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The numerical solution of linear Volterra-Stieltjes integral equations of the second kind by using the generalized trapezoid rule
is established and investigated. Also, the conditions on estimation of the error are determined and proved. A selected example is
solved employing the proposed method.

1. Introduction

Various issues concerning Volterra and Volterra-Stieltjes
integral equations were studied in [1–13]. Some practical
and theoretical investigations were made in paper [1] for
nonclassical Volterra integral equations of the first kind.
Also, the approximate solution for the integral equation
considered is obtained. In paper [2], various inverse problems
including Volterra operator equations were studied. Some
properties for Volterra-Stieltjes integral operators were given
in [3]. In the studies [6, 7], existence and uniqueness of
the solutions were given for Volterra integral and Volterra
operator equations of the first and the second kinds. In papers
[4, 6], quadratic integral equations of Urysohn-Stieltjes type
and their applications were investigated. Various numerical
solutionmethods for integral equations were presented in the
studies [8–13].Thenotion of derivative of a function bymeans
of a strictly increasing function was given by Asanov in [14].
In the study [15], the generalized trapezoid rule was proposed
to evaluate the Stieltjes integral approximately by employing
the notion of derivative of a function by means of a strictly
increasing function.

In this study, we investigate the numerical solution of
linear Volterra-Stieltjes integral equations of the second kind

by using the generalized trapezoid rule. Therefore, we need
the concept of the derivative defined in the works [14, 15] and
theorems connected with it.

2. Approximating Volterra-Stieltjes
Integral Equations

Consider the linear integral equation of the second kind

𝑢 (𝑥) = ∫

𝑥

𝑎

𝐾 (𝑥, 𝑠) 𝑢 (𝑠) 𝑑𝜑 (𝑠) + 𝑓 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (1)

where 𝐾(𝑥, 𝑠) is a given continuous function on 𝐺 = {(𝑥, 𝑠) :

𝑎 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏}, 𝑓(𝑥) are given continuous functions on
[𝑎, 𝑏], 𝜑(𝑠) is a given strictly increasing continuous function
on [𝑎, 𝑏], and 𝑢(𝑥) is the sought function on [𝑎, 𝑏].

Definition 1. The derivative of a function 𝑓(𝑥) with respect
to 𝜑(𝑥) is the function 𝑓



𝜑
(𝑥), whose value at 𝑥 ∈ (𝑎, 𝑏) is the

number

𝑓


𝜑
(𝑥) = lim

Δ→0

𝑓 (𝑥 + Δ) − 𝑓 (𝑥)

𝜑 (𝑥 + Δ) − 𝜑 (𝑥)

, (2)
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where 𝜑(𝑥) is a given strictly increasing continuous function
in (𝑎, 𝑏).

If the limit in (2) exists, we say that 𝑓(𝑥) has a derivative
(is differentiable) with respect to 𝜑(𝑥). The first derivative
𝑓


𝜑
(𝑥) may also be a differentiable function with respect to

𝜑(𝑥) at every point 𝑥 ∈ (𝑎, 𝑏). Then, its derivative

𝑓


𝜑
(𝑥) = (𝑓



𝜑
(𝑥))



𝜑

(3)

is called the second derivative of 𝑓(𝑥) with respect to 𝜑(𝑥).
Consequently, the 𝑛th derivative of 𝑓(𝑥) with respect to 𝜑(𝑥)

is defined by

𝑓
(𝑛)

𝜑
(𝑥) = (𝑓

(𝑛−1)

𝜑
(𝑥))



𝜑

. (4)

We need the following theorem which is given in [15].

Theorem 2. Let 𝜑(𝑥) and 𝜓(𝑥) be two strictly increasing
continuous functions on [𝑎, 𝑏] and 𝑓



𝜑
(𝑥), 𝑓



𝜓
(𝑥) ∈ 𝐶[𝑎, 𝑏].

