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A generalized (2 + 1)-dimensional variable-coefficient KdV equation is introduced, which can describe the interaction between a
water wave and gravity-capillary waves better than the (1 + 1)-dimensional KdV equation. The 𝑁-soliton solutions of the (2 + 1)-
dimensional variable-coefficient fifth-order KdV equation are obtained via the Bell-polynomial method. Then the soliton fusion,
fission, and the pursuing collision are analyzed depending on the influence of the coefficient 𝑒

𝐴𝑖𝑗 ; when 𝑒
𝐴𝑖𝑗 = 0, the soliton fusion

and fission will happen; when 𝑒
𝐴𝑖𝑗 ̸= 0, the pursuing collision will occur. Moreover, the Bäcklund transformation of the equation

is gotten according to the binary Bell-polynomial and the period wave solutions are given by applying the Riemann theta function
method.

1. Introduction

In soliton theory, the nonlinear evolution equations (NLEEs)
[1–3] have described natural phenomena in many aspects,
such as in the nonlinear phonology [4, 5], water waves
[6], hydromechanics [7], and super symmetry. Especially in
the hydromechanics, the nonlinear evolution equations can
explain the interaction of the waves by the different disper-
sion relations. As for the NLEEs, there are many methods to
get the solutions, like the Hirota method [8–13], the Darboux
transformation, Bell-polynomial approach [14–20], Bäcklund
transformations [21, 22], and so on [23]. One can get the 𝑁-
soliton solutions and analyze the interactions of the waves
based on the Bell-polynomial approach.

Soliton interaction can be split into elastic and inelastic.
As for the elastic, the amplitudes, velocities, and shapes of the
soliton can be brought into correspondence with the initial
soliton, but for the inelastic collision, after the interaction,
one soliton can be divided into two or more solitons, a
phenomenon called soliton fission, or contrarily, two ormore
solitons can bemerged into one solitonwhich is called soliton
fusion. What is more, the variable coefficient of the equation

can lead to the soliton fission and fusion. In [14], the variable-
coefficient KdV equation can be applied to describe the large-
amplitudes internal waves of the atmosphere and the ocean.
In recent years, the general KdV equation had been expanded
to the fifth-order KdV equation and the generalized (2 +

1)-dimensional Korteweg-de Vries equation whose bilinear
Bäcklund transformation and Darboux covariant Lax pair
have been obtained.

In this paper, we introduced a generalized variable-
coefficient fifth-order KdV equation as follows:
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+ 𝑏 (𝑡) 𝑢
𝑥𝑥𝑥

+ 𝑐 (𝑡) 𝑢
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𝑥𝑥𝑥
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𝜕
−1
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+ ℎ (𝑡) 𝑢
𝑥𝑥𝑦

+ 𝑘 (𝑡) 𝑢𝑢
𝑦
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(1)

where 𝑢 is a real function of space 𝑥, 𝑦, and time 𝑡 and
𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡), 𝑒(𝑡), 𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡), and 𝑘(𝑡) are the func-
tions of 𝑡. It can be used to describe the gravity-capillary wave
on a fluid interface, which is influenced by both the effects of
surface tension and gravity aswell as by fluid inertia. Equation
(1) has special issues.
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(1) When 𝑔(𝑡) = ℎ(𝑡) = 𝑘(𝑡) = 0, 𝑎(𝑡) = 6, 𝑏(𝑡) = 1, and
𝑐(𝑡) = 𝑑(𝑡) = 𝑒(𝑡) = 𝑓(𝑡) = constant, it can be changed into
the fifth-order KdV equation [24],

𝑢
𝑡

+ 6𝑢𝑢
𝑥

+ 𝑢
𝑥𝑥𝑥

+ 𝑐𝑢
2
𝑢
𝑥

+ 𝑑𝑢
𝑥
𝑢
2𝑥

+ 𝑒𝑢𝑢
𝑥𝑥𝑥

+ 𝑓𝑢
𝑥𝑥𝑥𝑥𝑥

= 0,

(2)

whose Darboux transformation, bilinear representation, 𝑁-
soliton solutions, and bilinear Bäcklund transformation have
been obtained.

(2) When 𝑎(𝑡) = 6𝑏(𝑡), 𝑘(𝑡) = 4ℎ(𝑡) = 2𝑔(𝑡), 𝑐(𝑡) = 𝑑(𝑡) =

𝑒(𝑡) = 𝑓(𝑡) = 0, and 𝑏(𝑡) = ℎ(𝑡) = constants, (1) can be
changed into generalized (2 + 1)-dimensional Korteweg-de
Vries equation [25],

𝑢
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𝑥

+ 𝑏𝑢
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(3)

whose Bell-polynomial, Bäcklund transformation, and Dar-
boux covariant Lax pair have been got.

(3) When 𝑎(𝑡) = 3, 𝑏(𝑡) = 𝛾, 𝑑(𝑡) = 2, 𝑒(𝑡) = 1, 𝑓(𝑡) =

2/15, and 𝑐(𝑡) = 𝑔(𝑡) = ℎ(𝑡) = 𝑘(𝑡) = 0, (1) takes the form of

𝑢
𝑡

+ 3𝑢𝑢
𝑥

− 𝛾𝑢
𝑥𝑥𝑥

+ 2𝑢
𝑥
𝑢
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+ 𝑢𝑢
𝑥𝑥𝑥

+
2

15
𝑢
𝑥𝑥𝑥𝑥𝑥

= 0 (4)

which occurs to aweakly nonlinear long-wave approximation
to the general gravity-capillary water-wave problem and 𝛾 is
a real scaled parameter.

