

𝜐
(𝑥)

and modified Struve function 𝐿
𝜐
(𝑥) by choosing particular

values of 𝛼:

𝑆
0
(𝑥) = 𝐼

0
(𝑥) + 𝐿

0
(𝑥) , (25)

𝑆
1
(𝑥) =

2𝐼
1
(𝑥) + 𝐿

1
(𝑥)

𝑥
. (26)

In the coming two theorems, we give the fractional
integral representations of (25) and (26).

Theorem 7. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌, 𝑝, 𝑏, 𝑐, 𝜆 ∈ C. Suppose that
Re(𝛾) > 0 and Re(𝜌 + 𝑛) > max{0,Re(𝛼 + 𝛼󸀠 +𝛽− 𝛾),Re(𝛼󸀠 −
𝛽
󸀠
)}.Then

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

(𝐼
0
(𝑡) + 𝐿

0
(𝑡))) (𝑥) =

𝑥
𝜌−𝛼−𝛼

󸀠
+𝛾−1

√𝜋

×
4Ψ4

[
[
[

[

(
1

2
,
1

2
) , (𝜌, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
− 𝛽, 1) , (𝜌 + 𝛽

󸀠
− 𝛼
󸀠
, 1)

(
1

2
, 1) , (𝜌 + 𝛽

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼

󸀠
− 𝛽, 1)

𝑥

]
]
]

]

.

(27)

Proof. Applying (26) and using the definition (1) to (27), we
get

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

0
(𝐼
0 (𝑡) + 𝐿

0 (𝑡))) (𝑥)

= (𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

∞

∑

𝑛=0

Γ (1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + 1)
𝑡
𝑛
) (𝑥)

=

∞

∑

𝑛=0

Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + 1)
(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌+𝑛−1

) (𝑥) .

(28)

Using Lemma 1, we obtain

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

0
(𝐼
0 (𝑡) + 𝐿

0 (𝑡))) (𝑥) =
𝑥
𝜌−𝛼−𝛼

󸀠
+𝛾−1

√𝜋

⋅

∞

∑

𝑛=0

Γ ((𝑛 + 1) /2)

Γ (𝑛/2 + 1)

𝑥
𝑛

𝑛!

⋅ Γ [
𝜌 + 𝑛, 𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼

󸀠
− 𝛽, 𝜌 + 𝑛 + 𝛽

󸀠
− 𝛼
󸀠

𝜌 + 𝑛 + 𝛽
󸀠
, 𝜌 + 𝑛 + 𝛾 − 𝛼 − 𝛼

󸀠
, 𝜌 + 𝑛 + 𝛾 − 𝛼

󸀠
− 𝛽

] .

(29)

The use of (8) will give the desired result (27).

Theorem 8. Let 𝛼, 𝛼󸀠, 𝛽, 𝛽󸀠, 𝛾, 𝜌, 𝑝, 𝑏, 𝑐, 𝜆 ∈ C. Suppose that
Re(𝛾) > 0 and Re(𝜌 + 𝑛) > max{0,Re(𝛼 + 𝛼󸀠 +𝛽− 𝛾),Re(𝛼󸀠 −
𝛽
󸀠
)}.Then

(𝐼
𝛼,𝛼
󸀠
,𝛽,𝛽
󸀠
,𝛾

0,+
𝑡
𝜌−1

(2𝐼
1
(𝑡) + 𝐿

1
(𝑡))

𝑡
) (𝑥) =

𝑥
𝜌−𝛼−𝛼

󸀠
+𝛾−1

√𝜋

×
4Ψ4

[
[
[

[

(
1

2
,
1

2
) , (𝜌, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
− 𝛽, 1) , (𝜌 + 𝛽

󸀠
− 𝛼
󸀠
, 1)

(
1

2
, 1) , (𝜌 + 𝛽

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼 − 𝛼

󸀠
, 1) , (𝜌 + 𝛾 − 𝛼

󸀠
− 𝛽, 1)

𝑥

]
]
]

]

.

(30)
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Proof. The details of the proof are omitted because it runs as
parallel as the proof of (27).

