
Research Article
FPGA-Aware Scheduling Strategies at Hypervisor Level in
Cloud Environments

Julio Proaño Orellana,1 Blanca Caminero,1 Carmen Carrión,1 Luis Tomas,2

Selome Kostentinos Tesfatsion,2 and Johan Tordsson2

1Computing Systems Department, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
2Department of Computing Science, Umeå University, 901 87 Umeå, Sweden

Correspondence should be addressed to Julio Proaño Orellana; julio.proano@alu.uclm.es

Received 25 March 2016; Revised 13 May 2016; Accepted 22 May 2016

Academic Editor: Florin Pop

Copyright © 2016 Julio Proaño Orellana et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Current open issues regarding cloud computing include the support for nontrivial Quality of Service-related Service Level
Objectives (SLOs) and reducing the energy footprint of data centers. One strategy that can contribute to both is the integration
of accelerators as specialized resources within the cloud system. In particular, Field Programmable Gate Arrays (FPGAs) exhibit
an excellent performance/energy consumption ratio that can be harnessed to achieve these goals. In this paper, a multilevel cloud
scheduling framework is described, and several FPGA-aware node level scheduling strategies (applied at the hypervisor level) are
explored and analyzed.These strategies are based on the use of a multiobjective metric aimed at providing Quality of Service (QoS)
support. Results show how the proposed FPGA-aware scheduling policies increment the number of users requests serviced with
their SLOs fulfilled while energy consumption is minimized. In particular, evaluation results of a use case based on a multimedia
application show that the proposal can save more than 20% of the total energy compared with other baseline algorithms while a
higher percentage of Service Level Agreement (SLA) is fulfilled.

1. Introduction

Nowadays, the processing computational resources have
shown an important change to achieve a balance between
performance and power consumption. Devices such as GPUs
and FPGAs among others are integrated as specialized
processing elements into cloud environments to extend the
capacity of the cloud.

FPGAs are commercial off-the-shelf reconfigurable sil-
icon devices that achieve hardware-like performance with
software-like flexibility. These are facts of great interest in
the context of cloud computing. Cloud mainly leverages
virtualization technology (i.e., virtual machines) to manage
resources of a data center. Thus, providers can share the
physical resources between clients.

In this context, resource scheduling is a critical issue that
can contribute to increasing the benefits of cloud platforms.
On one hand, depending on how many resources are allo-
cated to different users’ requests for service, more or fewer
requests can be serviced while fulfilling their SLA. This fact

impacts the benefits obtained by the cloud provider. On the
other hand, additional advantages can exist, such as achieving
a positive effect on the data center energy consumption.
The combination of both implies getting a better Return on
Investment (ROI) from the infrastructure which is crucial
when serving Software as a Service (SaaS) requests with QoS
requirements. Typically, a SaaS user issues a request for a
specific service, with particular QoS-related constraints (i.e.,
a deadline).The user does not need to be aware of which type
and how many resources are required to get its response. The
system must be able to allocate and schedule the necessary
resources (both in quantity and type) to serve this request.

This paper addresses the scheduling of jobs within a
cloud infrastructure which is composed of heterogeneous
physical nodes (with and without FPGA accelerators) from
a hierarchical point of view. In this structure the two levels of
scheduling are

(1) the Cluster Level Scheduler (CLS), to decide the type
of node where the virtual machine (VM) that will
serve the request will be deployed,

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 4670271, 12 pages
http://dx.doi.org/10.1155/2016/4670271



2 Scientific Programming

(2) the Node Level Scheduler (NLS), to decide which one
of the VMs allocated to the node will get the use of the
accelerators (FPGAs in particular) available in a node.

The problem of high-level scheduling among physical
nodes, referred to asCLS, has previously been addressed by the
authors in [1, 2].Now, thiswork focuses on the impact of differ-
ent scheduling strategieswithin a physical nodewith FPGAre-
sources, which are applied at the hypervisor level. In a nut-
shell, the main contributions of the paper are the following:

(i) to extend the hypervisor functionality to support
dynamic control of FPGA devices as cloud computa-
tional resources,

(ii) to propose a novel FPGA-awareNode Level Scheduler
(NLS) metric aimed at QoS provision while reducing
energy consumption,

(iii) to present a novel fine-grained FPGA-aware Node
Level Scheduler,

(iv) to evaluate the Node Level Scheduler proposals in a
real testbed, comparing them to some simple sched-
uler techniques.

This paper is structured as follows. Sections 1 and 2
introduce and motivate the problem being tackled. Section 3
reviews literature related to the topic of the paper. The
framework where the presented research has been carried
out is outlined in Section 4. Next, Section 5 provides the
details on how accelerators (and in particular, FPGAs) are
included into the scheduling strategies, and the additional
fine-grained level of scheduling is introduced in Section 6.
The evaluation of results are presented in Section 7. Finally,
Section 8 provides some concluding remarks.

2. Background and Motivation

During the last few years, cloud computing has consolidated
as a paradigm that enables a flexible and on-demand use
of IT resources at different levels (infrastructure, platform,
or software) as a service. Typical cloud providers support
their service by means of massive data centers (usually
spread around the globe), while cloud users get access to the
resources with a pay-per-use model. This is referred to as a
public cloud model. The cloud computing paradigm can also
be appliedwithin an organization, leading to the private cloud
deployment model. Resources are pooled and shared among
the different organization user groups to meet their demands
on IT resources. In either case (public or private), cloud
computing platforms are composed of pools of computing,
storage, and networking resources that are made available
as a service to their users. Service Level Agreements (SLAs)
are established between providers and users, to specify the
conditions of the service, both from technical (availability,
Quality of Service, . . .) and formal (cost of the service,
penalties in case of contract breach, . . .) points of view.