The focus of the paper is to get the 𝑁-soliton solutions
of the generalized variable-coefficient fifth-order (2 + 1)-
dimensional equation and analyze the interaction of thewater
wave and the gravity-capillary wave [26–30]. The details of
the paper are as follows: Section 2 introduces a variable-
coefficient fifth-order (2 + 1)-dimensional KdV equation.
The approach and the properties of the Bell-polynomial are
presented in Section 3 and then give rise to the 𝑁-soliton
solutions of the equation based on the Hirota approach.
In the final part, we explain the soliton fission and fusion
and the soliton pursuing collision of the variable-coefficient
fifth-order (2 + 1)-dimensional KdV equation according to
the different coefficients 𝑒

𝐴𝑖𝑗 . Furthermore, the Bäcklund
transformation is given.

2. The Introduction of the Bell-Polynomial

To start with, we briefly introduce the basic concepts and the
properties of the Bell-polynomial.

(1) Let 𝜃 be a function of the variable 𝑥; then the formula
[25]

𝑌
𝑛𝑥

= 𝑌
𝑛

(𝜃
𝑥
, 𝜃
𝑥𝑥

, . . . , 𝜃
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) = 𝑒
−𝜃

𝜕
𝑛

𝑥
𝑒
𝜃
, (𝑛 = 1, 2, . . .) (5)

is a polynomial concerning 𝜃 with respect to 𝑥, which
is the definition of the one-dimensional Bell-polynomial.

Moreover, we can calculate the initial explicit expressions by
the definition as follows:

𝑌
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𝑥
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2
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= 𝜃
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𝜃
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2

𝑥𝑥
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2

𝑥
𝜃
𝑥𝑥

+ 𝜃
4

𝑥
.

(6)

(2) Take 𝜃 as a 𝐶
∞ multivariables function; then the

definition of the multivariables Bell-polynomial is as follows:

𝑌
𝑛1𝑥1𝑛2𝑥2 ⋅⋅⋅𝑛𝑟𝑥𝑟

(𝜃)

≡ 𝑌
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(𝜃
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(1 ≤ 𝑙
𝑖
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𝑖
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𝑥𝑟
𝑒
𝜃
.

(7)

As for a special function 𝜃 with the variables 𝑥, 𝑦, we give rise
to the following several initial values under the definition of
the multivariables Bell-polynomial:

𝑌
𝑥,𝑦 (𝜃) = 𝜃

𝑥,𝑦
+ 𝜃
𝑥
𝜃
𝑦

,
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2

𝑦
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(8)

In view of the multivariables Bell-polynomial, the multivari-
ables binary Bell-polynomial can be defined as follows:

Y
𝑛1𝑥1,...,𝑛𝑟𝑥𝑟

(𝜑, 𝜓)

≡ 𝑌
𝑛1,...,𝑛𝑟

(𝜃)

𝜃𝑙1𝑥1,...,𝑙𝑟𝑥𝑟

={
𝜑𝑙1𝑥1,...,𝑙𝑟𝑥𝑟

Σ
𝑟

𝑖=1
𝑙𝑖 is odd,

𝜓𝑙1𝑥1,...,𝑙𝑟𝑥𝑟
Σ
𝑟

𝑖=1
𝑙𝑖 is even,

(9)

where 𝜑 and 𝜓 both are the 𝐶
∞ function with the variables

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑟
; likewise, we can take some of the expressions

depending on (9); for example,

Y
𝑥

(𝜑) = 𝜑
𝑥
,

Y
2𝑥

(𝜑, 𝜓) = 𝜑
2

𝑥
+ 𝜓
𝑥𝑥

,

Y
𝑥,𝑦

= 𝜓
𝑥,𝑦
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𝑥
𝜑
𝑦
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Y
3𝑥
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3𝑥
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𝑥
𝜓
2𝑥

+ 𝜑
3

𝑥
,

Y
2𝑥,𝑦
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2𝑥,𝑦
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𝑥
𝜓
𝑥,𝑦

+ 𝜑
2

𝑥
𝜑
𝑦

+ 𝜑
𝑦

𝜓
2𝑥

+ ⋅ ⋅ ⋅ .

(10)

Next, we study the proposition of the Bell-polynomial.

Proposition 1. Bell-polynomial (9) can be written as the
Hirota 𝐷-operator through a transformational identity:

Y
𝑛1𝑥1 ,...,𝑛𝑟𝑥𝑟

(𝜑 = ln 𝐹

𝐺
, 𝜓 = ln𝐹𝐺)

= (𝐹 ⋅ 𝐺)
−1

𝐷
𝑛1

𝑥1
⋅ ⋅ ⋅ 𝐷
𝑛𝑟

𝑥𝑟
𝐹 ⋅ 𝐺,

(11)
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where the Hirota operator is defined by

𝐷
𝑛1

𝑥1
⋅ ⋅ ⋅ 𝐷
𝑛𝑟

𝑥𝑟
𝐹 ⋅ 𝐺 = (𝜕

𝑥1
− 𝜕
𝑥


1

)
𝑛1

⋅ ⋅ ⋅ (𝜕
𝑥𝑟

− 𝑥


𝑟
)

⋅ 𝐹 (𝑥
1
, . . . , 𝑥

𝑟
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1
, . . . , 𝑥



𝑟
)
𝑥
1
=𝑥1 ,...,𝑥



𝑟
=𝑥𝑟

.