3. Pathway Fractional Integration of
Bessel-Struve Kernel Function

The pathway fractional integral operator was introduced and
studied by Mathai [41] and Nair [42] and developed further
by Mathai and Haubold ([43, 44]) as follows.

Let 𝑓(𝑥) ∈ 𝐿(𝑎, 𝑏), 𝜂 ∈ 𝐶, 𝑅(𝜂) > 0, 𝑎 > 0 and the
pathway parameter 𝛼 < 1; then

(𝑃
(𝜂,𝛼)

0+
𝑓) (𝑥)

= 𝑥
𝜂
∫

[𝑥/𝑎(1−𝛼)]

0

1 − [
𝑎 (1 − 𝛼) 𝑡

𝑥
]

𝜂/(1−𝛼)

𝑓 (𝑡) 𝑑𝑡.

(31)

For a real scalar 𝛼, the pathway model for scalar random
variables is represented by the following probability density
function (p.d.f.):

𝑓 (𝑥) = 𝑐 |𝑥|
𝛾−1

[1 − 𝑎 (1 − 𝛼) |𝑥|
𝛿
]
𝛽/(1−𝛼) (32)

provided that −∞ < 𝑥 < ∞, 𝛿 > 0, 𝛽 ≥ 0, [1 − 𝑎(1 −

𝛼)|𝑥|
𝛿
] > 0, and 𝛾 > 0, where 𝑐 is the normalizing constant

and 𝛼 is called the pathway parameter (for details, see [42]).
Here, we investigate the composition formula of integral

transformoperator due toNair, which is expressed in terms of
the generalizedWright hypergeometric function, by inserting
the generalized Bessel-Struve kernel 𝑆

𝛼
(𝜆𝑧) which is defined

in (11). The results given in this section are based on the
preliminary assertions given by composition formula of
pathway fractional integral (31) with a power function.

Lemma 9 (see [42]). Let 𝜂 ∈ 𝐶, Re(𝜂) > 0, 𝛽 ∈ 𝐶, and 𝛼 < 1.
If Re(𝛽) > 0 and Re(𝜂/(1 − 𝛼)) > −1, then

{𝑃
(𝜂,𝛼)

0+
[𝑡
𝛽−1

]} (𝑥)

=
𝑥
𝜂+𝛽

[𝑎 (1 − 𝛼)]
𝛽

Γ (𝛽) Γ (1 + 𝜂/ (1 − 𝛼))

Γ (1 + 𝜂/ (1 − 𝛼) + 𝛽)
.

(33)

Now, we have the following theorems.

Theorem 10. Let 𝜂, 𝜎, 𝑝, 𝑏, 𝑐, 𝜆 ∈ C and 𝛼 < 1 such that
Re(𝜂) > 0, Re(𝜎) > 0, Re(𝜎+𝑛) > 0, andRe(𝜂/(1−𝛼)) > −1;
then the following formula holds:

(𝑃
(𝜂,𝛼)

0+
[𝑡
𝜎−1

𝑆] (𝜆𝑡)]) (𝑥)

= 𝑥
𝜂+𝜎

Γ (] + 1) 𝜇 (1 + 𝜂/ (1 − 𝛼))

√𝜋 [𝑎 (1 − 𝛼)]
𝜎+𝑝+1

×
2Ψ2

[
[
[

[

(
1

2
,
1

2
) , (𝜌, 1)

(] + 1,
1

2
) , (1 +

𝜂

1 − 𝛼
+ 𝜎, 1)

; 𝜆𝑥

]
]
]

]

.

(34)

Proof. Applying (11) and (31) and changing the order of
integration and summation, we get

(𝑃
(𝜂,𝛼)

0+
[𝑡
𝜎−1

𝑆] (𝜆𝑡)]) (𝑥)

= (𝑃
(𝜂,𝛼)

0+
[𝑡
𝜎−1

∞

∑

𝑛=0

𝜆
𝑛
Γ (𝛼 + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + 𝛼 + 1)
𝑡
𝑛
]) (𝑥)

=

∞

∑

𝑘=0

𝜆
𝑛
Γ (] + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + ] + 1)
(𝑃
(𝜂,𝛼)

0+
{𝑡
(𝑛+𝜎)−1

}) (𝑥) .