Many challenges exist in this model that turn out to
be the focus of many research projects, such as efficient
resource management [3], security and privacy concerns
[4], or standardization [5], just to name a few of them. In
particular, some kind of orchestration is needed in order
to allocate the adequate resources to every user request [6].

As it has been pointed out before, cloud providers face the
following dilemma: admitting more users into the system
would lead tomore incomes, but if the available resources are
not enough for fulfilling the established SLAs, penalizations
will cut benefits down. Thus, care must be taken when
admitting more users into the system.

From another point of view, data center’s energy con-
sumption is nowadays a big concern. Energy costs are amajor
contributor to a data center’s Total Cost of Ownership (TCO)
[7].Thus, strategies to improve data center’s efficiency are the
topic of many research efforts, such as adjusting the voltage
supplied to servers according to their workload [8] or even
creating specific hardware designs [9]. One strategy that can
provide benefits regarding energy consumption as well as
performance in data centers is the integration of accelerators
as specialized resources within the cloud infrastructure [10],
such as General Purpose Graphics Processing Units (GPG-
PUs) or Field Programmable Gate Arrays (FPGAs).

FPGAs allow cloud computing data centers to scale up in
a more efficient way than using just conventional processors
[11]. It is interesting to note that the initiatives towards build-
ing exascale systems with low-energy consumption driven by
the European Union (EU) are based on the integration of
FPGAs with ARM processors [12].

However, using heterogeneous resources in cloud envi-
ronments is still an open challenge, as illustrated by the work
presented byMicrosoft in [13]. Frequently, cloud applications
which are running on VMs with a fixed amount of hardware
resources including accelerators do not use the same number
of them all the time due to their features. Thus, a proper
scheduling strategy might help to optimize the utilization of
these resources.

Moreover, different applications could benefit from the
FPGA over time, depending on their degree of compliance
with QoS requirements. To achieve this objective, the FPGA
should be properly shared among competing service requests.

3. Related Work
Incorporation of FPGAs in the cloud context is a relatively
new area of research. So, the Catapult project [13] led by
Microsoft represents the first detailed investigation of apply-
ing FPGAs within an enterprise-level data center application.
In this case, FPGA-accelerated nodes are used for the Bing
web search engine. Results show great improvements in both
the latency and the throughput of the service.

Nevertheless, FPGA-aware scheduling in a cloud envi-
ronment is still at initial stages. Integrating FPGAs as
first class computational resources to provide cloud service
demands novel high-level programming models to simplify
the development of software applications, maximizing com-
munication to FPGAs, and the development of efficient
FPGA-aware scheduling algorithms.

One crucial step to efficiently run applications across
heterogeneous hardware is to provide optimized versions
of computational kernels (as BLAS routines or FFT) [14].
OpenCL [15], VIVADO [16], and Lime [17] are high-level
programming models focused on reducing the time-to-
market in the designing process.

In addition, providing FPGAs as cloud computing
resources demands virtualization support in hardware with



Scientific Programming 3

Heterogeneous Cloud Computing layer (HECCO)

Virtual Infrastructure Manager (VIM)

Scheduling
node level

VM1 VM2 VM3

Clients

Management
layer

Deployment
layer

Hypervisor
layer

Heterogeneous
resources CPU CPU FPGA CPU CPU CPU GPU FPGA CPU

Node 1 Node 2 Node 3

Scheduler cluster level

Hypervisor

Scheduling
node level

VM1 VM2 VM3

Hypervisor

Scheduling
node level

VM1 VM2 VM3

Hypervisor

Figure 1: Architecture overview.

near-native performance. Open source interface frameworks
have recently emerged (RIFFA [18], DyRACT [19]) that
enable FPGA designs to be accessed through an abstracted
software API on the host with communication throughput
between the host and FPGA close to the limits of modern
PCIe interfaces.

Moreover, efficient resourcemanagements and scheduling
algorithms are open key challenges to providing FPGA cloud
services. The scheduling of jobs faces a multiobjective opti-
mization problem in the process of assigning jobs to a pool
of limited resources. Resource management and scheduling
have been a hot research topic in a cloud context, and many
approaches have been proposed to place the VMs to physical
CPUhosts. A survey of themost recent proposals aboutmeta-
heuristic scheduling solutions for cloud can be found in [20].

In this context, cloud-centric integration of FPGAs
frameworks is developed in [11, 21] by extending the open
source cloud management system OpenStack [22]. The sys-
tems support the on-demand deployment of a user designed
custom hardware while maintaining the cloud computing
benefits of scalability and flexibility. The bitstream of the
application is considered as a special VM image. So, FPGAs
are eligible as computational resources by the clients.

Another recent related work presents a framework that
integrates FPGAs in a standard server with virtualized
resourcemanagement and communication [23].The resource
management selects the smallest reconfigurable FPGA area
able to attend the request. If no one is found, the user request
is rejected, and the request can be processed in software. As
an application case study, they built a MapReduce accelerator
for word counting and preliminary results are evaluated
about integrating FPGA devices in the cloud using partial
reconfiguration.

At some points, the systems mentioned above can be
complementary to the work presented in this paper because
all of them focusing on supporting FPGAs as computational
cloud devices. But in contrast, in our case FPGAs are not
visible to the clients. The idea is to provide a QoS Software as
a Service by making efficient use of FPGA-aware scheduling
algorithms. Our work focuses on developing a cloudmanage-
ment framework able to scale up and down FPGA devices in
a dynamical way.

4. Hierarchical Scheduler
Architecture Overview

In previous works [1, 2] the problem of integrating FPGAs
into a cloud was faced by “HECCO” (Heterogeneous Cloud
Computing) architecture. In those approaches, every node of
the cloud system is composed of one or more CPUs with a
certain number of cores each and zero or more accelerators.
Frequently, the number of accelerators available within a
node is lower than the number of CPU cores available.
Therefore, they must be shared between clients. HECCO
enables the provision of IaaS and SaaS services with Quality
of Service (QoS) requirements.