(12)

Especially when 𝐹 = 𝐺, (11) can be read as

𝐹
−2

𝐷
𝑛1

𝑥1
⋅ ⋅ ⋅ 𝐷
𝑛𝑟

𝑥𝑟
𝐹
2

= Y
𝑛1𝑥1 ,...,𝑛𝑟𝑥𝑟

(𝜑 = 0, 𝜓 = 2 ln𝐹)

=

{

{

{

0, Σ
𝑟

𝑖=1
𝑛
𝑖

𝑖𝑠 𝑜𝑑𝑑,

P
𝑛1𝑥1 ,...,𝑛𝑟𝑥𝑟

(𝑞) , Σ
𝑟

𝑖=1
𝑛
𝑖

𝑖𝑠 𝑒V𝑒𝑛.

(13)

In (13), the Bell-polynomial is significant if and only if when
Σ
𝑟

𝑖=1
𝑛
𝑖

𝑖𝑠 𝑒V𝑒𝑛, one redefines a 𝑃-polynomial:

P
𝑛1𝑥1 ,...,𝑛𝑟𝑥𝑟

(𝑞) = Y
𝑛1𝑥1,...,𝑛𝑟𝑥𝑟

(𝜑 = 0, 𝜓 = 2 ln𝐹) , (14)

when 𝑛
1

+ 𝑛
2

+ . . . + 𝑛
𝑟
is even. The initial few 𝑃-polynomials

are

P
2𝑥

(𝑞) = 𝑞
2𝑥

,

P
4𝑥

(𝑞) = 𝑞
4𝑥

+ 3𝑞
2

2𝑥
,

P
2𝑥,2𝑦

(𝑞) = 𝑞
2𝑥,2𝑦

+ 𝑞
2𝑥

𝑞
2𝑦

+ 2𝑞
2

𝑥,𝑦
,

P
𝑥,𝑦

(𝑞) = 𝑞
𝑥,𝑦

,

P
3𝑥,𝑦

(𝑞) = 𝑞
3𝑥,𝑦

+ 3𝑞
𝑥,𝑦

𝑞
2𝑥

,

P
6𝑥

(𝑞) = 𝑞
6𝑥

+ 15𝑞
2𝑥

𝑞
4𝑥

+ 15𝑞
3

2𝑥
+ ⋅ ⋅ ⋅ .

(15)

As for the NLEEs, (9) and (15) are important to get the 𝑁-
soliton solutions; one can get the bilinear equation provided
that the NLEEs can express the linear combination of the 𝑃-
polynomials.

3. The 𝑁-Soliton Solutions of the Variable-
Coefficient Fifth-Order KdV Equation

As for (1), if we take

𝑎 (𝑡) = 6𝑏 (𝑡) ,

𝑑 (𝑡) =
2

3
𝑐 (𝑡) ,

𝑒 (𝑡) =
1

3
𝑐 (𝑡) ,

𝑓 (𝑡) =
1

30
𝑐 (𝑡) ,

𝑔 (𝑡) = 2ℎ (𝑡) ,

𝑘 (𝑡) = 4ℎ (𝑡) ,

(16)

then (1) can be rewritten as

𝑢
𝑡

+ 𝑏 (𝑡) (6𝑢𝑢
𝑥

+ 𝑢
𝑥𝑥𝑥

)

+
1

30
𝑐 (𝑡) (30𝑢

2
𝑢
𝑥

+ 20𝑢
𝑥
𝑢
2𝑥

+ 10𝑢𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝑥𝑥𝑥𝑥

)

+ ℎ (𝑡) (2𝑢
𝑥
𝜕
−1

𝑥
𝑢
𝑦

+ 𝑢
𝑥𝑥𝑦

+ 4𝑢𝑢
𝑦

) = 0.

(17)

By virtue of the transformation 𝑢 = 𝑄
𝑥𝑥
, (17) can be changed

into

𝑄
𝑥𝑥𝑡

+ 𝑏 (𝑡) (6𝑄
𝑥𝑥

𝑄
𝑥𝑥𝑥

+ 𝑄
5𝑥

) +
1

30
𝑐 (𝑡)

⋅ (30𝑄
2

𝑥𝑥
𝑄
𝑥𝑥𝑥

+ 20𝑄
𝑥𝑥𝑥

𝑄
4𝑥

+ 10𝑄
𝑥𝑥

𝑄
5𝑥

+ 𝑄
7𝑥

)

+ ℎ (𝑡) (2𝑄
3𝑥

𝑄
𝑥,𝑦

+ 𝑄
4𝑥,𝑦

+ 4𝑄
𝑥𝑥

𝑄
𝑥𝑥𝑦

) = 0.

(18)

What ismore, we can obtain the following formula bymaking
use of the integral to (18) with respect to the variable 𝑥:

𝑄
𝑥𝑡

+ 𝑏 (𝑡) (3𝑄
2

𝑥𝑥
+ 𝑄
4𝑥

)

+
1

30
𝑐 (𝑡) (10𝑄

3

𝑥𝑥
+ 10𝑄

𝑥𝑥
𝑄
4𝑥

+ 5𝑄
2

3𝑥
+ 𝑄
6𝑥

)

+ ℎ (𝑡) (2𝑄
2𝑥

𝑄
𝑥,𝑦

+ 𝑄
3𝑥,𝑦

+ 2𝜕
−1

𝑥
𝑄
𝑥𝑥

𝑄
𝑥𝑥𝑦

) = 0.

