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A novel method for finger vein pattern extraction from infrared images is presented.Thismethod involves four steps: preprocessing
which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing
for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought.
The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this
minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small
window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them
from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model,
and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently
emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding
method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in
order to extract a robust finger vein pattern.

1. Introduction

The problem of finger vein extraction from infrared images
arises mainly for biometrics purposes but it is also very
important for the biomedical research community.

The general structure of a biometric system based on
finger veins consists of five main stages: (1) acquisition of
the infrared images exploiting the absorption of light in near
infrared and infrared wavelengths by the different human tis-
sues, (2) preprocessing of the acquired images which includes
ROI (region of interest) extraction, image intensity normal-
ization (in this type of images intensity is usually uneven
due to the image acquisition system and may suffer from
shading artefacts), and noise reduction, (3) segmentation or
classification stage in which the preprocessed image divided
into two (ormore depending on the application) regions asso-
ciated with veins and surrounding tissues, (4) postprocessing
of the binary images which delivers the final segmentation

result, free of outliers and misclassifications, and finally (5)
matching of the extracted veins in order to perform the
desired person identification/verification procedure. Match-
ing procedure can be applied either directly in the extracted
finger vein patterns or in their skeletons, depending on the
matching algorithm that has to be used.This general structure
described so far involves all the stages that may have such
a system but it is worth mentioning that these stages are
independent and some of them can be skipped in some
applications depending on its specific requirements.

Related Work. Several methods which adopt this general
architecture have already been presented starting from the
pioneering work of Park et al. [1]. In this important research
work, an application specific processor for vein pattern
extraction and its application to a biometric identification
system is proposed. The conventional vein pattern recogni-
tion algorithm [1–3] consists of a preprocessing part, applying
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sequentially an iterative Gaussian low pass, a high pass, and
a modified median filter, a recognition part which includes
the extraction of the binary veins via local thresholding, and
finally the matching between the individual patterns.

An improved vein pattern extraction algorithm is pro-
posed in [4], which compensates the loss of vein patterns
in the edge area, gives more enhanced and stabilized vein
pattern information, and shows better performance than the
existing algorithms. Also, the problem arising from the itera-
tive nature of filtering preprocess is solved by designing a filter
that is processed only once, increasing significantly the recog-
nition speed and reducing the hardware complexity.The pro-
posed algorithm is implemented with an FPGA device and
the false acceptance rate is five times better than the existing
algorithm and the recognition speed is measured to be
100 (ms/person).

The problemwith conventional hand vascular technology
mentioned above is that the vascular pattern is extracted
without taking into account its direction. So, there is a loss
of vascular connectivity which leads to a degradation of the
performance of the verification procedure. An attempt to
improve this problem can be found in [5], where a direction
based vascular pattern extraction algorithm based on the
directional information of vascular patterns is presented for
biometric applications. It applies two different filters: row
vascular pattern extraction filter for abscissa vascular pattern
extraction and column vascular pattern extraction filter for
effective extraction of the ordinate vascular patterns. The
combined output of both filters produces the final hand vas-
cular patterns. Unlike the conventional hand vascular pattern
extraction algorithm, the directional extraction approach
prevents loss of the vascular pattern connectivity.

Although the above algorithm considers the directional-
ity of veins, it also assumes that the veins oriented in only
two principal directions. In [6, 7] a method for personal
identification based on finger vein patterns is presented and
evaluated using line tracking starting from various positions.
This method allows vein patterns to have an arbitrary direc-
tion. Local dark lines are identified and line tracking is exe-
cuted by moving along the lines pixel by pixel. When a
dark line is not detectable, a new tracking operation starts at
another position. This procedure executes repeatedly, so the
dark lines that tracked multiple times are classified as veins.

Typically, the infrared images of finger veins are low con-
trast images, due to the light scattering effect. An algorithm
for finger vein pattern extraction in infrared images is pro-
posed in [8]. This algorithm embeds all the above issues and
proposes novel preprocessing and postprocessing algorithms.
Initially, the image is enhanced and the fingerprint lines
are removed using 2D discrete wavelet filtering. Kernel
filtering produces multiple images by rotating the kernel in
six different directions, focus on the expected directions of
the vein patterns. The maximum of all images is transformed
into a binary image. Further improvement is achieved by
a two-level morphological process; that is, a majority filter
smoothes the contours and removes some of themisclassified
isolated pixels, and a reconstruction procedure removes the
remainingmisclassified regions.The final image is segmented
into two regions, the vein and the tissue.

In [9] new issues are considered and a certification system
that compares vein images for low cost, high speed, and
high precision certification is proposed. The equipment for
authentication consists of a near infrared light source and a
monochrome CCD to produce contrast enhanced images of
the subcutaneous veins. The phase correlation and template
matching methods are used for classification. Several noise
reduction filters, sharpness filters, and histogram manipula-
tions tested for the best effort. As a result, a high certification
ratio in this system obtained.

In [10], the theoretical foundation and difficulties of hand
vein recognition are introduced at first. Then, the optimum
threshold of the segmentation process and the vein lines thin-
ning problem of infrared hand images are deeply studied,
followed by the presentation of a novel estimator for the seg-
mentation threshold and an improved conditional thinning
method. The method of hand vein image feature extraction
based on end points and crossing points is studied initially,
and thematchingmethod based on a distancemeasure is used
to match vein images. The matching experiments indicated
that thismethod is efficient in terms of biometric verification.

An efficient automatic method for robust segmentation
of finger vessel network and vein pattern extraction from
infrared images acquired by a low-cost monochrome or mul-
tichannel camera is proposed in [11]. After brightness nor-
malization, the fingerprint lines are eliminated using the 2D
dimensional discrete wavelet transformation. A set of twelve
directional kernels is constructed, based on a dyadic wavelet
transform, for each scale, and is used to enhance the direc-
tional properties of veins. From maximum filters’ response
along scale and direction, a neighbourhood thresholding
derives a binary segmented image to produce reliable patterns
of finger veins. A postprocessingmodule is used in casewhere
low quality images are to be segmented. Preliminary eval-
uation experiments of the proposed method demonstrate a
number of advantages, compared to recently publishedmeth-
ods.

In the narrow bandwidth of the near infrared spectrum,
the light is propagated through human tissue with low
absorption rates, but strong scattering effects produce extre-
mely low contrast images. In [12], an algorithm for finger vein
segmentation and centerlines extraction in infrared images
is presented. Finger veins are detected in pixels with positive
divergence of the gradient vector field, while centerlines are
extracted in pixels with positive divergence of the normalized
gradient vector field estimated at various orientations. The
segmentation algorithm has been evaluated on both artificial
and real finger infrared images and high segmentation rates
are achieved in terms of sensitivity, specificity, and accuracy
using manual annotation data obtained by human observers.

A new algorithm for vein matching based on log-polar
transform to address problems that occur with the changing
of finger position and from differences between imaging
devices for current vein matching algorithms is discussed
in [13]. The new algorithm first extracts the feature area,
which contains enough characteristics for image matching,
depending on the structure of the finger vein ridge alignment.
It then calculates the degree of similarity between the log-
polar transform results of the model image feature areas and
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the sample image and finally analyzes the result by the degree
of similarity and the relationship of relative positions between
feature areas. Experiments show that the algorithm is robust
for rotating and zooming images of the finger vein.