In this work, the proposal architecture leveraged the use
of accelerators to (a) finish job tasks within a particular time
frame in order to fulfill their QoS requirements, expressed
as Service Level Objectives (SLO) within a Service Level
Agreement (SLA), and (b) reduce the energy footprint of
cloud data centers.

The whole picture of the framework is depicted in
Figure 1. It is organized into several layers:

(i) The Management Layer is responsible for receiving
client requests and selecting the most suitable node



4 Scientific Programming

Cluster level scheduler

Node level scheduler

Task 
1
Task 

1 Task 
1 Task 

n

VM1

VM2

CPU0 + FPGA0

CPU1 + FPGA1 

VM3

VM4

VM5

VMn

Bag of tasks

Lists of tasks
(node level scheduler)

Node level scheduler
(NLS)

CPU2 + FPGA2 

CPU0 + CPU1 

CPU2 + CPU3

T1 T2 T3

Cluster level scheduler
(CLS)

T1

T2

T3

T4

T5

Node: CPUs + FPGAs

Lists of tasks
(cluster level scheduler)

CPUn

Figure 2: Different scheduling levels.

to allocate their applications. Each request is defined
by a template in which parameters such as the type of
service and the utilization time are defined.This layer
is composed of the Heterogeneous Cloud Computing
(HECCO), which includes the Cluster Level Sched-
uler (CLS).

As outlined above, it provides the “intelligence” to ful-
fill the QoS requirements expressed by clients within
their SLAs. In particular, the CLS implements a series
of mechanisms that are mainly aimed at allocating
every request to the most appropriate resource (i.e.,
a node with or without accelerators). Its decision is
based on the client’s SLA and the availability of the
resources.

More details on the management layer can be found
in [2].

(ii) The Deployment Layer, which receives instructions
from the management layer, is responsible for per-
forming actions such as the creation and monitoring
of the whole virtual environment. It has a complete
view of the cloud and is composed of the Virtual
Infrastructure Manager (VIM). The VIM is a cen-
tralized data center manager that allows to build and
manage the cloud environment.

(iii) The Hypervisor Layer provides the control of the
physical resources. This layer has a local view of
the system and is composed of a hypervisor, which
is responsible for the supervision of the VMs and
resources for each node. This layer also contains a
Node Level Scheduler (NLS) that is responsible for
sharing the local resources within a node. In this
case, the scheduling’s decision is focused on the
management of the use of the accelerators within each
node, in order to get the most out of them.

More details about this element are provided in
Section 5.

Figure 2 depicts the two different levels of scheduling.
First, the CLS receives the tasks and selects the most suitable
node to allocate each of them, following the strategies
proposed in [2]. Second, the NLSmanages the tasks allocated
to a specific node.

More precisely, it selects the task which is going to receive
the accelerator and for how long, by certain metrics.

In other words, given the fact that there may be more vir-
tual machines allocated to a node than accelerators available,
which virtual machine will deserve the use of an accelerator?
In the rest of this work, some insight will be given on this
issue.

5. Node Level Scheduling

In this section we will focus on the dynamic scheduling
strategy for allocated jobs within a node and timing-related
indicators, such as a deadline. This deadline is related to
when the job must have finished in order to deem its SLA
as fulfilled.

The main objective of the node level scheduling strategy
is twofold: first, to meet application SLOs and second, to con-
sume as less energy as possible. To achieve thismultiobjective,
the scheduling algorithm is aware of the properties of the
physical nodes and due to the good performance and low-
cost energy offered by the FPGAs, the scheduling maximizes
their utilization.

Basically, the algorithm uses a heuristic process for
assigning the physical resources inside the node (FPGAs and
CPUs) to the virtual machines that will be deployed at each
point of time. It is worth tomention that the use of this simple
algorithm avoids the overhead of the system. Recall that the
NLS is implementedwithin the hypervisor and should be able
to run with minimal computational resources.



Scientific Programming 5

Require: Task
𝑖
, 𝑖 = 1, 2, . . . , 𝐾: Task 𝑇

𝑖
to be executed in the local node

ListTask = Set of tasks
metric(Task

𝑖
): function which computes the metric for task Task

𝑖

include(Task
𝑖
, ListTask): function which includes Task

𝑖
in ListTask

rank(ListTask): function which sorts ListTask according to the selected metric
top(ListTask): function which extracts the first VM from ListTask

(1) loop
(2) Wait until FPGA status == Free
(3) for each Task

𝑖
/𝑖 ∈ 1 ⋅ ⋅ ⋅ 𝑁 do

(4) Task
𝑖
.metric = metric(Task

𝑖
)

(5) include(Task
𝑖
, ListTask)

(6) rank(ListTask)
(7) end for
(8) VMfirst = top(ListTask)
(9) attach FPGA to VMfirst
(10) end loop

Algorithm 1: Node level scheduling algorithm.

In other words, a matching is done between computa-
tional resources and tasks (deployed as VMs) minimizing the
computational impact. On one side, the scheduler algorithm
has as input a list of tasks (𝑇1, 𝑇2, . . .), assigned by the
CLS algorithm, with all the nonattended job requests that
have been received in the node (see Figure 2). On the
other side, each time a computational virtual resource is
released in the node, the scheduler is notified and a matching
process is done. Then, a resource driven algorithm selects
the best candidates to match resources according to some
efficient metric. This scheduling is called a coarse-grained
scheduling because FPGAresources are busy (not available for
allocation) until the end of an assigned task.