(19)

Expression (19) is changed as follows with the aid of 𝑃-
polynomial (15):

P
𝑥,𝑡 (𝑄) + 𝑏 (𝑡)P4𝑥 (𝑄) +

𝑐 (𝑡)

30
P
6𝑥 (𝑄)

−
𝑐 (𝑡)

18
(𝜕
2

𝑥
P
4𝑥 (𝑄) + 3𝑄

2𝑥
P
4𝑥 (𝑄)

− 𝜕
−1

𝑥
(𝜕
3

𝑥
P
4𝑥 (𝑄) + 6𝑄

2𝑥
𝜕
𝑥
P
4𝑥 (𝑄))) +

2

3
ℎ (𝑡)

⋅ (P
3𝑥,𝑦 (𝑄)) +

1

3
ℎ (𝑡) 𝜕

−1

𝑥
𝜕
𝑦

(P
4𝑥 (𝑄)) = 0,

(20)

which cannot be written as the linear combination of 𝑃-
polynomials, so we construct an auxiliary variable 𝑧 which
satisfies

𝑄
4𝑥

+ 3𝑄
2

2𝑥
+ 𝑄
𝑥,𝑧

= 0. (21)

From (21), we can get a pair of 𝑃-polynomials as follows:

P
4𝑥 (𝑄) + P

𝑥,𝑧 (𝑄) = 0,

P
𝑥,𝑡 (𝑄) + 𝑏 (𝑡)P4𝑥 (𝑄) +

𝑐 (𝑡)

30
P
6𝑥 (𝑄)
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−
𝑐 (𝑡)

18
(P
3𝑥,𝑧 (𝑄) + P

2𝑧 (𝑄)) +
2

3
ℎ (𝑡)P3𝑥,𝑦 (𝑄)

−
1

3
ℎ (𝑡)P𝑦,𝑧 (𝑄) = 0.

(22)

Finally, generalized variable-coefficient (2 + 1)-dimen-
sional fifth-orderKdVequation (22) can be cast into a bilinear
representation based on the transportation 𝑄 = 2 ln𝑓,

(𝐷
4

𝑥
+ 𝐷
𝑥
𝐷
𝑧
) 𝑓 ⋅ 𝑓 = 0,

(𝐷
𝑥
𝐷
𝑡

+ 𝑏 (𝑡) 𝐷
4

𝑥
+

𝑐 (𝑡)

30
𝐷
6

𝑥
−

𝑐 (𝑡)

18
(𝐷
3

𝑥
𝐷
𝑧

+ 𝐷
2

𝑧
)

+
2

3
ℎ (𝑡) 𝐷

3

𝑥
𝐷
𝑦

−
1

3
ℎ (𝑡) 𝐷

𝑦
𝐷
𝑧
) 𝑓 ⋅ 𝑓 = 0.

(23)

Once the bilinear representation of (19) is given, we can
present the 𝑁-soliton solutions of (23) with the help of
Hirota’s bilinear approach and the symbolic computation.

After that, we begin to solve (17) on account of the Hirota
method; set

𝑓 = 1 + 𝜀𝑓
1

+ 𝜀
2
𝑓
2

+ 𝜀
3
𝑓
3

+ ⋅ ⋅ ⋅ . (24)

Substitute (24) into (23) and compare the powers of 𝜀; then
the 𝑁-soliton solutions of (19) are gotten by making 𝜀 = 1 as
follows:

𝑓 = ∑

𝜇𝑖 ,𝜇𝑗=0,1

exp
{

{

{

𝑁

∑

𝑖>𝑗

𝐴
𝑖𝑗

𝜇
𝑖
𝜇
𝑗

+

𝑁

∑

𝑗=1

𝜇
𝑗
𝛾
𝑗

}

}

}

, (25)

with

𝛾
𝑗

= 𝑘
𝑗

(𝑥 + 𝑝
𝑗
𝑦) − ∫ (

𝑐 (𝑡)

30
𝑘
5

𝑗
+ 𝑏 (𝑡) 𝑘

3

𝑗
+ ℎ (𝑡) 𝑘

3

𝑗
𝑝
𝑗
) 𝑑𝑡,

𝑒
𝐴𝑖𝑗

=

(𝑐 (𝑡) /6) (𝑘
𝑖

− 𝑘
𝑗
)
2

(𝑘
2

𝑖
+ 𝑘
2

𝑗
− 𝑘
𝑖
𝑘
𝑗
) + 3𝑏 (𝑡) (𝑘

𝑖
− 𝑘
𝑗
)
2

+ ℎ (𝑡) (𝑘
𝑖

− 𝑘
𝑗
) (𝑝
𝑖
(2𝑘
𝑖

− 𝑘
𝑗
) − 𝑝
𝑗

(2𝑘
𝑗

− 𝑘
𝑖
))

(𝑐 (𝑡) /6) (𝑘
𝑖

+ 𝑘
𝑗
)
2

(𝑘
2

𝑖
+ 𝑘
2

𝑗
+ 𝑘
𝑖
𝑘
𝑗
) + 3𝑏 (𝑡) (𝑘

𝑖
+ 𝑘
𝑗
)
2

+ ℎ (𝑡) (𝑘
𝑖

+ 𝑘
𝑗
) (𝑝
𝑖
(2𝑘
𝑖

− 𝑘
𝑗
) + 𝑝
𝑗

(2𝑘
𝑗

− 𝑘
𝑖
))

,

(26)

where 𝑘
𝑗
and 𝑝

𝑗
are both the constants and ∑

𝜇𝑖,𝜇𝑗=0,1
indicate

summation over all the different possible cases 𝜇
𝑖
, 𝜇
𝑗

=

0, 1 (𝑖, 𝑗 = 1, 2, 3, . . .).