In [14], four principles (caliber uniformity, node repli-
cation, loop splitting, and virtual connection) are proposed,
first to simplify the finger vein structure as a binary tree
structure. Then a modified binary tree model is proposed
based on the binary tree structure. The new model uses the
binary tree to describe the relationships between different
vein branches and uses a B-spline function to describe the
spatial structure of vein branches. Experiments show that this
model can quantitatively describe the relationships between,
and the spatial structure of, vein branches with little repre-
sentation error and low storage space requirements.

The method proposed in [15] is rooted in a local binary
pattern based method and then inclined to use the best bits
only formatching. After presenting the concept of PBBM and
the generating algorithm, authors propose the finger vein rec-
ognition framework, which consists of preprocessing, feature
extraction, and matching. Experimental results show that
PBBM achieves not only better performance but also high
robustness and reliability. In addition, PBBM can be used as
a general framework for binary pattern based recognition.

In [16], a new and robust approach for finger vein ROI
localization is introduced, and then a new scheme for effecti-
vely improving the visibility of finger vein imageries is pro-
posed. Extensive experiments are conducted to validate this
method.

A new method of personal identification based on finger
vein recognition is presented in [17]. First, a stable region
representing finger vein network is cropped from the image
plane of an imaging sensor. A bank of Gabor filters is then
used to exploit the finger vein characteristics at different
orientations and scales. Based on the filtered image, both local
and global finger vein features are extracted to construct a
finger vein code (FVCode). Finally, finger vein recognition
is implemented using the cosine similarity measure classifier,
and a fusion scheme in decision level is adopted to improve
the reliability of identification. Experimental results show
that this method exhibit an exciting performance in personal
identification.

Finally in [18], a finger vein system using the mean cur-
vature that can be used for personal verification is proposed.
As a robust extraction method, authors propose the mean
curvaturemethod, which views the vein image as a geometric
shape and finds the valley-like structures with negative
mean curvatures. When the matched pixel ratio is used in
matching vein patterns, experimental results show that, while
maintaining low complexity, the proposed method achieves
0.25% equal error rate, which is significantly lower than what
existing methods can achieve.

However, the finger vein technology, as mentioned above,
has also important applications in biomedical field. An initial
work for localizing surface veins via near infrared (NIR)
imaging and structured light ranging is presented in [19].
The eventual goal of the system is to serve as the guidance
for a fully automatic (i.e., robotic) catheterization device.The
proposed system is based upon near infrared (NIR) imaging,

which has previously been shown effective in enhancing the
visibility of surface veins. The vein regions in the 2D NIR
images located using standard image processing techniques.
AnNIR line generating LEDmodule is used for to implement
structured light ranging and construct a 3D topographic map
of the arm surface. The located veins are mapped to the arm
surface to provide a camera registered representation of the
arm and veins.

Also in [20, 21], a vein contrast enhancer (VCE) has
been constructed to make vein access easier by capturing an
infrared image of veins, enhancing the contrast using soft-
ware, and projecting the vein image back onto the skin. The
VCE also uses software to align the projected image with the
original vein and with accuracy of 0.06mm. Clinical evalu-
ation of earlier monitor based vein enhancement test systems
has demonstrated the clinical utility of the infrared imaging
technology used in the VCE.

Although these methods achieve segmenting the infrared
images, the finger vein pattern extraction task is still challeng-
ing mainly due to the fact that infrared images suffer from
strong noise presence, uneven illumination, and shading, fac-
tors that complicate the application of automatic image seg-
mentation techniques. Thus, another way to segment this
kind of images is to assume that veins located in thin and
concave regions (a reasonable assumption obtained by a
careful inspection of the image intensity across the image)
of infrared images based on this concept to extract them by
optimizing a mathematical model. This can be done by using
the Mumford ShahModel which has well-known capabilities
in the image processing applications such as image segmen-
tation, restoration, and image inpainting [22, 23]. Thus, in
this paper, an analytical solution to a modified Mumford
Shah Model minimization problem is derived and a local
application of its results, in order to perform fast and accurate
finger vein extraction, is proposed.

The remainder of this paper is organized as follows. In
Section 2 the experimental device and the image acquisition
procedure is presented. In Section 3, a detailed presentation
of the finger vein pattern extraction method is given. The
experimental results and discussion are included in Section 4.
Finally, the most significant conclusions and some directions
for future work are presented in the last section of this paper.

2. Image Acquisition

A typical hardware used to acquire infrared images consists
of a finger probe, an array of infrared leds with adjustable
illumination, and a video camera focus on frame, as shown
in Figure 1. The finger ROI was placed inside the probe,
between the open frame and the array of infrared leds light
source which consists of a number of leds with adjustable
illumination.The finger probe eliminates the influence of the
external light sources.

The acquired image is produced as a result of several
physical phenomena that happen during light propagation
through human tissue, that is, absorption, diffusion, and
scattering [24]. The great number of substances contained in
the human body, the blood dynamics, and the mass transfer
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Figure 1: A typical low-cost device used for digital image acquisition
of finger infrared images.

Figure 2: Original image.

phenomena complicates significantly the light transforma-
tion effects. Therefore, the solution of the inverse problem,
that is, the derivation of the arterial network from the image
data, becomes unrealistic. A totally different and popular
approach, adopted also in the proposed method, uses several
image enhancements, feature extraction, and path recon-
struction methods to derive the vein network, based on the
fact that substance haemoglobin presents strong absorption
in the infrared wavelengths, and therefore the veins appear in
the image darker than the other human tissues (Figure 2).

3. Detection of Vein Network

In Figure 3, a flowchart of the proposed vein extraction
method is given.

3.1. Image Preprocessing

3.1.1. ROI Extraction. From the original image (Figure 2) a
region of interest (ROI) is defined based on several statistical
properties of the histogram; that is, very low or very high
brightness areas are excluded from the ROI. In the designed
hardware each infrared led has adjustable intensity, giving
excellent image quality, minimizing also the variance of the
automatic exposure times of the image acquisition system.

The acquired image suffers from shading andnonuniform
illumination both in left side and in right side of the image.

This effect usually influences the performance of automatic
image processing methods applied in order to extract the
finger vein pattern. Thus, ROI extraction is used in order to
localize the finger region and to isolate the shading artifacts.
In this paper, the method proposed in [25] is adopted for
ROI extraction.This method is based on the cutoff of regions
with shading taking care about the different dimensions of the
fingers among each person. Twomasks, one for 𝑥 and one for
𝑦 direction, are used to isolate the boundary and localize the
effective finger region. A typical ROI extracted by themethod
proposed in [25] is shown in Figure 4.

3.1.2. Brightness Normalization Based on Local StatisticalMea-
sures. In general, even in case where led’s intensity is adjusted
to satisfy several statistical properties, in few areas of the
acquired image unsatisfactory illumination or strong noise
distortions are met. Therefore an image normalization pro-
cedure is applied to restore partially the desirable character-
istics.

The proposed local normalization procedure unifies the
local mean and variance of the ROI, especially useful tech-
nique for correcting nonuniform illumination or shading
artifacts, using a linear transformation scheme applied on
pixels’ brightness,

𝑢
0
(𝑥, 𝑦) =

𝑟 (𝑥, 𝑦) − 𝑚
𝑟
(𝑥, 𝑦)

𝜎
𝑟
(𝑥, 𝑦)

, (1)

where 𝑟(𝑥, 𝑦) is the brightness of the original ROI image at
pixel (𝑥, 𝑦), 𝑚

𝑟
(𝑥, 𝑦) is the brightness local mean, 𝜎

𝑟
(𝑥, 𝑦)

is the corresponding local standard deviation, and 𝑢
0
(𝑥, 𝑦)

is the normalized image. The estimation of local mean
and standard deviation is performed inside small window
neighborhoods by averaging pixel intensities, a process also
known as spatial smoothing.