In addition, in this paper, a multiobjective metric is
proposed and computed as the fraction of the computational
work of a task and the deadline or time available to finish it
up in order to fulfill the SLA.

Therefore, the multiobjective metric measures the com-
putational workload demanded on the node over the time;
that is, it provides a measure of the computational stress. And
it is a fact that the higher the computational requirements, the
more the energy consumption.That is why the task withmost
demanding requirements ismatched to an FPGA resource. In
other words, the algorithmmatches the most demanding job
according to this criterion to theVMwith FPGA accelerators.

The computationalwork parameter involved in themetric
reflects the workload that must process the VM. Then, we
need to apply some criteria to calculate this value. For
example, in our experiments with multimedia applications
this parameter is computed as the number of video frames to
be processed. Other examples are data-encryption services,
where this parameter could be the size of the data that will be
encrypted, or social network analysis services, where it could
be the number of tweets stored in a log file. Techniques such as
application profiling and using data fromprevious executions
are frequently used to estimate this value.

The other parameter used in the metric is the deadline
that is established by the client in the SLA.

To sumup, the node level scheduling process works as fol-
lows (see Algorithm 1): First, the selected metric is computed
for each task. Next, the scheduler sorts all tasks based on
that metric and the FPGA is assigned to the most demanding
task. This process is repeated every time the FPGA becomes
available. To achieve this goal, the status of the FPGA is
periodically monitored. This synchronization process is an
important issue in the overall scheduling process. Thus,
some implementation details will be explained in the next
subsection.The algorithm is aware of the heterogeneity of the
node, because the most demanding task is executed in a VM
deployed with FPGA resources.

5.1. Implementation Details. FPGAs are physically plugged
into computing nodes via the PCI express bus. The commu-
nication between VMs and the FPGAs is made through the
Intel Virtualization Technology for Directed I/O (VT-d) [24],
which is an extension of the Intel Virtualization Technology.
It allows a direct exchange of data between I/O devices and
VMs.

As pointed out above, a strategy able to control the
communication between the Node Level Scheduler (NLS)
and the VMs currently running in the node is required.
So, an FPGA synchronization service has been developed
which consists of an exchange of status messages between
the NLS and every VM deployed in the node. The full node
information is wrapped into a “JSON” [25] data structure
because it is easy to parse. The NLS is implemented as a
daemon. It is constantly listening to the status information
from the VMs currently deployed at the node. Each VM also
has a daemon, which is periodically monitoring the status
of the FPGA (whether an FPGA is attached to the VM or
not). Besides, the VMs periodically send their identification
and the progress of the running applications through anUDP
socket connection to the NLS. If a VM is using an FPGA, its
status is also forwarded to the scheduler bymeans of updating
a “status file.”

Figure 3 depicts the process of reassigning the FPGA to
different VMs. In this example, the FPGA is initially attached



6 Scientific Programming

FPGA VM1 Scheduler
(node level)

Hypervisor

FPGA has finished

FPGA free Detach FPGA from VM1

FPGA detached

Attach FPGA to VM2

Attach FPGA to VM2

FPGA in use

VM2

Figure 3: FPGA synchronization service example.

to VM1. Then, when computation on the FPGA ends, VM1
updates the status of the FPGA as “free.” As a result, the
NLS learns this state and gets aware of the fact that the
reassignment process can be made safely. At this point the
NLS can detach the FPGA from the current VM and attach it
to another VM (i.e., the one in the head of the list of pending
requests) through the hypervisor. The VM which finds an
FPGA attached to it (VM2, in this case) immediately uses it
and updates its status accordingly.

We use KVM [26] as hypervisor. It enables the manage-
ment of the FPGA because it supports hot-plug devices with
VT-d. So, it is a must that the underlying hardware supports
VT-d.TheNLSuses the “device add” [27] command to attach
the FPGA to a particular VM. Also, when the FPGA has
fulfilled a request, the NLS uses “device del” [27] to release
the FPGA.

The NLS is not only focused on the FPGA assignment,
it also considers the CPUs. In this case, the NLS matches
VMs to physical CPUs using First-Fit criteria. Moreover, the
scheduler uses the “taskset” [28] linux command to set the
CPU affinity of a running process given its identification
(PID). So, each VM has a PID and the CPU affinity “bonds”
this process to the first available CPU. This is made in order
to avoid swapping when a VM is assigned to different cores
along time. Finally, due to the complexity of coding FPGAs,
the RIFFA framework offered by Jacobsen and Kastner in [18]
has been used to develop the hardware acceleration design.

In Section 7.3 the evaluation of this strategy is shown.

6. Fine-Grained Strategy

In the previous section, the Node Level Scheduler decides
to assign the FPGA to a VM and the FPGA is not released
until the end of the task running in that VM. But it might
be the case that the task does not need to be accelerated
during its whole runtime in order to fulfill its deadline.

Moreover, it might occur that other tasks (which initially was
not placed at the head of the list due to the value of its metric)
would depend on the use of the FPGA to fulfill its deadline.
Thus, reconsidering the allocation of the FPGA with a finer
granularity could improve the number of fulfilled SLAs and,
consequently, improve the system ROI. Under this context,
a strategy which consists of dividing each task into smaller
subtasks (called “chunks”) has been explored. A trade-off
between the execution time of a chunk and the frequency of
checkpoints must be taken into account to decide the size of a
chunk.The rationale is to reschedule the FPGAmore often, so
that more tasks can potentially benefit from the acceleration
and power efficiency of the FPGA.

More precisely, all the chunks have the same requirements
of computational workload, but different deadline restric-
tions. Figure 4 shows how a task with size 𝑆 and deadline 𝐷
is divided into three chunks, with sizes 𝑠

1
, 𝑠

2
, 𝑠

3
and deadline

𝐷. Chunk size is set according to the characteristics of the
application that implements the task. This can be a certain
amount of data to be processed or any other application
relevant parameter. As an example, for the video processing
service, the chunk size is set as a certain number of video
frames to process.