Then,




𝐼 − 𝐴

𝑛





=

𝑀
0

12

(𝜑 (𝑏) − 𝜑 (𝑎)) (𝜔
𝜑
(ℎ))

2

+

𝑀


0

12

(𝜓 (𝑏) − 𝜓 (𝑎)) (𝜔
𝜓
(ℎ))

2

,

(5)

where

𝐼 = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝜑 (𝑥) − ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝜓 (𝑥) ,

𝑀
0
=






𝑓


𝜑
(𝑥)





𝐶

= sup
𝑥∈[𝑎,𝑏]






𝑓


𝜑
(𝑥)






,

𝑀


0
=






𝑓


𝜓
(𝑥)





𝐶

= sup
𝑥∈[𝑎,𝑏]






𝑓


𝜓
(𝑥)






,

𝜔
𝜑
(ℎ) = sup

|𝑥−𝑦|≤ℎ





𝜑 (𝑥) − 𝜑 (𝑦)





,

𝜔
𝜓
(ℎ) = sup

|𝑥−𝑦|≤ℎ





𝜓 (𝑥) − 𝜓 (𝑦)





,

𝐴
𝑛

=

1

2

𝑛

∑

𝑖=1

[𝑓 (𝑥
𝑖
) + 𝑓 (𝑥

𝑖−1
)] [𝜑 (𝑥

𝑖
) − 𝜑 (𝑥

𝑖−1
)]

−

1

2

𝑛

∑

𝑖=1

[𝑓 (𝑥
𝑖
) + 𝑓 (𝑥

𝑖−1
)] [𝜓 (𝑥

𝑖
) − 𝜓 (𝑥

𝑖−1
)] ,

(6)

and 𝑥
𝑖
= 𝑎 + 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑛, ℎ = (𝑏 − 𝑎)/𝑛, 𝑛 ∈ 𝑁 (𝑁

denotes the set of natural numbers).

Corollary 3. Let 𝜑(𝑥) be a strictly increasing continuous
function on [𝑎, 𝑏], 𝜓(𝑥) = 0 for all 𝑥 ∈ [𝑎, 𝑏] and 𝑓



𝜑
(𝑥) ∈

𝐶[𝑎, 𝑏]. Then,




𝐼 − 𝐴

𝑛





≤

𝑀
0

12

(𝜑 (𝑏) − 𝜑 (𝑎)) (𝜔
𝜑
(ℎ))

2

,





𝐼
𝑖
− 𝑀
𝑖





≤

𝑀
0

12

(𝜑 (𝑥
𝑖
) − 𝜑 (𝑥

𝑖−1
))
3

, 𝑖 = 1, 2, . . . , 𝑛,

(7)

where

𝐼
𝑖
= ∫

𝑥𝑖

𝑥𝑖−1

𝑓 (𝑥) 𝑑𝜑 (𝑥) ,

𝑀
𝑖
=

1

2

[𝑓 (𝑥
𝑖
) + 𝑓 (𝑥

𝑖−1
)] [𝜑 (𝑥

𝑖
) − 𝜑 (𝑥

𝑖−1
)] .

(8)

Theorem 4. Let 𝜑(𝑥) be a strictly increasing continuous
function on [𝑎, 𝑏], 𝐾(𝑥, 𝑠) ∈ 𝐶(𝐺), and 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏]. Then,
the integral equation (1) has a unique solution 𝑢(𝑥) ∈ 𝐶[𝑎, 𝑏]

and
‖𝑢 (𝑥)‖

𝐶
≤ 𝑐
1





𝑓 (𝑥)




𝐶

, (9)

where 𝑐
1

= exp{𝐾
0
(𝜑(𝑏) − 𝜑(𝑎))} and 𝐾

0
= ‖𝐾(𝑥, 𝑠)‖

𝐶
=

sup
(𝑥,𝑠)∈𝐺

|𝐾(𝑥, 𝑠)|.

Then, we will need the following theorem which is given
in [16].

Theorem 5. Let 𝐹(𝑥, 𝑠), 𝐹


𝜑(𝑥)
(𝑥, 𝑠) ∈ 𝐶(𝐺), 𝜑(𝑥) be strictly

increasing continuous functions on [𝑎, 𝑏], and 𝑃(𝑥) =

∫

𝑥

𝑎

𝐹(𝑥, 𝑠)𝑑𝜑(𝑠), 𝑥 ∈ [𝑎, 𝑏]. Then,

𝑃


𝜑(𝑥)
(𝑥) = 𝐹 (𝑥, 𝑥) + ∫

𝑥

𝑎

𝐹


𝜑(𝑥)
(𝑥, 𝑠) 𝑑𝜑 (𝑠) ,

𝑥 ∈ [𝑎, 𝑏] ,

(10)

where

𝐹


𝜑(𝑥)
(𝑥, 𝑠) = lim

Δ𝑥→0

𝐹 (𝑥 + Δ𝑥, 𝑠) − 𝐹 (𝑥, 𝑠)