For 𝑁 = 1, we can read the one-soliton solution as

𝑢 =
1

2
𝑘
2

1
sech2 (

𝛾
1

2
) . (27)

For 𝑁 = 2, the two-soliton solutions can be written as

𝑢 = 2
𝑘
2

1
𝑒
𝛾1 + 𝑘
2

2
𝑒
𝛾2 + 𝑒
𝐴21 (𝑘
1

+ 𝑘
2
)
2

𝑒
𝛾1+𝛾2

1 + 𝑒
𝛾1 + 𝑒
𝛾2 + 𝑒
𝐴21𝑒
𝛾1+𝛾2

− 2

(𝑘
1
𝑒
𝛾1 + 𝑘
2
𝑒
𝛾2 + 𝑒
𝐴21 (𝑘
1

+ 𝑘
2
) 𝑒
𝛾1+𝛾2)
2

(1 + 𝑒
𝛾1 + 𝑒
𝛾2 + 𝑒
𝐴21𝑒
𝛾1+𝛾2)
2

.

(28)

For 𝑁 = 3, we can obtain the three-soliton solutions as

𝑢 = 2 [ln (1 + 𝑒
𝛾1

+ 𝑒
𝛾2

+ 𝑒
𝛾3

+ 𝑒
𝛾1+𝛾2+𝐴21

+ 𝑒
𝛾1+𝛾3+𝐴31

+ 𝑒
𝛾2+𝛾3+𝐴32

+ 𝑒
𝛾1+𝛾2+𝛾3+𝐴21+𝐴31+𝐴32

)]
𝑥𝑥

.

(29)

4. The Bäcklund Transformation of
the Variable-Coefficient Fifth-Order
KdV Equation

For the NLEEs, the BT method provides a new idea to con-
struct the solutions by the Bell-polynomial. In this section,

we will obtain the BT of the known (2 + 1)-dimensional
variable-coefficient fifth-order KdV equation. Suppose 𝑄, 𝑄

are the two different solutions of (19), and consider the
following form:

𝐿 =
1

30
𝑐 (𝑡) (10𝑄

3

𝑥𝑥
10𝑄
𝑥𝑥

𝑄
4𝑥

+ 5𝑄
2

3𝑥
+ 𝑄
6𝑥

− 10𝑄
3

𝑥𝑥

− 10𝑄
𝑥𝑥

𝑄
4𝑥

− 5𝑄
2

3𝑥
+ 𝑄
6𝑥

) + ℎ (𝑡) (2𝑄
2𝑥

𝑄
𝑥,𝑦

+ 𝑄
3𝑥,𝑦

+ 2𝜕
−1

𝑥
𝑄
𝑥𝑥

𝑄
𝑥𝑥𝑦

− 2𝑄
2𝑥

𝑄
𝑥,𝑦

− 𝑄
3𝑥,𝑦

− 2𝜕
−1

𝑥
𝑄
𝑥𝑥

𝑄
𝑥𝑥𝑦

) + 𝑄
𝑥𝑡

− 𝑄
𝑥𝑡

+ 𝑏 (𝑡) (3𝑄
2

𝑥𝑥
+ 𝑄
4𝑥

− 3𝑄
2

𝑥𝑥
− 𝑄
4𝑥

) = 0.

(30)

In order to obtain the BT of (30), we introduce the mixing
variables as

𝜑 = ln (𝐹 ⋅ 𝐺) ,

𝜓 = ln(
𝐹

𝐺
) ,

𝑄 = 𝜑 + 𝜓 = 2 ln𝐹,

𝑄 = 𝜓 − 𝜑 = 2 ln𝐺;

(31)



Advances in Mathematical Physics 5

then

𝐿 = 2 (𝜑
𝑥𝑡

+ 𝑏 (𝑡) (6𝜑
𝑥𝑥

𝜓
𝑥𝑥

+ 𝜑
4𝑥

) +
𝑐 (𝑡)

30
(10𝜑
3

2𝑥

+ 30𝜑
2𝑥

𝜓
2

2𝑥
+ 10𝜑

2𝑥
𝜓
4𝑥

+ 10𝜑
4𝑥

𝜓
2𝑥

+ 10𝜑
3𝑥

𝜓
3𝑥

+ 𝜑
6𝑥

) +
2

3
ℎ (𝑡) (𝜑

3𝑥,𝑦
+ 3𝜑
2𝑥

𝜓
𝑥,𝑦

+ 3𝜑
𝑥,𝑦

𝜓
2𝑥

) +
1

3

⋅ ℎ (𝑡) 𝜕
−1

𝑥
𝜕
𝑦

(6𝜑
𝑥𝑥

𝜓
𝑥𝑥

+ 𝜑
4𝑥

))

= 2𝜕
𝑥

(Y
𝑡

(𝜑) + 𝑏 (𝑡)Y3𝑥 (𝜑, 𝜓) +
𝑐 (𝑡)

30
Y
5𝑥

(𝜑, 𝜓)

+ ℎ (𝑡)Y2𝑥,𝑦 (𝜑, 𝜓)) + 𝑅 (𝜑, 𝜓) ,

(32)

where

𝑅 (𝜑, 𝜓) = 2 (𝑏 (𝑡) (3𝜑
2𝑥

𝜓
3𝑥

− 3𝜑
2

𝑥
𝜑
𝑥𝑥

− 3𝜑
𝑥
𝜓
4𝑥

)

+ ℎ (𝑡) (2𝜑
𝑥,𝑦

𝜓
𝑥𝑥

− 2𝜑
𝑥
𝜓
𝑥𝑥𝑦

− 𝜕
𝑥

(𝜑
2

𝑥
𝜑
𝑦

+ 𝜑
𝑦

𝜓
2𝑥

))

+
𝑐 (𝑡)

30
(5𝜑
2𝑥

𝜓
4

+ 15𝜑
2𝑥

𝜓
2

2𝑥
+ 10𝜑

3

2𝑥
− 5𝜑
4

𝑥
𝜑
2𝑥

− 30𝜑
2

𝑥
𝜑
𝑥𝑥

𝜓
𝑥𝑥

− 10𝜑
3

𝑥
𝜓
𝑥𝑥𝑥

− 30𝜑
𝑥
𝜓
2𝑥

𝜓
3𝑥

− 20𝜑
𝑥
𝜑
𝑥𝑥

𝜑
3𝑥

− 5𝜑
𝑥
𝜓
5𝑥

− 10𝜑
2

𝑥
𝜑
4𝑥

) +
1

3
ℎ (𝑡)

⋅ 𝜕
−1

𝑥
(6𝜑
𝑥𝑥𝑦

𝜓
𝑥𝑥

+ 6𝜑
𝑥𝑥

𝜓
2𝑥,𝑦

)) .