3.2. Minimization of the Mumford Shah Model. The human
veins in finger are significantly thinner than the darker
structures observed in typical infrared images, as shown
in Figure 2. Multiple scattering of the propagated photons
reduces significantly the contrast, eliminates the tiny veins,
and increases the transition regions between the vein and the
surrounding tissue. The “fog” effect hides the vein structures
in concave regions of the ROI. This assumption could be ver-
ified by observing the cross section profile of the veins which
is Gaussian-like, as claimed in [26]. The aim of the proposed
system is to focus on the concave regions enhancement, based
on several connectivity properties in order to simply separate
them from the rest tissue by a local entropy thresholding
technique.

The concave regions are regions in the image domain
where the second order derivative is positive. Direct estima-
tion of the derivatives in digital images is an ill-posed prob-
lem due to noise presence and the variations in illumination.
Instead of seeking regions which have positive second order
derivatives, theminimization of an objective function similar
to the objective function of the Mumford Shah Model [27]
is proposed. The objective of the Mumford Shah Model is
to estimate a smooth function 𝑢 such that it is similar to
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Figure 3: Flowchart of the proposed vein detection method.

the original image 𝑢
0
. The equivalent mathematical expres-

sion leads to the minimization problem of the following
objective function:

𝐽 (𝑢) = ∫

Ω

|∇𝑢|
2
𝑑𝑥 + 𝜆∫

Ω





𝑢 − 𝑢
0






2
𝑑𝑥, (2)

where Ω is the image domain and 𝜆 is a user defined param-
eter. The minimization of this function is computationally

intensive and can be performed by the method proposed by
Chan and Shen [22]. This method belongs to the category
of segmentation methods which use partial differential equa-
tions (PDE) and it is iterative. Instead of deriving the global
minimum of (2), in this paper a close form solution of a
discrete objective function (3) similar to the objective func-
tion of the Mumford Shah Model is proposed by processing
small rectangular areas. The proposed solution accelerates
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Figure 4: Region of interest extraction (ROI).

significantly the processing time and outperforms the clas-
sical approach [22]. As a result, fast and accurate extraction
of the finger veins is obtained.

Assuming, without loss of generality, that the original
image has 𝑁 rows and 𝑁 columns (however the image can
have different dimensions along the two axes), the function
𝐽(𝑢) in the discrete space is defined as follows:

𝐽 (𝑢) =

1

2

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

|∇𝑢|
2
+

𝜆

2

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1





𝑢 − 𝑢
0






2
, (3)

where∇𝑢 is the gradient of the image 𝑢(⋅, ⋅) and can bewritten
as

|∇𝑢|
2
= (

𝜕𝑢

𝜕𝑥

)

2

+ (

𝜕𝑢

𝜕𝑦

)

2

. (4)

If the partial derivatives in (4) are approximated using local
differences,

𝜕𝑢

𝜕𝑥

= 𝑢 (𝑥 + 1, 𝑦) − 𝑢 (𝑥, 𝑦) ,

𝜕𝑢

𝜕𝑦

= 𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦) ,

(5)

and (4) is substituted in (3) the following formula is obtained:

𝐽 (𝑢) =

1

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑦=1

[(𝑢 (𝑥 + 1, 𝑦) − 𝑢 (𝑥, 𝑦))
2

+ (𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦))
2
]

+

𝜆

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑦=1

[𝑢 (𝑥, 𝑦) − 𝑢
0
(𝑥, 𝑦)]

2
.

(6)

The minimum of this objective function (6) regarding 𝑢(⋅, ⋅)
can be derived in a close form by differentiating the second
order, positively defined function:

𝜕𝐽 (𝑢)

𝜕𝑢

=

1

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑥=1

𝜕

𝜕𝑢

[(𝑢 (𝑥 + 1, 𝑦) − 𝑢 (𝑥, 𝑦))
2

+ (𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦))
2
]

+

𝜆

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑥=1

𝜕

𝜕𝑢

[𝑢 (𝑥, 𝑦) − 𝑢
0
(𝑥, 𝑦)]

2
= 0

⇒ (𝜆 + 4) ⋅ 𝑢 (𝑥, 𝑦) − 𝑢 (𝑥 + 1, 𝑦)

− 𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦 − 1) − 𝑢 (𝑥 − 1, 𝑦)

= 𝜆 ⋅ 𝑢
0
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ [1,𝑁 − 1] .

(7)

As it can easily be observed, (7) is applied for pixels ∀(𝑥, 𝑦) ∈
[1,𝑁 − 1] in order to avoid the boundary treatment problem
for the finite difference scheme. Thus, the necessary image
points are available for this type of approximation scheme.
Obviously, this approach has a truncation error but, as proved
experimentally, it has negligible impact in the performance of
the proposed method.

Equation (7) can be rewritten in matrix form as

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜆 + 4 −1 0 0 ⋅ −1 ⋅

−1 𝜆 + 4 −1 0 ⋅ ⋅ −1

0 −1 𝜆 + 4 −1 ⋅ ⋅ ⋅

0 0 −1 ⋅ ⋅ ⋅ ⋅

−1 ⋅ ⋅ ⋅ ⋅ ⋅ −1

⋅ −1 ⋅ ⋅ ⋅ −1 𝜆 + 4

0 0 −1 0 ⋅ 0 −1

0

0

−1

⋅

0

−1

𝜆 + 4

]

]

]

]

]

]

]

]

]

]
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⋅

[
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[
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⋅
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𝑢
0 (
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𝑢
0
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⋅

𝑢
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𝑢
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𝑢
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⋅

𝑢
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⋅
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]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(8)

which is in the form 𝐴 ⋅ 𝑥 = 𝜆 ⋅ 𝑏. 𝐴 is a sparse Hermitian
matrix that depends only on parameter 𝜆 coefficients and size
(𝑁
2
×𝑁
2
), 𝑥 is the vector of unknown image 𝑢(⋅, ⋅) (𝑁2 × 1),
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and 𝑏 is the vector of the original image 𝑢
0
(⋅, ⋅) (𝑁

2
×1). If the

matrix 𝐴 is invertible, the brightness of the unknown image
is derived from the solution of the system of linear equations:

𝑥 = 𝐴
−1
⋅ (𝜆 ⋅ 𝑏) . (9)

The matrix is invertible if the determinant is nonzero (see
Appendix—Lemmas A.1 and A.2 andTheorem A.3).

3.3.ModifiedMumford ShahModel. From the above analysis,
a sparse Hermitian matrix 𝐴 has been arisen. This matrix, as
it is evident from (8), has the value 𝜆+4 in its central diagonal,
the value −1 in the next up and down diagonal, and the value
−1 𝑁 positions before and after the central diagonal. Thus,
it is a block tridiagonal matrix which can be inverted using
an iterative algorithm such as one presented in [28]. Instead
of using this computationally exhaustive algorithm, the fact
that the above form of matrix 𝐴 can be obtained from two
independent minimizations is exploited: one for the second
order partial derivative in the 𝑥-axis and one for the second
directional derivative in the 𝑦-axis. Thus, the following two
objective functions have to be minimized with respect to
𝑢(⋅, ⋅):

𝐽 (𝑢) =

1

2

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(

𝜕𝑢

𝜕𝑥

)

2

+

𝜆

2

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1





𝑢 − 𝑢
0






2
,

𝐽 (𝑢) =

1

2

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(

𝜕𝑢

𝜕𝑦

)

2

+

𝜆

2

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1





𝑢 − 𝑢
0






2
.