𝜑 (𝑥 + Δ𝑥) − 𝜑 (𝑥)

,

(𝑥, 𝑠) ∈ {(𝑥, 𝑠) : 𝑎 < 𝑠 < 𝑥 < 𝑏} ,

𝑃


𝜑(𝑥)
(𝑎) = lim

Δ𝑥→0+

𝑃 (𝑎 + Δ𝑥) − 𝑃 (𝑎)

𝜑 (𝑎 + Δ𝑥) − 𝜑 (𝑎)

,

𝑃


𝜑(𝑥)
(𝑏) = lim

Δ𝑥→0−

𝑃 (𝑏 + Δ𝑥) − 𝑃 (𝑏)

𝜑 (𝑏 + Δ𝑥) − 𝜑 (𝑏)

.

(11)

Corollary 6. Let 𝑢(𝑥) ∈ 𝐶[𝑎, 𝑏] be a solution of the integral
equation (1), 𝐾

𝜑(𝑥)
(𝑥, 𝑠) ∈ 𝐶(𝐺), and 𝑓



𝜑(𝑥)
(𝑥) ∈ 𝐶[𝑎, 𝑏]. Then,

𝑢


𝜑(𝑥)
(𝑥) ∈ 𝐶[𝑎, 𝑏] and

𝑢


𝜑(𝑥)
(𝑥) = 𝐾 (𝑥, 𝑥) 𝑢 (𝑥) + ∫

𝑥

𝑎

𝐾


𝜑(𝑥)
(𝑥, 𝑠) 𝑢 (𝑠) 𝑑𝜑 (𝑠)

+ 𝑓


𝜑(𝑥)
(𝑥) ,

(12)

where 𝑥 ∈ [𝑎, 𝑏].

Corollary 7. Let 𝑢(𝑥) ∈ 𝐶[𝑎, 𝑏] be a solution of the integral
equation (1), 𝐾

𝜑(𝑥)
(𝑥, 𝑠) ∈ 𝐶(𝐺), 𝐾



𝜑(𝑥)
(𝑥, 𝑥) ∈ 𝐶[𝑎, 𝑏], and

𝑓


𝜑(𝑥)
(𝑥) ∈ 𝐶[𝑎, 𝑏]. Then, 𝑢

𝜑(𝑥)
(𝑥) ∈ 𝐶[𝑎, 𝑏] and

𝑢


𝜑(𝑥)
(𝑥) = 𝐾 (𝑥, 𝑥) 𝑢



𝜑(𝑥)
(𝑥)

+ [(𝐾 (𝑥, 𝑥))


𝜑(𝑥)
+ 𝐾


𝜑(𝑥)
(𝑥, 𝑠)





𝑠=𝑥

] 𝑢 (𝑥)

+ ∫

𝑥

𝑎

𝐾


𝜑(𝑥)
(𝑥, 𝑠) 𝑢 (𝑠) 𝑑𝜑 (𝑠) + 𝑓



𝜑(𝑥)
(𝑥) ,

(13)

where 𝑥 ∈ [𝑎, 𝑏].
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In this paper, we assume that (𝐾(𝑥, 𝑥))


𝜑(𝑥)
∈ 𝐶[𝑎, 𝑏],

𝐾


𝜑(𝑥)
(𝑥, 𝑠), 𝐾



𝜑(𝑠)
(𝑥, 𝑠) ∈ 𝐶(𝐺), and 𝑓



𝜑(𝑥)
(𝑥) ∈ 𝐶[𝑎, 𝑏]. Then,

using Theorems 4 and 5 (and Corollaries 6 and 7), we show
that the number 𝑀 defined as

𝑀 = sup
(𝑥,𝑠)∈𝐺






[𝐾 (𝑥, 𝑠) 𝑢 (𝑠)]



𝜑(𝑠)





 (14)

can be determined in terms of quantities ‖𝑓(𝑥)‖
𝐶
,

‖𝑓


𝜑
(𝑥)‖
𝐶
, ‖𝑓


𝜑
(𝑥)‖
𝐶
, ‖(𝐾(𝑥, 𝑥))



𝜑(𝑥)
‖
𝐶
, ‖𝐾


𝜑(𝑥)
(𝑥, 𝑠)‖

𝐶
,

‖𝐾


𝜑(𝑠)
(𝑥, 𝑠)‖

𝐶
, ‖𝐾


𝜑(𝑥)
(𝑥, 𝑠)‖

𝐶
, and ‖𝐾



𝜑(𝑠)
(𝑥, 𝑠)‖

𝐶
.