Thus, Node Level Scheduler decisions on the use of the
FPGA are taken every time and a VM finishes the processing
of a chunk (see check point in Figure 4). In the current
implementation, this is done every minute. The Node Level
Scheduler selects the best candidate VM and attaches the
FPGA to it as is depicted in Figure 5.The process is similar as
in the previous case but now communication and scheduling
are done at the chunk level. It is worth to notice that the
application is completely independent and parallelizable.
What it means is that the application receives a group of
data as input and when the task has been finished the system
sends the result as output. For acceleration process a wrapper
function is used tomap the application that will use CPU and



Scientific Programming 7

Task Size: S

Chunk 1 Chunk 2 Chunk 3

Time: deadline (D) 

Time: deadline (D)

Check
point 2

Check
point 1

s1 s2
s3

s1 = s2 = s3

Figure 4: Division of a task to chunks.

FPGA at the same time because it is different than the one
who is only running over a CPU. All the VMs of a node can
take advantages of the FPGA’s features and the whole node
can keep the performance while the energy consumption is
reduced.

In Section 7.3, some experiments are made showing the
necessity to adopt a balanced criteria for all requests due to
the fact that FIFO leads to lack of efficiency.

7. Evaluation

To evaluate the impact of the scheduling algorithms proposed
in this paper some experiments have been carried out on
a Heterogeneous Cloud Computing testbed environment,
with a real application case study. Details on the platform,
application, and workload are given next, prior to explaining
some evaluation results.

All the experiments have been run on a real testbed,
depicted in Figure 6.

Hardware is composed of an Intel Core i5 with 6Gb of
DRAM and an FPGAVirtex 6 by Xilinx (aML605 Evaluation
Kit, based on the powerful XC6VLX-240T-1FFG1156 [29]).

Additionally, as a way to measure the energy the testbed
includes a power consumptionmonitor node.More precisely,
the WattsUp PRO [30] power meter has been used. This
device aims to provide an independentmanaged and accessed
power data collecting mechanism. This device must be
positioned between the computing node power supply and
the main power plug, as shown in Figure 6. The output
data can be recorded into a file according to a predefined
interval or when particular events occur (i.e., when the power
consumption exceeds a threshold previously configured). In
our experiments, the monitoring frequency has been setup to
one sample per second.

7.1. Application. As real use case application an Image Con-
volution Software (ICS) is used as a service provided by
cloud. This application consists on convolving an image with
a filter or kernel (integer value) in both directions horizontal
and vertical. This technique can be applied also to process
sequences of video. Different type of filters can be used
depending on the target. For our experiments we use a Sobel
filter to process a sequence of video. This video is an AVI file

with resolution 720 × 384. The application has two versions,
the first one runs over a CPU and the another one over a
combination between CPU and FPGA.

7.2.Workload. In order to generate a realistic cloud workload
we have run the real ICS application and monitored its
behavior. Thus, for every test, a bag of tasks (20) was created.
Each of these requests are defined by two parameters: the
deadline of the task and the number of videos to process
(which relates to the amount of data to be processed by the
task). There are two types of service requests, depending on
how demanding their deadline. The first type of requests is
based on more relaxed deadline requirements (referred to
as soft requirements, SR), while the second type of requests
exhibits a more demanding deadline (referred to as high
requirements, HR).

The HR requests are more challenging than SR because
they require to fulfill stricter deadlines and specific resources
such as FPGAs to ensure the QoS-related SLOs.

To set up the deadline of each service request, we have
previously characterized the application. Basically, the Sobel
filter application has been run on the cloud using different
computational resources for different video sequences. In this
step, the number of frames, the power consumption, and
the time have been stored. Thus, we have got the profile of
each video stream. Then, the deadline is assigned to each
input request as a random value between the execution
times obtained in the profile with a margin of tolerance.
For instance, for a video stream composed of three chunks
the deadline could be a random value between 450 and 480
seconds while for nine chunks, the values are between 1400
and 1430.

To emulate the behavior of cloud clients, the input
requests rate follows a Poisson distribution 𝜆 = 1/𝑡interval.The
𝑡interval is the arrival time of the next requests and it was tuned
for this concrete scenario to avoid an early saturation.

Moreover, three types of bags of tasks have been created,
depending on the ratio between SR and HR requests. Note
that the same input request rate has been used for the different
types of bags of task, only the deadline of the requests
has been modified, in order to get a fair comparison of
the scheduling algorithms under evaluation. In particular,
workloads include 10%, 25%, and 50% of HR requests.

7.3. Evaluation for Coarse-Grained Scheduling. To carry out
a performance evaluation of the novel multiobjective metric
proposed in Section 5 hereinafter called Highest-Job-First
(HJF), QoS compliance and energy consumption are taken
into account. Moreover, for the sake of comparison both a
random (RND) (with none consideration for QoS require-
ments) and an Earliest-Deadline-First (EDF) scheduling
algorithm (the VM with closest deadline gets the FPGA use,
independently of the amount of data to be processed) have
also been implemented.

In order to understand the behavior of the whole system
we have selected several groups of metrics.

Thefirst one describes the behavior of thewhole system. It
is composed of the total energy used for the system to process
a bag of tasks (energy-to-solution [31]).



8 Scientific Programming

Task 1

Task 2

Task 3

Task 4

Task n

Node
level
scheduler

VM0 VM1 VM2

CPU0
and 

FPGA0

Task 3
Part 2

Task 3
Part 3

VMn

Task n
Part n Assignation of tasks 

to resources

CPU1

Task 3
Part 1

CPU2

Resources

CPUn

Task 3
divided by chunks

Figure 5: Scheduler by chunks.