(10)

These minimization problems (10) led to the following set of
equations:

𝐽 (𝑢) =

1

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑦=1

[(𝑢 (𝑥 + 1, 𝑦) − 𝑢 (𝑥, 𝑦))
2
]

+

𝜆

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑦=1

[𝑢 (𝑥, 𝑦) − 𝑢
0
(𝑥, 𝑦)]

2
,

𝐽 (𝑢) =

1

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑦=1

[(𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦))
2
]

+

𝜆

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑦=1

[𝑢 (𝑥, 𝑦) − 𝑢
0
(𝑥, 𝑦)]

2
.

(11)

By differentiating above two equations the following formulas
are obtained:

𝜕𝐽 (𝑢)

𝜕𝑢

=

1

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑥=1

𝜕

𝜕𝑢

[(𝑢 (𝑥 + 1, 𝑦) − 𝑢 (𝑥, 𝑦))
2
]

+

𝜆

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑥=1

𝜕

𝜕𝑢

[𝑢 (𝑥, 𝑦) − 𝑢
0
(𝑥, 𝑦)]

2
= 0

⇒ (𝜆 + 2) ⋅ 𝑢 (𝑥, 𝑦) − 𝑢 (𝑥 + 1, 𝑦) − 𝑢 (𝑥 − 1, 𝑦)

= 𝜆 ⋅ 𝑢
0
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ [1,𝑁 − 1] ,

(12)

𝜕𝐽 (𝑢)

𝜕𝑢

=

1

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑥=1

𝜕

𝜕𝑢

[(𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦))
2
]

+

𝜆

2

⋅

𝑁−1

∑

𝑥=1

𝑁−1

∑

𝑥=1

𝜕

𝜕𝑢

[𝑢 (𝑥, 𝑦) − 𝑢
0
(𝑥, 𝑦)]

2
= 0

⇒ (𝜆 + 2) ⋅ 𝑢 (𝑥, 𝑦) − 𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦 − 1)

= 𝜆 ⋅ 𝑢
0
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ [1,𝑁 − 1] .

(13)

Equations (12), (13) can be written in matrix form as
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(14)
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𝜆 + 2 −1 0 0 ⋅ ⋅ ⋅

−1 𝜆 + 2 −1 0 ⋅ ⋅ ⋅

0 −1 𝜆 + 2 −1 ⋅ ⋅ ⋅
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⋅
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[

[

[

[

[

[
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[
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[
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⋅
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𝑢
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⋅

𝑢
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⋅
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0
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(15)

From (14) and (15) it can be observed that in (14) the matrix
𝐴 has the value 𝜆 + 2 in its central diagonal and the value
−1𝑁 positions before and after the central diagonal while in
(15) the matrix 𝐴 has the value 𝜆 + 2 in its central diagonal
and the value −1 in the next up and down diagonal. Thus, the
combination of the two matrices can give us the same results
(see Appendix—Statement) as the matrix 𝐴 presented in (8).
By exploiting this fact we can use only the matrix 𝐴 obtained
by (15) instead of using the matrix 𝐴 obtained from (8). The
advantage of this approach is that in this case the inversion
of a symmetric matrix (15) is required which can be obtained
analytically (see Appendix) and without the computationally
exhaustive approaches adopted in [28–34]. In the sequel, (9)
is applied one time for the original image 𝑢

0
(⋅, ⋅) and one

for its rotated version by 90 degrees. This is done because
two objective functions (one in the 𝑥 direction and one in
the 𝑦 direction) have to be minimized. The enhanced image
is derived by the addition (after normalization) of the two
independent results (after the rotation of the second image
𝑢(⋅, ⋅) by −90 degrees in order to have a meaningful result):

𝑥
(0degrees) = 𝐴

−1
⋅ (𝜆 ⋅ 𝑏

(0degrees)) , (16)

𝑥
(90degrees) = 𝐴

−1
⋅ (𝜆 ⋅ 𝑏

(90degrees)) , (17)

𝑢 = 𝑥
(0degrees) + 𝑥(90degrees), (18)

where 𝑏
(0degrees), 𝑏(90degrees) are the original image (rearranged

as vector) and its rotated version (also rearranged as vector)
by 90 degrees, respectively, 𝐴−1 is the inverse of the matrix
presented in (15), and 𝑥

(0degrees), 𝑥(90degrees) are the resulting
smooth image and its rotation by 90 degrees version. Finally,
𝑢 is their sum after the rotation of 𝑥

(90degrees) by –90 degrees
in order to have a meaningful result.

The determinant of the matrix 𝐴 must be nonzero in
order to be invertible. This is proved in Lemmas A.1 and A.2
(see Appendix).

In practice, even in the case of small images, that is, 100×
100 pixels, the inversion of a sparsematrix𝐴 of 10000×10000
is required. This is obvious of too high computational cost.
An effective reduction of the matrix 𝐴 dimensionality can be

achieved using subimages, that is, multiple solutions of (13),
using only a small number of neighbor pixels. In this case the
number of linear equations depends on the size of the chosen
window.

From the optimization criterion, the new image 𝑢 is a
smooth image similar to the original 𝑢

0
. As a result of the

image transformation method the veins are located in con-
cave nonsmooth regions, so the veins network is enhanced in
the nonsmooth image 𝑢 − 𝑢

0
.

In order to obtain the image 𝑢 − 𝑢
0
the following process

is applied. Initially a window of size 𝑀𝑥𝑀 is selected and
the corresponding matrix 𝐴 (𝑀

2
× 𝑀
2
) and its inverse

invA (𝑀
2
× 𝑀
2
) are estimated. Then, the sliding window is

moved along each pixel of the original image and the dif-
ference between the pixel values (of the image 𝑢 inside the
window) obtained by (16) or (17) and the pixel values of the
original image 𝑢

0
inside the window is computed. In the next

step all these window differences are added and the image
𝑢 − 𝑢
0
is obtained by keeping the central 𝑁 × 𝑁 part of the

result (where𝑁 ×𝑁 is the size of the original image).
The result of this process is the nonsmooth image 𝑢 − 𝑢

0
.

In this image the veins located in concave regions and for this
reason a local entropy thresholding technique is applied in
order to segment the nonsmooth image in concave (veins)
and nonconcave (other tissue parts) regions.

This procedure is repeated for two times: one time for the
original image and one for its rotation version by 90 degrees.
The two nonsmooth images are added in order to obtain the
final enhanced image 𝑢 (18).

To conclude, the concept of the proposed method origi-
nates from the continuous Mumford Shah Model. However,
in this paper, a modified separable discrete model (11) is
proposed and the transition between continuous and discrete
space is not straightforward. Equation (3) is used only for
indicating the conceptual similarity between the proposed
discrete model and the continuous Mumford Shah Model
because it is deemed that it is not fair to present the proposed
model as an entirely novel model.Thus, the actual minimiza-
tion is performed in models presented in (6) and (11) for the
modified discrete and the modified separable discrete model,
respectively.

3.4. Local Entropy Thresholding. Among the various existing
methods used to automatically define the threshold for
segmentation, the local entropy thresholding is selected,
which has been successfully used in [35], because pixel
intensities are not independent and this efficient entropy
based thresholding takes into account the spatial distribution
of intensities. It is based on the estimation of the cooccurrence
matrix of the image 𝑢−𝑢

0
which is ameasure of the transition

of intensities between adjacent pixels. Specifically, a local
entropy thresholding technique, described in [36], is imple-
mented which can preserve the structure details of an image.
Two images with identical histograms but different spatial
distribution will result in different entropy (also different
threshold values).