Under these circumstances, usingTheorem 2, the integral

∫

𝑥

𝑎

𝐾 (𝑥, 𝑠) 𝑢 (𝑠) 𝑑𝑠 (15)

can be evaluated numerically by employing the generalized
trapezoid rule.

3. Numerical Solution

In order to obtain the approximate solution of (1), we employ
the generalized trapezoid rule given in [15] to the integral in
(1). Let 𝑛 ∈ 𝑁,

ℎ =

𝑏 − 𝑎

𝑛

,

𝑥
𝑘
= 𝑎 + 𝑘ℎ,

(16)

where 𝑘 = 0, 1, . . . , 𝑛. Let us substitute 𝑥 = 𝑥
𝑘
in the integral

equation (1) and examine the following system of equations:

𝑢 (𝑥
0
) = 𝑓 (𝑥

0
) , 𝑥

0
= 𝑎,

𝑢 (𝑥
𝑘
) = ∫

𝑥𝑘

𝑎

𝐾(𝑥
𝑘
, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑓 (𝑥

𝑘
) ,

𝑘 = 1, 2, . . . , 𝑛.

(17)

To evaluate the integral term in (17), we employ the general-
ized trapezoid rule given in [15] at the nodes 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑘
.

So, we get

∫

𝑥𝑘

𝑎

𝐾(𝑥
𝑘
, 𝑠) 𝑢 (𝑠) 𝑑𝑠

=

𝑘

∑

𝑗=1

1

2

[𝐾 (𝑥
𝑘
, 𝑥
𝑗−1

) 𝑢 (𝑥
𝑗−1

) + 𝐾 (𝑥
𝑘
, 𝑥
𝑗
) 𝑢 (𝑥

𝑗
)]

⋅ [𝜑 (𝑥
𝑗
) − 𝜑 (𝑥

𝑗−1
)] +

𝑘

∑

𝑗=1

𝑅
(𝑛)

𝑗
(𝑢) ,

(18)

where





𝑅
(𝑛)

𝑗
(𝑢)






≤

𝑀

12

[𝜑 (𝑥
𝑗
) − 𝜑 (𝑥

𝑗−1
)]

3

, (19)

𝑀 = sup
(𝑥,𝑠)∈𝐺






[𝐾 (𝑥, 𝑠) 𝑢 (𝑠)]



𝜑(𝑠)







= sup
(𝑥,𝑠)∈𝐺






𝐾 (𝑥, 𝑠) 𝑢



𝜑(𝑠)
(𝑠) + 2𝐾



𝜑(𝑠)
(𝑥, 𝑠) 𝑢



𝜑(𝑠)
(𝑠)

+ 𝐾


𝜑(𝑠)
(𝑥, 𝑠) 𝑢 (𝑠)






.

(20)

Substituting (18) in (17), we get

𝑢 (𝑥
0
) = 𝑓 (𝑥

0
) , 𝑥

0
= 𝑎,

𝑢 (𝑥
𝑘
)

=

𝑘

∑

𝑗=1

1

2

[𝐾 (𝑥
𝑘
, 𝑥
𝑗−1

) 𝑢 (𝑥
𝑗−1

) + 𝐾 (𝑥
𝑘
, 𝑥
𝑗
) 𝑢 (𝑥

𝑗
)]

⋅ [𝜑 (𝑥
𝑗
) − 𝜑 (𝑥

𝑗−1
)] +

𝑘

∑

𝑗=1

𝑅
(𝑛)

𝑗
(𝑢) + 𝑓 (𝑥

𝑘
) ,

(21)

where 𝑘 = 1, 2, . . . , 𝑛.
Omitting the terms ∑

𝑘

𝑗=1
𝑅
(𝑛)