Tasks

Tasks

FPGA
VM 
1VM

VM4

Node

Power
meter

Clients

PCIe

Power
supply

Cloud provider

Tasks

Figure 6: Cloud computing experimental testbed.

Table 1: Energy (KJoules) for different scheduling criteria.

% HR request FPGA assignation criteria
RND EDF HJF

10% 648 638 614
25% 653 638 616
50% 657 639 634

The second group is relative to SLA compliance, the
percentage of SLA fulfilled successfully, and the average
energy invested per fulfilled SLA.

And the last one is focused on application performance,
namely, the average number of frames successfully processed
per unit of time (fps).

Table 1 shows energy consumed by the system. Results
show that the HJF and EDF metrics reduce the energy-to-
solution for all the type of bags of tasks with respect to the
RND baseline algorithm.

Hence, from these results we can point out that the FPGA-
aware Node Level Scheduler should use a QoS-aware metric.

Nevertheless, before getting a clue time an energy-to-
solution should be analyzed together with the number of
SLAs fulfilled. Table 2 shows the percentage of fulfilled SLAs

Table 2: Percentage of fulfilled SLAs for different scheduling
criteria.

% HR requests FPGA assignation criteria
RND EDF HJF

10% 85% 85% 90%
25% 75% 80% 85%
50% 60% 65% 70%

for the different scheduling techniques. Results show thatHJF
gets more fulfilled SLA for all the input workloads.

Figure 7 shows the cost per SLA measured as the energy
consumed. In all the cases, the cost per SLA increases with the
percentage of high requirements. These result from the fact
that some unlucky scheduling decisions can affect in a quite
negative way the future tasks. The allocation of the FPGA to
the most demanding task will change the state of the FPGA
to nonfree for a period of time. Then, if the physical node
receives a quite demanding task over this period of time, as
no preemption of task is possible, the new request only can
run in CPU resources. This can lead to a nonfulfilled SLA.
Finally, regarding the performance as is shown in Figure 8 the
amount of frames per second keeps an acceptable level even
whenmore demanding requests are processed. So, in the next



Scientific Programming 9

0
10
20
30
40
50
60
70
80

10 25 50

En
er

gy
/S

LA
 fu

lfi
lle

d

RND
EDF

HJF

High requirements percentage (%)

Figure 7: Energy (KJoules) per number of fulfilled SLAs.

RND
EDF

HJF

0

50

100

150

200

250

300

10 25 50

N
um

be
r o

f f
ra

m
es

/ti
m

e

High requirements percentage (%)

Figure 8: Number of successfully processed frames per second.

sectionwewill evaluate our solution (fine-grained scheduling
see Section 6) to address this problem.

7.4. Evaluation for Fine-Grained Scheduling. In this section
the fine-grained scheduling strategy proposed in Section 6
will be evaluated. Evaluation conditions are the same as
detailed in Section 7. Recall that now the task is subdivided
into chunks and the FPGA assignation mechanism is job-
aware.

Table 3 shows that the energy tends to rise with the per-
centage of high requirements requests (these metrics present
the same behavior as in previous evaluation). However, the
energy per SLA fulfilled decreases 35% for theHJF scheduling
strategy in comparison with the other strategies (RND, EDF)
(see Figure 9). Results also show that the energy relative to
the number of fulfilled SLAs tends to decrease which means
a save of effective energy. Thus, the combination of both an
FPGA as an accelerator and an efficient scheduling strategy
allows the system to save energy. The reason is the system’s
selection of the most suitable resources for each request and
the speedup of the FPGA with lower energy impact. On the
other hand, the percentage of fulfilled SLAs (see Table 4)
shows a slightly upward trend (20%) for the HJF scheduling
with 50% of high requirements. What it means is that the
system is able to keep an acceptable ratio of SLA fulfilled.

Figure 10 shows the performance of the system in terms
of the number of processed frames per second. The use of

Table 3: Energy (KJoules) for different scheduling criteria (fine-
grained).

% HR requests FPGA assignation criteria
RND EDF HJF

10% 686 665 626
25% 694 699 646
50% 774 772 696

Table 4: Percentage of SLAs fulfilled for different FPGA assignation
criteria (fine-grained).

% HR requests FPGA assignation criteria
RND EDF HJF

10% 90% 95% 95%
25% 80% 80% 85%
50% 55% 70% 75%

0
10
20
30
40
50
60
70
80

10 25 50

En
er

gy
/S

LA
 fu

lfi
lle

d

High requirements percentage (%)

RND
EDF

HJF

Figure 9: Energy (KJoules) per number of fulfilled SLAs (fine-
grained).

the proposed HJF strategy clearly outperforms the RND and
obtains similar results to the EDF. However, as shown before,
this is achieved with a lower energy consumption for the HJF
metric.

7.5. Fine-Grained Scheduling Optimization. The last strategy
presented above raises the following concern: when we check
with a certain frequency which VM needs most the FPGA in
order to fulfill its requirements, why not to check also if the
deadline is past? In case the deadline of the task had arrived,
the VM would be killed. In this way, no task keeps running
after its deadline, savings on energy.

When a SLA is violated, apart from penalties, some
amount of energy is wasted because the system uses the
resources to run a task that will not successfully end before
its deadline. The system behavior shows that keeping VMs
alive has a direct effect on the total energy and number of SLA
fulfilled. Now, an optimized scheduling, where VMs running
a request whose SLA has been violated are killed, is analyzed.

In this scenario, even though the scheduling and commu-
nication issues are the same as before, energy consumption
for all the FPGA assignation strategies is reduced as shown in
Table 5.



10 Scientific Programming

Table 5: Energy (KJoules) for different scheduling criteria (opti-
mized fine-grained).