(35)

Using the conditions mentioned in the statement of the
theorem and 𝑘 ∈ 𝐾

0
, 𝑅(𝑝 + 𝑛) > 0, Re(𝜂/(1 − 𝛼)) > −1.

Applying Lemma 9 and using (33) with 𝛽 replaced by 𝜎 + 𝑛,
we get

(𝑃
(𝜂,𝛼)

0+
[𝑡
𝜎−1

𝑆] (𝜆𝑡)]) (𝑥)

=

∞

∑

𝑘=0

𝜆
𝑛
Γ (] + 1) Γ ((𝑛 + 1) /2)

√𝜋𝑛!Γ (𝑛/2 + ] + 1)

𝑥
𝜂+𝛼

[𝑎 (1 − 𝛼)
𝜎+𝑛

]

⋅
Γ (𝜎 + 𝑛) Γ (1 + 𝜂/ (1 − 𝛼))

Γ (1 + 𝜂/ (1 − 𝛼) + 𝜎 + 𝑛)

=
𝑥
𝜂+𝛼

Γ (] + 1) Γ (1 + 𝜂/ (1 − 𝛼))

√𝜋 [𝑎 (1 − 𝛼)
𝜎
]

⋅

∞

∑

𝑘=0

Γ (𝑛/2 + 1/2) Γ (𝜎 + 𝑛)

Γ (𝑛/2 + ] + 1) Γ (1 + 𝜂/ (1 − 𝛼) + 𝜎 + 𝑛)

(𝑥𝜆)
𝑛

𝑛!

(36)

which gives the desired result.

By considering the relations given in (19) and (20),
we obtain various new integral formulas for Bessel-Struve
functions involved in the pathway fractional integration
operators.

Theorem 11. Let 𝜂, 𝜎, 𝑝, 𝑏, 𝑐 ∈ 𝐶 and 𝛼 < 1 such that Re(𝜂) >
0, Re(𝜎 + 𝑛) > 0, and Re(𝜂/(1 − 𝛼)) > −1; then the following
formula holds:

(𝑃
(𝜂,𝛼)

0+
[𝑡
𝜎−1

𝑒
𝑡
]) (𝑥)

= 𝑥
𝜂+𝜎

Γ (1 + 𝜂/ (1 − 𝛼))

[𝑎 (1 − 𝛼)]
𝜎

×
1Ψ1

[

[

(𝜎, 1)

(1 + 𝜎 +
𝜂

1 − 𝛼
, 1)

𝑥

[𝑎 (1 − 𝛼)]

]

]

.

(37)

Proof. Applying (19) and using (31) with the help of Lemma 9
we can easily prove (37), so the details are omitted.
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Theorem 12. Let 𝜂, 𝜎, 𝑝, 𝑏, 𝑐 ∈ 𝐶 and 𝛼 < 1 such that Re(𝜎 +

𝑛) > 0 and Re(𝜂/(1 − 𝛼)) > −1; then the following formula
holds:

(𝑃
(𝜂,𝛼)

0+
[𝑡
𝜎−1−1 + 𝑒

𝑡

𝑡
]) (𝑥) = 𝑥

𝜂+𝜎
Γ (1 + 𝜂/ (1 − 𝛼))

2 [𝑎 (1 − 𝛼)]
𝜎

×
2Ψ2

[
[

[

(
1

2
,
1

2
) , (𝜎, 1)

(
1

2
,
1

2
) , (1 + 𝜎 +

𝜂

1 − 𝛼
, 1)

𝑥𝜆

[𝑎 (1 − 𝛼)]

]
]

]

.

(38)

Proof. The details of proof are omitted because the result (38)
can easily derive as similar as the procedure of the proof of
Theorem 10 using (20), (11), and (31).

Remark 13. As similar as the method discussed in
Theorem 10, one can easily derive the pathway integral
representation of (25) and (26).

4. Conclusion

Fractional integral formulas involving Bessel-Struve kernel
function 𝑆

𝛼
(𝜆𝑧), 𝜆, 𝑧 ∈ C have been developed and studied

in this paper. The pathway integral representations Bessel-
Struve kernel function and its relation between many other
functions are also derived in this study.The results thus given
in this paper are general in character and likely to find some
applications in the theory of special functions.
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