𝑗
(𝑢) appearing in each equa-

tion of system (21) and 𝑢
𝑘
≈ 𝑢(𝑥

𝑘
), we obtain

𝑢
0
= 𝑓 (𝑥

0
) , 𝑥

0
= 𝑎,

𝑢
𝑘
=

𝑘

∑

𝑗=1

1

2

[𝐾 (𝑥
𝑘
, 𝑥
𝑗−1

) 𝑢 (𝑥
𝑗−1

) + 𝐾 (𝑥
𝑘
, 𝑥
𝑗
) 𝑢 (𝑥

𝑗
)]

⋅ [𝜑 (𝑥
𝑗
) − 𝜑 (𝑥

𝑗−1
)] + 𝑓 (𝑥

𝑘
) ,

(22)

where 𝑘 = 1, 2, . . . , 𝑛.
Let us assume that

𝛼 =

1

2

sup
𝑥∈[𝑎,𝑏]

|𝐾 (𝑥, 𝑥)| 𝜔
𝜑
(ℎ) < 1, (23)

where 𝜔
𝜑
(ℎ) denotes the modulus of continuity of the

function 𝜑; that is,

𝜔
𝜑
(ℎ) = sup

|𝑥−𝑦|≤ℎ





𝜑 (𝑥) − 𝜑 (𝑦)





. (24)

Under condition (23), the systemof (22) has a unique solution
which is given by the formulas

𝑢
0
= 𝑓 (𝑎) ,

𝑢
1
= [1 −

1

2

𝐾 (𝑥
1
, 𝑥
1
) (𝜑 (𝑥

1
) − 𝜑 (𝑥

0
))]

−1

⋅ [

1

2

𝐾 (𝑥
1
, 𝑥
0
) (𝜑 (𝑥

1
) − 𝜑 (𝑥

0
)) 𝑢
0
+ 𝑓 (𝑥

1
)] ,

𝑢
𝑘
= [1 −

1

2

𝐾 (𝑥
𝑘
, 𝑥
𝑘
) (𝜑 (𝑥

𝑘
) − 𝜑 (𝑥

𝑘−1
))]

−1

⋅
[

[

1

2

𝑘−1

∑

𝑗=1

𝐾(𝑥
𝑘
, 𝑥
𝑗
) (𝜑 (𝑥

𝑗+1
) − 𝜑 (𝑥

𝑗−1
)) 𝑢
𝑗

+

1

2

𝐾 (𝑥
𝑘
, 𝑥
0
) (𝜑 (𝑥

1
) − 𝜑 (𝑥

0
)) 𝑢
0
+ 𝑓 (𝑥

𝑘
)
]

]

(25)

for 𝑘 = 2, 3, . . . , 𝑛.
We give a concrete example below.

Example 8. Let us take the integral equation (1) for 𝑎 = 0 and
𝑏 = 2 with
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𝜑 (𝑥) =

{

{

{

√𝑥, for 0 ≤ 𝑥 ≤ 1,

𝑥, for 1 < 𝑥 ≤ 2

𝐾 (𝑥, 𝑠) = 𝑎
1
(𝑥) 𝑏
1
(𝑠) , 𝑎

1
(𝑥) =

{

{

{

2√𝑥 + 1, for 0 ≤ 𝑥 ≤ 1,

2𝑥 + 1, for 1 < 𝑥 ≤ 2,

𝑏
1
(𝑠) =

{

{

{

𝑠, for 0 ≤ 𝑠 ≤ 1,

𝑠
2

, for 1 < 𝑠 ≤ 2,

(26)

and using

𝑓 (𝑥) =

{
{
{

{
{
{

{

1 −

2

3

𝑥
2

−

1

3

𝑥√𝑥, for 0 ≤ 𝑥 ≤ 1,

1 −

𝑥
3

3

(2𝑥 + 1) , for 1 < 𝑥 ≤ 2.

(27)

It is easily seen that 𝑢(𝑥) ≡ 1, 𝑥 ∈ [0, 2], is the unique solu-
tion of the integral equation (1) and the conditions 𝑓

𝜑(𝑥)
(𝑥) ∈

𝐶[0, 2], (𝐾(𝑥, 𝑥))


𝜑(𝑥)
∈ 𝐶[0, 2], 𝐾



𝜑(𝑥)
(𝑥, 𝑠), and 𝐾



𝜑(𝑠)
(𝑥, 𝑠) ∈

𝐶(𝐺) hold, where 𝐺 = {(𝑥, 𝑠) : 0 ≤ 𝑠 ≤ 𝑥 ≤ 2}.