% HR requests FPGA assignation criteria
RND EDF HJF

10% 678 649 597
25% 638 619 611
50% 637 563 586

Table 6: Percentage of SLAs fulfilled for different FPGA assignation
criteria (optimized fine-grained).

% HR requests FPGA assignation criteria
RND EDF HJF

10% 90% 95% 100%
25% 80% 85% 90%
50% 65% 70% 85%

RND
EDF

HJF

0

50

100

150

200

250

300

10 25 50

N
um

be
r o

f f
ra

m
es

/ti
m

e

High requirements percentage (%)

Figure 10: Number of successfully processed frames per second
(fine-grained).

On the other hand, if we consider the effective energy
per fulfilled SLA, 40% of consumed energy is saved (see
Figure 11). In addition, the percentage of successfully fulfilled
SLAs is 15% better for HJF (see Table 6). Finally, Figure 12
shows an increase of 20% of frames per second for HJF in the
most demanding scenario (50% of high requirements).

To sum up, releasing the resources involved in the
execution of a task when its deadline is due improves the
percentage of fulfilled SLAs and increases the performance
of the cloud system while reducing the energy waste. A
comparison summary of the node level scheduling impact is
presented in Table 7.

Figure 13 shows the number of frames unsuccessfully
processed due to the SLA violation occurring. However,
the number of frames unsuccessfully processed decreases
significantly for the optimized fine-grained strategy because
it allows taking advantage of killing the VMs when their
deadline is achieved.

7.6. Evaluation Summary. Table 7 summarizes the differ-
ent results when applying the different FPGA assignation
strategies and scheduling techniques. It can be seen that

0
10
20
30
40
50
60
70
80

10 25 50

En
er

gy
/S

LA
 fu

lfi
lle

d

RND
EDF

HJF

High requirements percentage (%)

Figure 11: Energy (KJoules) per number of SLAs fulfilled (optimized
fine-grained).

0

50

100

150

200

250

300

10 25 50

N
um

be
r o

f f
ra

m
es

/ti
m

e

RND
EDF

HJF

High requirements percentage (%)

Figure 12: Number of successfully processed frames per second
(optimized fine-grained).

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

RND EDF HJF RND EDF HJF
Fine-grained Optimized fine-grained

N
um

be
r o

f f
ra

m
es

10%
25%

50%

Figure 13: Number of processed frames belonging to unsuccessful
SLAs (wasted).

for all the cases, the proposed HJF policy obtains the
best performance, in terms of SLA fulfillment and energy
consumption.Moreover, the configuration that yields the best
results is combining HJF policy with the optimized fine-
grained assignation strategy. Recall that for “fulfilled SLAs”
and “Frames processed per second,” the greater is better,
while for “Energy/fulfilled SLA” the lower is better.



Scientific Programming 11

Table 7: Summary of tests.

% of high
requirements Scheduling strategy FPGA assignation

criteria % of fulfilled SLAs Energy/fulfilled
SLA

Frames processed per
second

10%

Coarse-grained
RND 85 38 285
EDF 85 37 283
HJF 90 34 300

Fine-grained
RND 90 38 284
EDF 95 35 271
HJF 95 32 302

Optimized
fine-grained

RND 90 37 286
EDF 95 34 268
HJF 100 30 326

25%

Coarse-grained
RND 75 43 260
EDF 80 39 271
HJF 85 36 291

Fine-grained
RND 80 43 244
EDF 80 43 257
HJF 85 38 249

Optimized
fine-grained

RND 80 48 240
EDF 85 48 245
HJF 90 34 292

50%

Coarse-grained
RND 60 54 188
EDF 65 49 198
HJF 70 45 215

Fine-grained
RND 55 70 126
EDF 70 55 184
HJF 75 46 164

Optimized
fine-grained

RND 65 48 192
EDF 70 48 180
HJF 85 34 250

8. Conclusions and Future Work

We have presented a hierarchical scheduler framework to
manage heterogeneous resources within a SaaS cloud envi-
ronment. This framework is responsible for selecting on-
demand the most suitable resources for a service while keep-
ing a balance between performance and power consumption.
The key of the framework is to maximize the number of
fulfilled SLAs saving energy by making efficient use of FPGA
devices. Thus, we have proposed a novel dynamic scheduling
metric which considers a combination of the workload
of a task, its remaining time to complete the task, and
the deadline. In addition, a fine-grained accelerator-aware
scheduling has been developed and improved by releasing the
resources associated with a task as soon as the system realizes
its SLA is not going to be fulfilled.

The proposed techniques have been compared with some
well-known scheduling strategies such as Earliest-Deadline-
First and Random. Experiments carried out over a real
testbed indicate that the proposed metric together with
the optimized fine-grained scheduling strategy increases the
performance of the system even when more demanding
requirements are involved. Moreover, these techniques save

23% of the total energy while the percentage of fulfilled SLAs
is 85% under the most demanding workload conditions.This
can be explained by the fact that FPGAs (as a accelerators)
have a great ratio performance/power consumption for cer-
tain type of applications. Thus, a proper use of these devices
can be turned into benefits for clients and providers.

The efficiency of this approach can be further improved
by using more sophisticated strategies such as machine
learning algorithms. Also, as a future work we will include
thememory and networkmetrics as variables to optimize the
use of the computational resources.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Spanish Government under
Grant TIN2015-66972-C5-2-R (MINECO/FEDER) and by
Ecuadorian Government under the SENESCYT Scholarships
Project.



12 Scientific Programming

References

[1] J. P. Orellana, M. B. Caminero, and C. Carrión, “On the
provision of SaaS-level quality of service within heterogeneous
private clouds,” in Proceedings of the 7th IEEE/ACM Interna-
tional Conference onUtility and CloudComputing (UCC ’14), pp.
146–155, IEEE, London, UK, December 2014.