In a correction note N. R. Pal and S. K. Pal [37] propose
two modifications to improve the results of blood vessel
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extraction that are essential to the performance of image regi-
stration. These modifications were adopted also in our study
because they experimentally proved superior to [36] (see
Appendix—Local EntropyThresholding).

3.5. Postprocessing

3.5.1. Morphological Dilation. The resulting binary image
tends to suffer from some misclassifications (outliers). In
order to have a robust segmentation in this postprocessing
substep a morphological dilation [38] with a line structuring
element oriented along the 𝑥-axis and elongated 𝑌 pixels
are performed. The output of this step is an image with less
outliers but with still evident misclassifications. The final
morphological filtering substep that follows gives us the
desired robust finger vein pattern.

3.5.2. Morphological Filtering. In this substep the image is
postprocessed by applying iteratively a morphological filter
called majority [38]. This filter sets a pixel to 1 if five or more
pixels in its 3-by-3 neighbourhood has the value 1; otherwise,
it sets the pixel to 0. This filter is applied iteratively until the
output image remains unchanged. This application clears the
image from small misclassified regions which appears due to
the presence of noise and smoothes the contours.

4. Experimental Results

4.1. Real Image Database. The original image was acquired
under infrared light using an inexpensive CCD camera. The
finger was placed between the camera and the light source
which consists of a row of infrared leds (five elements) with
adjustable illumination. The intensity of the leds adjusted
as far as the illumination of the image was good enough.
However, the problem of acquisition of infrared images is
not a trivial task.The phenomena which were involved in the
transmission of light inside the human tissue are very com-
plicated. This fact does not permit us to acquire a sufficient
number of images in order to construct an infrared finger
image database and to release it in the research community
for evaluation and comparison purposes. Our future work is
mainly focused on the direction of improvement of the image
acquisition system.

An excellent image illumination is not a strict require-
ment because the good performance of the proposedmethod
remains also under adverse illumination conditions. Due to
the fact that haemoglobin has strong absorption in the infra-
red light the veins are shown in the image darker than the
other human tissues. So, the goal of our study is to extract
these dark regions, corresponding to veins, from the back-
ground, corresponding to the other human parts (tissue).
The original image which was acquired as described above
is shown in Figure 2.

In this section the results of the application of ourmethod
and the methods proposed in [6, 7, 11, 12] are presented.
The qualitative evaluation of methods performed in the ROI
image is shown in Figure 4 and in the original image shown
in Figure 2.

Figure 5: Nonsmooth image.

4.2. ProposedMethod. For both images a window neighbour-
hood of size 9 × 9 is used which results in an 81 × 81 matrix
𝐴 which can be inverted very quickly. The selection of the
parameter 𝜆 does not affect the performance of our method
and thus it is arbitrarily selected as 𝜆 = 1. Parameter 𝜆 is a
weighting factor between the two terms of (2). It accounts
for the degree of similarity between the original image and
the estimated image. Extensive experiments are conducted
in order to justify the selection of parameter 𝜆. During the
experiments the evaluation rates did not vary very much
by changing the parameter 𝜆 from 0.1 to 1. The average
divergence on the results was almost 2%. For the threshold
computation the modified local entropy thresholding tech-
nique is used as described in the correction note [37]. In
postprocessing step, a line structuring element with 𝑌 = 5

pixels in length and oriented in the 𝑥-axis is employed.
Figures 5–8 present the results of the application of the

proposed method in the ROI image of Figure 4. Figure 5
shows the nonsmooth image obtained after the application of
the modified separable Mumford Shah Model in both 0 and
90 degrees direction and the addition of the results. Figure 6
shows the detection, with the help of the modified local
entropy thresholding, of the concave regions of the image,
where the veins tend to locate. In this binary image, concave
regions (candidate pixels to be detected as veins) are shown in
black while other tissue parts shown in white. Figure 7 shows
the binary image after the application of the morphological
dilation substep and, finally, the image in Figure 8(a) shows
the extracted finger vein pattern obtained after the final
morphological filtering substep.

Moreover, the results of the application of our method
in the original image of Figure 2 (before ROI extraction) are
presented. Figure 9 shows the nonsmooth image obtained
after the application of themodified separableMumford Shah
Model in both 0 and 90 degrees directions and the addition of
the results. Figure 10 shows the detection, with the help of the
modified local entropy thresholding, of the concave regions
of image. In this binary image, concave regions (candidate
pixels to be detected as veins) are shown in black while other
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Figure 6: Concave (black) and nonconcave regions (white).

Figure 7: Morphological dilation.

tissue parts shown in white. Figure 11 shows the binary image
after the application of the morphological dilation substep
and finally Figure 12(a) shows the extracted finger vein pat-
tern obtained after the final morphological filtering substep.

4.3. Method [6, 7]. As mentioned, the proposed method is
compared with our implementation of the method presented
in [6, 7]. The repeated line tracking method requires some
parameter tuning in order to run and the robustness of the
extracted finger vein pattern is strongly affected by the num-
ber of repetitions.Theparameters used in the experiments are
𝑁 = 10000 for the number of iterations, 𝑝

𝑙𝑟
= 50 and 𝑝

𝑢𝑑
=

25 for the probabilities of selecting the three neighboring
pixels in the horizontal or vertical direction, respectively,𝑊 =

9 for the width of the profiles, and 𝑟 = 1 for the distance
between the testing pixel and the cross section. In order to
perform a fair comparison between method [6, 7] and the
proposed method the same morphological postprocessing
step is used in all experiments.

4.4. Other Methods. Moreover, the proposed method is also
compared with more recent methods such as those presented
in [11, 12], briefly described in the Related Work section, due
to the fact that these methods have been applied in the same
real and artificial image databases and thus the comparison is
reasonable.

For purposes of comparison the results of the application
of methods [6, 7, 11, 12] in original and ROI image are pre-
sented in the same figures as the results of the proposed
method. Thus, Figure 8(b) shows the extracted finger vein
pattern produced after the application of the line tracking
method in the ROI image of Figures 4 and 8(c) shows the
extracted finger vein pattern produced after the application
of the method [11] in the ROI image of Figure 4 while
Figure 12(b) shows the extracted finger vein pattern produced
after the application of the line tracking method in the image
of Figures 2 and 12(c) shows the extracted finger vein pattern
produced after the application of themethod [12] in the image
of Figure 2.

Observing Figures 8 and 12, it is obvious that no safe
conclusions regarding the performance of all methods can
be conducted by visual inspection of the images. Instead,
a comparison based on widely known measures should be
done. Unfortunately, there is not a publicly available database
existing that can be used for evaluation and comparison
purposes between various methods. However, an artificial
finger image database is constructed in this study in order
to evaluate the proposed method and to compare it with the
methods presented in [6, 7, 11, 12]. It is worthmentioning that
the results presented for themethod [6, 7] are produced by the
application of our implementation to images since the code of
the method is not publicly available by the authors.

4.5. Artificial Image Database. A quantitative evaluation of
the proposed method in real infrared images is difficult due
to the absence of manual segmentation data. The extremely
low contrast images increase the disagreement of human
annotation. Therefore, the proposed method is evaluated
using a small set of images, each one created by the weighed
sum of two artificial images. The first image is constructed
using an artificial vein-like network. This network consists
of connected lines of different widths with junctions and
bifurcations and multiple low pass filtering to simulate the
blurriness of the edges which is apparent to the real images
due to the blood flow and scattering effects. The second
artificial image is used to simulate the nonuniform image
background of real infrared images created by applying an
iterative spatial low pass Gaussian filter with a large window
size to the original infrared image.