Using the proposed method of this study, we get the
following results. Here, 20 nodes are selected; that is, 𝑛 = 20.
In Table 1, we give the values of the approximate solution
obtained by the proposed method of this study and the error
in absolute values at the given nodes.

4. Estimation of the Error

In this section, we investigate the problem of convergence of
the approximate solution 𝑢

𝑘
to the solution of integral (1) at

the nodes as 𝑛 → ∞.

Theorem 9. Let 𝜑(𝑥) be a strictly increasing continuous
function on [𝑎, 𝑏] and for all 𝑥, 𝑦 ∈ [𝑎, 𝑏] the following
inequality holds:





𝜑 (𝑥) − 𝜑 (𝑦)





≤ 𝐿





𝑥 − 𝑦





, (28)

where 𝐿 > 0 and 𝐿 is independent of the variables 𝑥 and 𝑦.
Then, the inequality





𝑢 (𝑥
𝑘
) − 𝑢
𝑘






≤

𝑀𝐿
2

[𝜑 (𝑏) − 𝜑 (𝑎)]

12 (1 − 𝛼)

exp{

𝐾
0
𝐿 (𝑏 − 𝑎)

1 − 𝛼

} ℎ
2

,

𝑘 = 1, 2, . . . , 𝑛,

(29)

holds in which 𝐾
0
= ‖𝐾(𝑥, 𝑠)‖

𝐶
, 𝛼 = (1/2)‖𝐾(𝑥, 𝑥)‖

𝐶
𝐿ℎ < 1,

and the number 𝑀 is determined by (20).

Proof. Let the error be denoted by V
𝑘

= 𝑢(𝑥
𝑘
) − 𝑢

𝑘
for

𝑘 = 0, 1, . . . , 𝑛. Taking into account (21) and (22), we have
the following system of equations:

V
0
= 0,

V
𝑘
=

𝑘

∑

𝑗=1

1

2

[𝐾 (𝑥
𝑘
, 𝑥
𝑗−1

) V
𝑗−1

+ 𝐾(𝑥
𝑘
, 𝑥
𝑗
) V
𝑗
]

⋅ [𝜑 (𝑥
𝑗
) − 𝜑 (𝑥

𝑗−1
)] +

𝑘

∑

𝑗=1

𝑅
(𝑛)

𝑗
(𝑢) ,

(30)

where 𝑘 = 1, 2, . . . , 𝑛.
Rearranging the above system of equations, we get

(1 −

1

2

𝐾 (𝑥
1
, 𝑥
1
) [𝜑 (𝑥

1
) − 𝜑 (𝑥

0
)]) V
1
= 𝑅
(𝑛)

1
(𝑢) ,

(1 −

1

2

𝐾 (𝑥
𝑘
, 𝑥
𝑘
) [𝜑 (𝑥

𝑘
) − 𝜑 (𝑥

𝑘−1
)]) V
𝑘

=

1

2

𝑘−1

∑

𝑗=1

𝐾(𝑥
𝑘
, 𝑥
𝑗
) [𝜑 (𝑥

𝑗+1
) − 𝜑 (𝑥

𝑗−1
)] V
𝑗

+

𝑘

∑

𝑗=1

𝑅
(𝑛)

𝑗
(𝑢) ,

(31)

where 𝑘 = 1, 2, . . . , 𝑛.
Along with the inequality 𝜔

𝜑
(ℎ) ≤ 𝐿ℎ, using conditions

(19) and (23), we get the following inequality for V
𝑘
from (31):





V
1





≤

1

1 − 𝛼

𝑅 (ℎ) ,





V
𝑘





≤

1

1 − 𝛼

[

[

𝑅 (ℎ) + 𝐾
0
𝐿ℎ

𝑘−1

∑

𝑗=1






V
𝑗







]

]

,

(32)

where 𝑘 = 1, 2, . . . , 𝑛, 𝑅(ℎ) = (𝑀/12)𝐿
2

ℎ
2

[𝜑(𝑏) − 𝜑(𝑎)].
Let the term 𝜀

𝑘
for 𝑘 = 1, 2, . . . , 𝑛 be determined by

𝜀
𝑘
=

1

1 − 𝛼

[

[

𝑅 (ℎ) + 𝐾
0
𝐿ℎ

𝑘−1

∑

𝑗=1

𝜀
𝑗

]

]

, 𝑘 = 2, 3, . . . , 𝑛, (33)

and 𝜀
1
= 𝑅(ℎ)/(1 − 𝛼) as an initial condition.