(33)

Finally, we derive the BT by introducing a spectrum
parameter equation as

Y
2𝑥

(𝜑, 𝜓) = 𝜆 (34)

and have

𝐿 = 2𝜕
𝑥

(Y
𝑡

(𝜑) + 𝑏 (𝑡)Y3𝑥 (𝜑, 𝜓) +
𝑐 (𝑡)

30
Y
5𝑥

(𝜑, 𝜓)

+ ℎ (𝑡)Y2𝑥,𝑦 (𝜑, 𝜓) + (3𝜆𝑏 (𝑡) +
𝑐 (𝑡)

2
𝜆
2
)Y
𝑥

(𝜑)

+ 3𝜆ℎ (𝑡)Y𝑦 (𝜑)) ;

(35)

then the Bell-polynomial-typed BT of the (2+1)-dimensional
variable-coefficient KdV equation is the following:

Y
2𝑥

(𝜑, 𝜓) = 𝜆,

2 (Y
𝑡

(𝜑) + 𝑏 (𝑡)Y3𝑥 (𝜑, 𝜓) +
𝑐 (𝑡)

30
Y
5𝑥

(𝜑, 𝜓)

+ ℎ (𝑡)Y2𝑥,𝑦 (𝜑, 𝜓) + (3𝜆𝑏 (𝑡) +
𝑐 (𝑡)

2
𝜆
2
)Y
𝑥

(𝜑)

+ 3𝜆ℎ (𝑡)Y𝑦 (𝜑)) = 𝜗 (𝑡) ,

(36)

where 𝜗(𝑡) is a function about the variable 𝑡.
The BT of (36) can be read with the help of the expression

of (11),

(𝐷
2

𝑥
− 𝜆) 𝐹 ⋅ 𝐺 = 0,

2 (𝐷
𝑡

+ 𝑏 (𝑡) 𝐷
3

𝑥
+

𝑐 (𝑡)

30
𝐷
5

𝑥
+ 𝐷
2

𝑥
𝐷
𝑦

+ (3𝜆𝑏 (𝑡) +
𝑐 (𝑡)

2
𝜆
2
) 𝐷
𝑥

+ 3𝜆𝐷
𝑦

− 𝜗 (𝑡)) 𝐹 ⋅ 𝐺

= 0.

(37)

5. The Period Wave Solutions of the Fifth-
Order KdV Equation

In this section, we want to get the period wave solution of
the variable-coefficient fifth-order KdV equation by using
the Hirota method. Nakamura gave a lucid approach to
the period wave solutions according to the Riemann theta
function [31]. Hence, we let the Riemann function of (23) as

𝑓 =

𝑛=∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝑛𝛾+𝜋𝑖𝑛

2
𝜏
, (38)

where 𝑛 ∈ 𝑍, 𝜏 ∈ 𝐶, Im 𝜏 > 0, and 𝛾 = 𝑘(𝑥 +

𝑝𝑦) − ∫((𝑐(𝑡)/30)𝑘
5

+ 𝑏(𝑡)𝑘
3

+ ℎ(𝑡)𝑘
3
𝑝)𝑑𝑡; in addition, the

parameters 𝑘, 𝑝 are constant to be determined. In order to
simplify 𝛾, let 𝑤 = (𝑐(𝑡)/30)𝑘

5
+ 𝑏(𝑡)𝑘

3
+ ℎ(𝑡)𝑘

3
𝑝. Inserting

(38) into (23), we have

𝐻𝑓 ⋅ 𝑓 = 𝐻 (𝐷
𝑥
, 𝐷
𝑦

, 𝐷
𝑡
)

𝑛=∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝑛𝛾+𝜋𝑖𝑛

2
𝜏

𝑚=∞

∑

𝑚=−∞

𝑒
2𝜋𝑖𝑚𝛾+𝜋𝑖𝑚

2
𝜏

=

𝑛=∞

∑

𝑛=−∞

𝑚=∞

∑

𝑚=−∞

𝐻 (𝐷
𝑥
, 𝐷
𝑦

, 𝐷
𝑡
) 𝑒
2𝜋𝑖𝑛𝛾+𝜋𝑖𝑛

2
𝜏

⋅ 𝑒
2𝜋𝑖𝑚𝛾+𝜋𝑖𝑚

2
𝜏

=

𝑛=∞

∑

𝑛=−∞

𝑚=∞

∑

𝑚=−∞

𝐻 (2𝜋𝑖 (𝑛 − 𝑚) 𝑘, 2𝜋𝑖 (𝑛 − 𝑚) 𝑘𝑝, 2𝜋𝑖 (𝑛 − 𝑚) 𝑤) 𝑒
2𝜋𝑖(𝑛+𝑚)𝛾+𝜋𝑖(𝑛

2
+𝑚
2
)𝜏

=

𝑞=∞

∑

𝑞=−∞

{

𝑛=∞

∑

𝑛=−∞

𝐻 (2𝜋𝑖 (2𝑛 − 𝑞) 𝑘, 2𝜋𝑖 (2𝑛 − 𝑞) 𝑘𝑝, 2𝜋𝑖 (2𝑛 − 𝑞) 𝑤) 𝑒
𝜋𝑖(𝑛
2
+(𝑞−𝑛)

2
)𝜏

} 𝑒
2𝜋𝑖𝑞𝛾

=

𝑞=∞

∑

𝑞=−∞

𝐻 (𝑞) 𝑒
2𝜋𝑖𝑞𝛾

.