[2] J. Proaño, C. Carrión, and B. Caminero, “Towards a green, QoS-
enabled heterogeneous cloud infrastructure,” in Proceedings of
the 25th Heterogeneity in Computing Workshop in Conjunction
with International Parallel and Distributed Processing Sympo-
sium (HCW-IPDPS ’16), IEEE, Chicago, Ill, USA, May 2016.

[3] PANACEA: Proactive autonomic management of cloud
resources, 2016, http://www.panacea-cloud.eu/.

[4] Microsoft Research: Cloud Security&Cryptography,April 2016,
http://research.microsoft.com/en-us/projects/cryptocloud/.

[5] The Cloud Standards Wiki, http://cloud-standards.org/.
[6] R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou,

“Cloud resource orchestration programming: overview, issues,
and directions,” IEEE Internet Computing, vol. 19, no. 5, pp. 46–
56, 2015.

[7] Q. Zhang and W. Shi, “Energy-efficient workload placement in
enterprise datacenters,”Computer, vol. 49, no. 2, pp. 46–52, 2016.

[8] T. Guérout, T. Monteil, G. Da Costa, R. Neves Calheiros,
R. Buyya, and M. Alexandru, “Energy-aware simulation with
DVFS,” Simulation Modelling Practice and Theory, vol. 39, pp.
76–91, 2013.

[9] Open Compute Project, http://www.opencompute.org/.
[10] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering Cloud Com-

puting: Foundations and Applications Programming, Morgan
Kaufmann, 1st edition, 2013.

[11] F. Chen, Y. Shan, Y. Zhang et al., “Enabling fpgas in the cloud,”
in Proceedings of the 11th ACM International Conference on
Computing Frontiers (CF ’14), Cagliari, Italy, May 2014.

[12] T. Trader, EU Projects Unite on Heterogeneous ARM-Based Exa-
scale Prototype, 2016, http://www.hpcwire.com/2016/02/24/eu-
projects-unite-exascale-prototype.

[13] A. Putnam, A. M. Caulfield, E. S. Chung et al., “A reconfig-
urable fabric for accelerating large-scale datacenter services,” in
Proceedings of the ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA ’14), pp. 13–24, IEEE, Minneapo-
lis, Minn, USA, June 2014.

[14] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A unified platform for task scheduling on hetero-
geneous multicore architectures,” Concurrency Computation
Practice and Experience, vol. 23, no. 2, pp. 187–198, 2011.

[15] OpenCL,The Open Standard for Parallel Programming of Het-
erogeneous Systems, April 2016, http://www.khronos.org/
opencl/.

[16] Vivado, Vivado Design Suite, April 2016, http://www.xilinx
.com/products/design-tools/vivado/.

[17] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: a
java-compatible and synthesizable language for heterogeneous
architectures,” in Proceedings of the ACM International Confer-
ence on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’10), pp. 89–108, Reno, Nev, USA, 2010.

[18] M. Jacobsen and R. Kastner, “RIFFA 2.0: a reusable integration
framework for FPGA accelerators,” in Proceedings of the 23rd
International Conference on Field Programmable Logic and
Applications (FPL ’13), pp. 1–8, IEEE, Porto, Portugal, September
2013.

[19] K. Vipin and S. A. Fahmy, “DyRACT: a partial reconfiguration
enabled accelerator and test platform,” in Proceedings of the
24th International Conference on Field Programmable Logic
and Applications (FPL ’14), pp. 1–7, IEEE, Munich, Germany,
September 2014.

[20] C.-W. Tsai and J. J. P. C. Rodrigues, “Metaheuristic scheduling
for cloud: a survey,” IEEE Systems Journal, vol. 8, no. 1, pp. 279–
291, 2014.

[21] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “FPGAs in the cloud: booting virtualized hardware
accelerators with OpenStack,” in Proceedings of the 22nd IEEE
International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM ’14), pp. 109–116, Boston, Mass, USA,
May 2014.

[22] OpenStack, Open source software for building private and
public clouds, April 2016, https://www.openstack.org/.

[23] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA
accelerators for efficient cloud computing,” in Proceedings of the
IEEE 7th International Conference on Cloud Computing Tech-
nology and Science (CloudCom ’15), pp. 430–435, Vancouver,
Canada, November 2015.

[24] Intel, Intel Virtualization Technology of Directed I/O, Architec-
ture Specification, Rev. 2.2, 2014, http://www.intel.com/content/
www/us/en/embedded/technology/virtualization/vt-directed-
io-spec.html.

[25] D. Crockford, “The application/JSONmedia type for JavaScript
object notation (JSON),” 2006.

[26] KVM,Kernel BasedVirtualMachine (KVM), 2008, http://www
.linux-kvm.org/.

[27] WeidongHan, How to assign devices with vt-d in kvm, 2009,
http://www.linux-kvm.org/index.php?title=How to assign devi-
ces with VT-d in KVM&action=info.

[28] R. M. Love, Taskset, 2004, http://linux.die.net/man/1/taskset.
[29] Xilinx ML605, Virtex-6 FPGA ML605 Evaluation Kit, March

2016, http://www.xilinx.com/publications/prod mktg/ml605
product brief.pdf.

[30] PowerMeterStore, Power Meter Store, March 2016, http://www
.powermeterstore.com/p1206/watts up pro.php.

[31] R. da Rosa Righi, C. A. da Costa, V. F. Rodrigues, and G. Ros-
tirolla, “Joint-analysis of performance and energy consumption
when enabling cloud elasticity for synchronous HPC applica-
tions,” Concurrency and Computation: Practice and Experience,
vol. 28, no. 5, pp. 1548–1571, 2016.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