It is easily seen that |V
𝑘
| ≤ 𝜀
𝑘
for 𝑘 = 1, 2, . . . , 𝑛.This can be

verified by mathematical induction as follows: for 𝑘 = 1, it is
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Table 1: The values of approximate solution, analytical solution,
and the error at the nodes.

The
nodes
𝑥
𝑘

Real value at 𝑥
𝑘

𝑢(𝑥
𝑘
)

Approx. value at 𝑥
𝑘

𝑢
𝑘

The error at 𝑥
𝑘

|𝑢(𝑥
𝑘
) − 𝑢
𝑘
|

0 1 1 0
0.1 1 1.00271872 0.00271872
0.2 1 1.00331826 0.00331826
0.3 1 1.00376994 0.00376994
0.4 1 1.00417187 0.00417187
0.5 1 1.00455757 0.00455757
0.6 1 1.00494416 0.00494416
0.7 1 1.00534264 0.00534264
0.8 1 1.00576140 0.00576140
0.9 1 1.00620761 0.00620761
1.0 1 1.00668805 0.00668805
1.1 1 1.00720950 0.00720950
1.2 1 1.00777907 0.00777907
1.3 1 1.00840442 0.00840442
1.4 1 1.00909399 0.00909399
1.5 1 1.00985722 0.00985722
1.6 1 1.01070480 0.01070480
1.7 1 1.01164880 0.01164880
1.8 1 1.01270300 0.01270300
1.9 1 1.01388350 0.01388350
2.0 1 1.01520860 0.01520860

trivial. Let |V
𝑗
| ≤ 𝜀
𝑗
for 𝑗 = 1, . . . , 𝑘−1.Then, using inequality

(32), we get





V
𝑘





≤

1

1 − 𝛼

[

[

𝑅 (ℎ) + 𝐾
0
𝐿ℎ

𝑘−1

∑

𝑗=1

𝜀
𝑗

]

]

= 𝜀
𝑘
. (34)

Let us show that

𝜀
𝑗
=

𝑅 (ℎ)

1 − 𝛼

(1 +

𝐾
0
𝐿ℎ

1 − 𝛼

)

𝑗−1

, 𝑗 = 1, 2, . . . , 𝑛, (35)

are the solution of the system of (33). Taking (35) into
account, we get

1

1 − 𝛼

[

[

𝑅 (ℎ) + 𝐾
0
𝐿ℎ

𝑘−1

∑

𝑗=1

𝜀
𝑗

]

]

=

𝑅 (ℎ)

1 − 𝛼

{

{

{

1 +

𝐾
0
𝐿ℎ

1 − 𝛼

𝑘−1

∑

𝑗=1

(1 +

𝐾
0
𝐿ℎ

1 − 𝛼

)

𝑗−1
}

}

}

=

𝑅 (ℎ)

1 − 𝛼

{1 + [(1 +

𝐾
0
𝐿ℎ

1 − 𝛼

)

𝑘−1

− 1]} = 𝜀
𝑘
,

𝑘 ≥ 2.

(36)

Here, we use the equality

(1 + 𝛾)
𝑘−1

− 1 = 𝛾

𝑘−1

∑

𝑗=1

(1 + 𝛾)
𝑗−1

, 𝑘 ≥ 2, (37)

where 𝛾 = 𝐾
0
𝐿ℎ/(1 − 𝛼). Consequently, we get the following

estimate for the error V
𝑘
for all values 𝑘 = 1, . . . , 𝑛:





V
𝑘





≤

𝑅 (ℎ)

1 − 𝛼

(1 +

𝐾
0
𝐿ℎ

1 − 𝛼

)

𝑘−1

. (38)

Using the fact that (1 + 𝑡)
1/𝑡 is increasing and approaches

the number 𝑒 as 𝑡 → 0+, we get the following chain of
inequalities:

(1 +

𝐾
0
𝐿ℎ

1 − 𝛼

)

𝑘−1

≤ (1 +

𝐾
0
𝐿ℎ

1 − 𝛼

)

(𝑏−𝑎)/ℎ

= [(1 +

𝐾
0
𝐿

1 − 𝛼

ℎ)

(1−𝛼)/𝐾0𝐿ℎ

]

𝐾0𝐿(𝑏−𝑎)/(1−𝛼)

≤ 𝑒
𝐾0𝐿(𝑏−𝑎)/(1−𝛼)

(39)

for 𝑘 ≤ 𝑛 = (𝑏 − 𝑎)/ℎ. Hence, the proof is obtained.