(39)
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Figure 1: One period wave solution to (17) with the parameters 𝑘 = 0.1, 𝑝 = 1, 𝑡 = 0.5, 𝜏 = 2𝑖, 𝑐(0.5) = 30, 𝑏(0.5) = 1, and ℎ(0.5) = 1.
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Figure 2: The process of the soliton fusion for the two solitary waves (46) with 𝑘
1

= −0.8, 𝑘
2

= 0.6, 𝑝
1

= −1.25, and 𝑝
2

= 2, and (a) implies
𝑡 = −45, (b) implies 𝑡 = 0, and (c) implies 𝑡 = 70.

Based on the calculation of (39), we can obtain

𝐻 (𝑞) =

𝑛=∞

∑

𝑛=−∞

𝐻 (2𝜋𝑖 (2𝑛 − 𝑞) 𝑘, 2𝜋𝑖 (2𝑛 − 𝑞)

⋅ 𝑘𝑝, 2𝜋𝑖 (2𝑛 − 𝑞) 𝑤) 𝑒
𝜋𝑖(𝑛
2
+(𝑞−𝑛)

2
)𝜏

=

ℎ=∞

∑

ℎ=−∞

𝐻 (2𝜋𝑖𝐵𝑘, 2𝜋𝑖𝐵𝑘𝑝, 2𝜋𝑖𝐵𝑤) 𝑒
𝜋𝑖(𝑛
2
+(𝑞−ℎ−2)

2
)𝜏

⋅ 𝑒
2𝜋𝑖(𝑞−1)𝜏

,

(40)
where 𝐵 = 2ℎ − 𝑞 + 2, 𝑞 = 𝑚 + 𝑛, ℎ = 𝑛 − 1.
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Figure 3: The process of (29) with 𝑘
1

= −0.8, 𝑘
2

= 0.6, 𝑘
3

= 0.4, 𝑝
1

= 𝑝
2

= 𝑝
3

= 0, and 𝑐(𝑡) = ℎ(𝑡) = 0, and (a) implies 𝑏(𝑡) = cos(𝑡), (b)
implies 𝑏(𝑡) = cos(𝑡) + 1, and (c) implies 𝑏(𝑡) = cos(𝑡) − 1.

From the characters of (40), we can get the following
recursion formula:

𝐻 (𝑞) =

{

{

{

𝐻 (0) 𝑒
𝜋𝑖𝑛𝑞𝜏

, 𝑞 = 2𝑛,

𝐻 (1) 𝑒
𝜋𝑖(2𝑛
2
+2𝑛)𝜏

, 𝑞 = 2𝑛 + 1.

(41)

If we set 𝐻(0) = 𝐻(1) = 0, it can satisfy with (23); that is,

𝐻 (0) =

𝑛=∞

∑

𝑛=−∞

(𝑏 (𝑡) 256𝜋
4
𝑛
4
𝑘
4

− 16𝜋
2
𝑛
2
𝑘𝑤

−
𝑐 (𝑡)

30
(4096𝜋

6
𝑛
6
𝑘
6
) + ℎ (𝑡) 256𝜋

4
𝑛
4
𝑘
4
𝑝) 𝑒
2𝜋𝑖𝑛
2
𝜏

= 0,

𝐻 (1) =

𝑛=∞

∑

𝑛=−∞

(𝑏 (𝑡) 16𝜋
4

(2𝑛 − 1)
4

𝑘
4

− 4𝜋
2

(2𝑛 − 1)
2

𝑘𝑤 −
𝑐 (𝑡)

30
(64𝜋
6

(2𝑛 − 1)
6

𝑘
6
)

+ ℎ (𝑡) 16𝜋
4

(2𝑛 − 1)
4

𝑘
4
𝑝) ,

𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= 0.

(42)

With the purpose of computational convenience, set

𝑞
11

= −

𝑛=∞

∑

𝑛=−∞

16𝜋
2
𝑛
2
𝑘𝑒
2𝜋𝑖𝑛
2
𝜏
,

𝑞
12

=

𝑛=∞

∑

𝑛=−∞

(𝑏 (𝑡) 16𝜋
4

(2𝑛 − 1)
4

𝑘
4

−
𝑐 (𝑡)

30
(64𝜋
6

(2𝑛 − 1)
6

𝑘
6
)) 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

,

𝑞
21

=

𝑛=∞

∑

𝑛=−∞

𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

,

𝑞
22

= −

𝑛=∞

∑

𝑛=−∞

4𝜋
2

(2𝑛 − 1)
2

𝑘𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

,
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Figure 4: The process of (27) with 𝑘
1

= 0.8, 𝑘
2

= 0.6, 𝑝
1

= 1.25, 𝑝
2

= 2, 𝑐(𝑡) = 30, 𝑏(𝑡) = 1, and ℎ(𝑡) = 1, and (a) implies 𝑡 = 30, (b) implies
𝑡 = 0, and (c) implies 𝑡 = −30.