4.6. Evaluation Rates. In the finger vein segmentation pro-
cess, each pixel is classified as tissue (nonvein) or vein. Con-
sequently, there are four events, true positive (TP) and true
negative (TN) when a pixel is correctly segmented as vein
or nonvein and two misclassifications: a false negative (FN)
appears when a pixel in a vein is segmented in the nonvein
area, and a false positive (FP) when a nonvein pixel is segme-
nted as a vein pixel.
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(a) (b)

(c)

Figure 8: (a) Morphological (majority) filtering: extracted finger vein pattern using the proposed method, (b) extracted finger vein pattern
using method [6, 7], and (c) extracted finger vein pattern using method [11].

Figure 9: Nonsmooth image.

Twowidely known statisticalmeasures are used formeth-
od evaluation: sensitivity and specificity, which are used to
evaluate the performance of the binary segmentation out-
come. The sensitivity is a normalized measure of true posi-
tives, while specificity measures the proportion of true nega-
tives:

sensitivity = TP
TP + FN

,

specificity = TN
TN + FP

.

(19)

Figure 10: Concave (black) and nonconcave regions (white).

Usually, there is a tradeoff between twomeasures. Finally, the
accuracy of the binary classification is defined by

accuracy = TP + TN
𝑃 + 𝑁

, (20)

where 𝑃 and𝑁 represent the total number of positive (vein)
and negative (nonvein) pixels in the segmentation process
and are the degree of conformity between the estimated
binary classification and the ground truth obtained through a
manual segmentation. Thus, the accuracy is strongly related
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Figure 11: Morphological dilation.

to the segmentation quality and for this reason it is used to
evaluate and compare different methods.

4.7. Evaluation Results. The proposed method and the meth-
ods [6, 7, 11, 12] are evaluated quantitatively on the artificial
image database. Each image of the set is constructed accord-
ing to the above procedure. The evaluation is performed
using the widely known statistical measures of sensitivity,
specificity, and accuracy.

Table 1 shows the mean sensitivity, specificity, and accu-
racy of the proposed method and the methods [6, 7, 11]
(without preprocessing/postprocessing) and [12] on the arti-
ficial finger image database, while Figure 13(a) shows theROC
curve of the proposed method produced by varying the local
segmentation threshold and estimating the corresponding
measures, Figure 13(b) shows the ROC curve of the method
[6, 7] produced by varying the local segmentation threshold
and estimating the corresponding measures, Figure 13(c)
shows the ROC curve of themethod [11] produced by varying
the local segmentation threshold and estimating the corres-
ponding measures, and Figure 13(d) shows the ROC curve
of the method [12] produced by varying the value of the
threshold parameter 𝜑

3
and estimating the corresponding

measures.
Figure 14(a) shows the first image of the artificial image

database used for the evaluation of the proposed method
and the corresponding results of the segmentation for the
proposed method (Figure 14(b)) and for the methods [6,
7] (Figure 14(c)), [11] (Figure 14(d)), and [12] (Figure 14(e)),
respectively.

By observing the results presented in Figure 14 and in
Table 1, it seems that the proposed method performs better
than the methods presented in [6, 7, 11] in artificial fin-
ger image database in terms of sensitivity, specificity, and
accuracy and has comparable performance with the method
presented in [12] using the same evaluation criteria. In
addition, the visual inspection of images shown in Figure 12
leads to the conclusion that the proposed method performs
extremely better than the method [12] in real finger images.
Thus, the proposed method, unlike the others compared,
robustly extracts the finger vein network and preserves its
connectivity against various conditions (shading, intensity
variations, and noise distortion) both to real and to artificial
finger images.

Apart from evaluating and comparing the proposed
method to real and artificial finger vein images authors
present also the results of the application of the proposed
method and method [6, 7] in artificially distorted images

using different types of noise and different levels of dis-
tortion. The study of the effect of noise led to an adapta-
tion and a modification of the proposed method in order
to robustly perform under extreme conditions. These condi-
tions, although they seem to be unrealistic, may be produced
by a low quality acquisition system and its noncareful setup.

Table 2 shows mean sensitivity, specificity, and accuracy
of the proposed method and the method [6, 7] for artificial
infrared imageswith different level of distortion.These results
are presented in order to indicate the robustness of the
proposed method especially in low quality images. Figure 15
shows the distorted artificial images and the corresponding
finger vein patterns produced after the application of the pro-
posed method while Figure 16 shows the distorted artificial
images and the corresponding finger vein patterns produced
after the application of the method presented in [6, 7].

Comparing the results presented in Tables 1 and 2, it
seems that the proposed method is superior to method [6, 7]
in terms of sensitivity, specificity, and accuracy for the arti-
ficial finger image database. Moreover, it is worth noting
that the results of the method [6, 7] are slightly different
among different executions with the same parameters and
images due to the randomness introduced in the selection
of the current tracking pixel and the parameters 𝑝

𝑙𝑟
and 𝑝

𝑢𝑑
.

Finally, regarding the computational complexity, the propo-
sedmethod also outperforms themethod [6, 7] as the number
of iterations of line tracking increases.

By carefully observing the results in Table 2 and the
images in Figure 16 it is obvious that the performance of
the method presented in [6, 7] in low quality images is
degraded and becomes unacceptable for images with high
level of distortion. Thus, the proposed method outperforms
line tracking method when applied to low quality image
which may be produced as a result of a noncareful image
acquisition setup.

As the above results show, the proposed method per-
forms well in the majority of cases and achieves efficiently
segmenting the finger vein images. However, no scientific
method is perfect. Every method has also drawbacks. Thus,
the main drawback of the proposed method is that its per-
formance both in terms of segmentation accuracy and in
terms of computational complexity is strongly related to the
size of window neighbourhood. An appropriate selection of
windowneighbourhood sizemust be done in order to achieve
meaningful results. On the other side, in case of an accurate
image acquisition setup which will acquire images of specific
resolution, the window size could be derived experimentally
and could be then set at once.

4.8. Matching. In general, two methods are commonly used
for matching of line-shaped patterns: structural matching
[39] and template matching [40, 41]. As stated in [6, 7],
structural matching requires additional extraction of feature
points such as line endings and bifurcations. Since a finger
vein pattern has few of these points, template matching based
on comparison of pixel values is more appropriate for finger
vein pattern matching. Thus, in this paper the robustness of
the proposed method and the method [6, 7] for finger vein
identification is evaluated by estimating the mismatch ratio



Computational and Mathematical Methods in Medicine 13

(a) (b)

(c)

Figure 12: (a) Morphological (majority) filtering: extracted finger vein pattern using the proposed method, (b) extracted finger vein pattern
using method [6, 7], and (c) extracted finger vein pattern using method [12].

Table 1: Mean sensitivity, specificity, and accuracy of the proposed method and the methods [6, 7], [11] (without preprocessing/postprocess-
ing) and [12].

Proposed method Method [6, 7]
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Mean 0.907 0.910 0.909 0.782 0.928 0.896
Standard deviation 0.073 0.018 0.027 0.075 0.037 0.041

Method [11] Method [12]
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Mean 0.869 0.898 0.892 0.943 0.941 0.942
Standard deviation 0.081 0.025 0.036 0.112 0.032 0.048

between the registered and the input data for the artificial
finger image database. In the matching process, the extracted
finger vein pattern is converted into matching data, and these
data are compared with the recorded raw data. For the case
of artificial image database the ground truth data was used as
recorded raw data for each image.