Remark 10. The function

𝜑 (𝑥) =

{
{
{
{

{
{
{
{

{

𝑥, for 0 ≤ 𝑥 ≤ 1,

2𝑥 − 1, for 1 < 𝑥 ≤ 2,

3𝑥 − 3, for 2 ≤ 𝑥 ≤ 3

(40)

is a strictly increasing continuous function on [0, 3], 𝜑


(𝑥) ∉

𝐶[0, 3]. But, for all 𝑥, 𝑦 ∈ [0, 3], the following inequality
holds:





𝜑 (𝑥) − 𝜑 (𝑦)





≤ 4





𝑥 − 𝑦





. (41)

Theorem 11. Let 𝜑(𝑥) be a strictly increasing continuous
function on [𝑎, 𝑏] and

𝛽 = 𝐾
0
[𝜑 (𝑏) − 𝜑 (𝑎)] < 1. (42)

Then, the inequality





𝑢 (𝑥
𝑘
) − 𝑢
𝑘





≤

𝑀

12 (1 − 𝛽)

(𝜔
𝜑
(ℎ))

2

[𝜑 (𝑏) − 𝜑 (𝑎)] ,

𝑘 = 1, 2, . . . , 𝑛,

(43)

holds in which 𝐾
0
= ‖𝐾(𝑥, 𝑠)‖

𝐶
.
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Proof. Let the error be denoted by V
𝑘
= 𝑢(𝑥

𝑘
) − 𝑢
𝑘
and set up

the system of equations

V
1
=

1

2

𝐾 (𝑥
1
, 𝑥
1
) [𝜑 (𝑥

1
) − 𝜑 (𝑥

0
)] V
1
+ 𝑅
(𝑛)

1
(𝑢) ,

V
𝑘
=

𝑘−1

∑

𝑗=1

1

2

𝐾 (𝑥
𝑘
, 𝑥
𝑗
) [𝜑 (𝑥

𝑗+1
) − 𝜑 (𝑥

𝑗−1
)] V
𝑗

+

1

2

𝐾 (𝑥
𝑘
, 𝑥
𝑘
) [𝜑 (𝑥

𝑘
) − 𝜑 (𝑥

𝑘−1
)] V
𝑘

+

𝑘

∑

𝑗=1

𝑅
(𝑛)

𝑗
(𝑢)

(44)

for 𝑘 = 2, 3, . . . , 𝑛. From this system of equations, we get





V
𝑘





≤

1

2

𝐾
0
sup
𝑗






V
𝑗







⋅

{

{

{

𝑘−1

∑

𝑗=1

[𝜑 (𝑥
𝑗+1

) − 𝜑 (𝑥
𝑗
) + 𝜑 (𝑥

𝑗
) − 𝜑 (𝑥

𝑗−1
)]

+ [𝜑 (𝑥
𝑘
) − 𝜑 (𝑥

𝑘−1
)]

}

}

}

+

𝑀

12

(𝜔
𝜑
(ℎ))

2

[𝜑 (𝑏)

− 𝜑 (𝑎)] =

1

2

𝐾
0
sup
𝑗






V
𝑗






[𝜑 (𝑥
𝑘
) − 𝜑 (𝑥

1
)

+ 𝜑 (𝑥
𝑘−1

) − 𝜑 (𝑥
0
) + 𝜑 (𝑥

𝑘
) − 𝜑 (𝑥

𝑘−1
)]

+

𝑀

12

(𝜔
𝜑
(ℎ))

2

[𝜑 (𝑏) − 𝜑 (𝑎)] ≤ 𝐾
0
sup
𝑗






V
𝑗






[𝜑 (𝑏)

− 𝜑 (𝑎)] +

𝑀

12

(𝜔
𝜑
(ℎ))

2

[𝜑 (𝑏) − 𝜑 (𝑎)]

(45)

for 𝑘 = 2, 3, . . . , 𝑛. Using condition (42), we get inequality
(43). Therefore, Theorem 11 is proved.
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