𝑞
31

=

𝑛=∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝑛
2
𝜏
,

𝑞
13

=

𝑛=∞

∑

𝑛=−∞

(𝑏 (𝑡) 256𝜋
4
𝑛
4
𝑘
4

−
𝑐 (𝑡)

30
(4096𝜋

6
𝑛
6
𝑘
6
))

⋅ 𝑒
2𝜋𝑖𝑛
2
𝜏
.

(43)
Then (42) can be changed into

𝑞
11

𝑤 + 𝑞
13

+ ℎ (𝑡) 256𝜋
4
𝑛
4
𝑘
4
𝑝𝑞
31

= 0,

𝑞
22

𝑤 + 𝑞
12

+ ℎ (𝑡) 16𝜋
4

(2𝑛 − 1)
4

𝑘
4
𝑝𝑞
21

= 0.

(44)

The parameters 𝑤, 𝑝 can be got by (44) as

𝑤 =
16𝑛
4
𝑞
12

𝑞
31

− (2𝑛 − 1)
4

𝑞
21

𝑞
13

(2𝑛 − 1)
4

𝑞
21

𝑞
11

− 16𝑛
4
𝑞
31

𝑞
22

,

𝑝 =
𝑞
12

𝑞
11

− 𝑞
22

𝑞
13

ℎ (𝑡) 𝜋
4
𝑘
4

(256𝑛
4
𝑞
22

𝑞
31

− 16 (2𝑛 − 1)
4

𝑞
11

𝑞
21

)

.

(45)

Therefore, we can obtain the period wave solution of (17) in
Figure 1.

6. The Interaction of the Soliton Waves

In this part, we will discuss the interaction of the soliton
waves. From Section 3, we get the 𝑁-soliton solutions, which
will show soliton fusion or fission when 𝑒

𝐴𝑖𝑗 = 0; on the
other hand, when 𝑒

𝐴𝑖𝑗 ̸= 0, there will occur the soliton
pursuing collision; after the collision, the waves are still
spread along the previous direction but cannot keep the
previous amplitude. Then we can describe the interaction of
the soliton waves by Figures 2–5.

If 𝑒
𝐴𝑖𝑗 = 0, two-soliton solutions (27) become the

following resonance solution:

𝑢 = 2 [ln (1 + 𝑒
𝛾1

+ 𝑒
𝛾2

)]
𝑥𝑥

. (46)

We can analyze the soliton fusion and fission under the
approximation form.
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Figure 5: The process of (28) with 𝑘
1

= 0.8, 𝑘
2

= 0.6, 𝑘
3

= 0.4, 𝑝
1
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2

= 2, 𝑝
3

= 1.5, 𝑐(𝑡) = 30, 𝑏(𝑡) = 1, and ℎ(𝑡) = 1, and (a) implies
𝑡 = 35, (b) implies 𝑡 = 0, and (c) implies 𝑡 = −30.

Figure 2(a) indicates that there appear two waves on the
time 45; in Figure 2(b), it causes the collision between the two
waves; during the collision, it creates new waves because of
the acting force; in Figure 2(c), the two waves merge into one
wave after the collision and spread placidly.

Next, we discuss the influence of the variable coefficient;
due to the different coefficient, the different waves shapes will
occur; the specific progress is as shown in Figure 3.

In the end, we provide the interaction of the soliton
solutions based on the coefficient 𝑒

𝐴𝑖𝑗 ̸= 0. As time goes on,
there will happen the soliton pursuing collision because of
the different soliton speed; the wave with the faster speed will
catch upwith the slower speedwave; then collision of the two-
soliton solution can happen; after the collision, some of the
solitons can spread along the previous direction, but the other
solitonwill be far from the previous direction and spreadwith
a new direction; the faster speed wave will be in front of the
slower waves; Figures 4 and 5 give a visual description of the
collision.

As for two-soliton solutions (27), we get the soliton
pursuing collision in Figure 4.

As for three-soliton solutions (28), we describe the three-
soliton pursuing collision in Figure 5.

7. Conclusion

In this paper, we first introduce a generalized (2 + 1)-
dimensional variable-coefficient KdV equation, which can
describe the interaction between a water wave and gravity-
capillary waves better than the (1 + 1)-dimensional KdV
equation. Secondly, we get the 𝑁-soliton solutions of the
(2+1)-dimensional variable-coefficient KdV equation via the
Bell-polynomial approach and explain the interactions of the
𝑁-soliton solutions. The main conclusions of this paper can
be summarized as follows:

(1) The Bell-polynomial of the (2 + 1)-dimensional
variable-coefficient fifth-order KdV equation has
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been got based on the Bell-polynomial method; then
the Bell-polynomial-typed BT is obtained by virtue of
the mixing variables.

(2) 𝑁-soliton solutions of the (2 + 1)-dimensional
variable-coefficient fifth-order KdV equation are
obtained with the Hirota approach; then the explicit
one-soliton solutions, two-soliton solutions, and
three-soliton solutions are showed; under the explicit
solutions and the different coefficient of 𝑒

𝐴𝑖𝑗 , we
draw the pictures of the interaction of the soliton
solutions; furthermore, through the graph, we can see
the soliton fusion and the fission clearly in Figure 1
with 𝑒

𝐴𝑖𝑗 = 0; in Figure 2, we analyze the influence of
the variable coefficient; last but not least, the soliton
pursuing collision is presented in Figures 3 and 4 and
can get that, after the collision, the amplitude and the
spread direction of the soliton will be changed under
the condition of 𝑒

𝐴𝑖𝑗 ̸= 0.

(3) In the last part, we get the Bell-polynomial-typed BT
of the variable-coefficient fifth-order KdV equation
and via the expression of (11), we finally give rise to
the bilinear-typed BT. Then, we give the period wave
solutionswith the help of the Riemann theta function.
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