Mismatch ratio 𝑅
𝑚
is calculated to examine whether or

not two sets of data have a correlation with each other. The
ratio 𝑅

𝑚
is defined as the difference between two sets of data

to be matched. 𝑅(𝑥, 𝑦) and 𝐼(𝑥, 𝑦) are the values at position
(𝑥, 𝑦) of the registered and input matching data, 𝑤 and ℎ
are the width and height of both sets of data, 𝑐

𝑤
and 𝑐
ℎ
are

the distances in which motion in the vertical and horizontal
directions, respectively, is required to adjust the displacement
between the two sets of data, and the template data are defined
as the rectangular region within 𝑅(𝑥, 𝑦) whose upper left
position is𝑅(𝑐

𝑤
, 𝑐
ℎ
) and lower right position is𝑅(𝑤−𝑐

𝑤
, ℎ−𝑐
ℎ
).

The value of mismatch 𝑁
𝑚
(𝑠, 𝑡), which is the difference

between the registered and input data at the positions where
𝑅(𝑐
𝑤
, 𝑐
ℎ
) overlaps with 𝐼(𝑠, 𝑡), is defined as follows:

𝑁
𝑚 (
𝑠, 𝑡)

=

ℎ−2𝑐ℎ−1

∑

𝑦=0

𝑤−2𝑐𝑤−1

∑

𝑥=0

{𝜙 (𝐼 (𝑠 + 𝑥, 𝑡 + 𝑦) , 𝑅 (𝑐
𝑤
+ 𝑥, 𝑐
ℎ
+ 𝑦))} ,

(21)

where 𝑤 = 212 and ℎ = 87 in consideration of the finger size
in the captured image, 𝑐

𝑤
and 𝑐
ℎ
are set at 𝑐

𝑤
= 57 and 𝑐

ℎ
= 38

in order to adjust the finger position in the captured image by
up to about 1 cm, and 𝜑 in (21) is a parameter that indicates
whether a pixel labeled as part of the background region and
a pixel labeled as part of a vein region overlapped with each
other. When 𝑃

1
is defined as the pixel value of one pixel and

𝑃
2
is defined as the pixel value of the other pixel, 𝜑 can be

described as follows:

𝜙 (𝑃
1
, 𝑃
2
) =

{

{

{

1, if 

𝑃
1
− 𝑃
2





,

0, otherwise.
(22)

The minimum value of mismatch 𝑁
𝑚
, which is the smallest

𝑁
𝑚
(𝑠, 𝑡) calculated under the condition that the template

overlaps with the input matching data 𝐼(𝑥, 𝑦) at all positions,
can be defined as follows:

𝑁
𝑚
= min
0≤𝑠<2𝑐𝑤 ,0≤𝑡<2𝑐ℎ

𝑁
𝑚
(𝑠, 𝑡) . (23)
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Figure 13: (a) ROC curve of the proposed method produced by varying the local segmentation threshold, (b) ROC curve of the method
proposed in [6, 7] produced by varying the local segmentation threshold, (c) ROC curve of the method proposed in [11] produced by varying
the local segmentation threshold, and (d)ROC curve of themethod proposed in [12] produced by varying the value of the threshold parameter
𝜑
3
.

(a) (b)

(c) (d)

(e)

Figure 14: (a) Artificial infrared finger image, (b) extracted vein pattern using the proposed method, (c) extracted vein pattern using the
method [6, 7], (d) extracted vein pattern using the method [11], and (e) extracted vein pattern using the method [12].
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Table 2: Mean sensitivity, specificity, and accuracy of the proposed method and the method [6, 7].

Image name Proposed method Method [6, 7]
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Artificial finger vein.bmp 0.8779 0.9266 0.9149 0.7876 0.9047 0.8765
Artificial finger vein2.bmp 0.5234 0.9462 0.8444 0.5221 0.9151 0.8205
Artificial finger vein3.bmp 0.6144 0.9716 0.8856 0.6185 0.8395 0.7863
P1.bmp 0.8845 0.8425 0.8526 0.5477 0.9176 0.8286
P2.bmp 0.8097 0.8295 0.8247 0.4338 0.7743 0.6923
P3.bmp 0.7748 0.8139 0.8045 0.4680 0.5865 0.5580
P4.bmp 0.7349 0.8091 0.7913 0.5561 0.4013 0.4386

Using the definitions given above, the mismatch ratio 𝑅
𝑚
is

defined as follows:

𝑅
𝑚
= 𝑁
𝑚

⋅ (

{

{

{

𝑡0+ℎ+2𝑐ℎ−1

∑

𝑗=𝑡0

𝑠0+𝑤−2𝑐𝑤−1

∑

𝑖=𝑠0

𝜙 (𝐼 (𝑖, 𝑗) , 0)

+

ℎ−𝑐ℎ−1

∑

𝑗=𝑐ℎ

𝑤−𝑐𝑤−1

∑

𝑖=𝑐𝑤

𝜙 (0, 𝑅 (𝑖, 𝑗))

}

}

}

)

−1

,

(24)

where 𝑠
0
and 𝑡
0
are 𝑠 and 𝑡 such that (23) is minimized. As is

shown by (24), 𝑅
𝑚
is described as the ratio between 𝑁

𝑚
and

the total number of pixels that are classified as belonging to
the vein region in the two data sets.

As shown in Table 3, the average mismatch ratio for
the artificial finger image database, estimated using (24),
is 24.65% for the proposed method while for the method
[6, 7] it is 43.64%. Although database contains twenty images
and the results cannot be generalized, the proposed method
seems to be more appropriate for finger vein identification
purposes. The extracted patterns by the proposed method
have significantly lower value of mismatch ratio than those
extracted by the method [6, 7].

5. Conclusions

In this paper an efficient finger vein pattern extraction meth-
od is presented. The proposed method is based on the min-
imization of the objective function of a modified Mumford
ShahModel and the local application of its results.This appli-
cation produces two nonsmooth images where veins located
in concave regions.The two images are then combined simply
by addition. Detection of concave regions is achieved via
a modified local entropy thresholding technique. The pre-
liminary segmentation result was unsatisfactory due to the
presence of some outliers (misclassifications).

Thus, a final morphological postprocessing step followed
in order to clean the image from the misclassifications and
to produce a robust finger vein pattern. Future work includes
the improvement of our imaging device in order to acquire
images with less shading and noise artefacts, something that
will guarantee the successful application of our method in

Table 3: Average mismatch ratio of the proposed method and the
method [6, 7].

Parameters
𝑤 = 212, ℎ = 87
𝑐
𝑤
= 57, 𝑐

ℎ
= 38

Proposed method Method [6, 7]

Average mismatch ratio 24.65% 43.64%

the majority of cases. In case of images with high quality the
preprocessing and/or postprocessing step can be skipped.

The experimental evaluation of the proposed method
shows that it can robustly segment the finger vessel network
and that the extracted finger vein pattern is appropriate
for finger vein identification purposes. Finally, the proposed
method is robust against strong distortionsmet in the acquir-
ed images.

Appendix

Lemma A.1. The determinant of the symmetric matrix 𝐴 in
the form

𝐴
𝑁
(𝑥)

=

[

[

[

[

[

[

[

[

[

[

[

[

𝑥 −1 0 0 ⋅ 0

−1 𝑥 −1 0 ⋅ 0

0 −1 𝑥 −1 ⋅ 0

0 0 −1 𝑥 ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ 0

0 0 0 0 ⋅ 𝑥

]

]

]

]

]

]

]

]

]

]

]

]

=

{
{
{
{

{
{
{
{

{

𝑎
𝑖,𝑗
| 𝑎
𝑖,𝑗
=

{
{
{
{

{
{
{
{

{

𝑥, 𝑖 = 𝑗

−1, 𝑖 = 𝑗 + 1 ∨ 𝑖 = 𝑗 − 1, 𝑖, 𝑗 = 1,𝑁

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

}
}
}
}

}
}
}
}

}

(A.1)

can be estimated using the following recursive formula:





𝐴
𝑛
(𝑥)




= 𝑥





𝐴
𝑛−1
(𝑥)




−




𝐴
𝑛−2
(𝑥)




, 𝑛 = 3,𝑁,





𝐴
2
(𝑥)




= 𝑥
2
− 1,





𝐴
1
(𝑥)




= 𝑥.

(A.2)
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(m) (n) (o)

Figure 15: (a, c, e, g, i, k, and m) Artificial infrared images with different level of distortion, (b, d, f, h, j, l, and n) corresponding finger vein
patterns extracted using the proposed method, and (o) manual segmentation (ground truth).

Proof. From the definition of matrix 𝐴 it can be derived that





𝐴
𝑛 (
𝑥)




=


















𝑥 −1 0

−1 𝑥 −1

0 −1 𝐴
𝑛−2
(𝑥)


















= 𝑥




𝐴
𝑛−1
(𝑥)




+












−1 −1
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𝑛−2
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= 𝑥
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𝑛−1
(𝑥)




−




𝐴
𝑛−2
(𝑥)




.

(A.3)

Lemma A.2. The matrix 𝐴 determinant is an increased
sequence of positive real numbers for any 𝑥 > 2.

Proof. If 𝑥 > 2, then





𝐴
2
(𝑥)




= 𝑥
2
− 1 > 3 ∧





𝐴
1
(𝑥)





= 𝑥 > 2 ⇒




𝐴
2
(𝑥)




>




𝐴
1
(𝑥)




.

(A.4)

If |𝐴
𝑛
(𝑥)| > |𝐴

𝑛−1
(𝑥)|, then
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.

(A.5)
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(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 16: (a, c, e, g, and i) Artificial infrared images with different level of distortion, (b, d, f, h, and j) corresponding finger vein patterns
extracted using the method [6, 7], and (k) manual segmentation (ground truth).

The induction rule leads to a sequence of positive numbers
for the determinant of 𝐴:





𝐴
𝑛+1 (

𝑥)




>




𝐴
𝑛 (
𝑥)




> ⋅ ⋅ ⋅ >





𝐴
2 (
𝑥)




>




𝐴
1 (
𝑥)




> 0. (A.6)

Theorem A.3. The system of linear equations is solvable for
any positive value of 𝜆.

Proof. Based on Lemma A.2, 𝜆 > 0 ⇒ 𝜆 + 4 > 2 ⇒ |𝐴
𝑛
(𝜆 +

4)| > 0.

Statement. Modified model produces the same results as the
original model.

Proof. The minimization of the objective function regarding
𝑢(⋅, ⋅) leads to the following equation:

(𝜆 + 4) ⋅ 𝑢 (𝑥, 𝑦) − 𝑢 (𝑥 + 1, 𝑦)

− 𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦 − 1) − 𝑢 (𝑥 − 1, 𝑦)

= 𝜆 ⋅ 𝑢
0
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ [1,𝑁 − 1] ,

(A.7)

while the minimization of the two independent objective
functions (one for the second order partial derivative in the
𝑥-axis and one for the second directional derivative in the 𝑦-
axis) leads to the following equations:

(𝜆 + 2) ⋅ 𝑢 (𝑥, 𝑦) − 𝑢 (𝑥 + 1, 𝑦) − 𝑢 (𝑥 − 1, 𝑦)

= 𝜆 ⋅ 𝑢
0
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ [1,𝑁 − 1] ,

(A.8)

(𝜆 + 2) ⋅ 𝑢 (𝑥, 𝑦) − 𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦 − 1)

= 𝜆 ⋅ 𝑢
0
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ [1,𝑁 − 1] .

(A.9)

Adding (A.8) and (A.9) results in

(2 ⋅ 𝜆 + 4) ⋅ 𝑢 (𝑥, 𝑦) − 𝑢 (𝑥 + 1, 𝑦)

− 𝑢 (𝑥, 𝑦 + 1) − 𝑢 (𝑥, 𝑦 − 1) − 𝑢 (𝑥 − 1, 𝑦)

= 2 ⋅ 𝜆 ⋅ 𝑢
0
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ [1,𝑁 − 1] .

(A.10)

The only difference between (A.7) and (A.10) is that in (A.10)
parameter 𝜆 is multiplied by a factor of 2. This makes no
difference because the parameter 𝜆 can be arbitrarily set and
has no strong impact on the final results. In other words,
(A.7) and (A.10) are equivalent and produce exactly the same
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results if the parameter 𝜆 set in (A.8) and (A.9) to have the
half value from the value has the corresponding parameter in
(A.7).

Local Entropy Thresholding. The cooccurrence matrix of the
image 𝐹 = 𝑢 − 𝑢

0
is a 𝑃 × 𝑄 dimensional matrix 𝑇 = [𝑡

𝑖𝑗
]
𝑃×𝑄

that gives an idea about the transition of intensities between
adjacent pixels, indicating spatial structural information of
an image. Depending upon the ways in which the gray level
𝑖 follows gray level 𝑗 different definitions of cooccurrence
matrix are possible. Here, we made the cooccurrence matrix
asymmetric by considering the horizontally right and verti-
cally lower transitions.This choice has been made in order to
decrease the computational cost and it is reasonable since the
horizontally left and vertically upper transitions do not add
more information to cooccurrencematrix.Thus, 𝑡

𝑖𝑗
is defined

as follows:

𝑡
𝑖𝑗
=

𝑃

∑

𝑙=1

𝑄

∑

𝑘=1

𝑢 (𝛿 (𝑓 (𝑙, 𝑘) − 𝑖) 𝛿 (𝑓 (𝑙, 𝑘 + 1) − 𝑗)

+𝛿 (𝑓 (𝑙, 𝑘) − 𝑖) 𝛿 (𝑓 (𝑙 + 1, 𝑘) − 𝑗) − 1) .

(A.11)

The probability of cooccurrence 𝑝
𝑖𝑗
of gray levels 𝑖 and 𝑗 can

therefore be written as

𝑝
𝑖𝑗
=

𝑡
𝑖𝑗

∑
𝑖
∑
𝑗
𝑡
𝑖𝑗

. (A.12)

If 𝑠, 0 ≤ 𝑠 ≤ 𝐿 − 1, is a threshold, then 𝑠 can partition the
cooccurrence matrix into 4 quadrants, namely, 𝐴, 𝐵, 𝐶, and
𝐷 (Figure 17).

Let us define the following quantities:

𝑃
𝐴
=

𝑠

∑

𝑖=0

𝑠

∑

𝑗=0

𝑝
𝑖𝑗
,

𝑃
𝐶
=

𝐿−1

∑

𝑖=𝑠+1

𝐿−1

∑

𝑗=𝑠+1

𝑝
𝑖𝑗
.

(A.13)

From the occurrence matrix, the corresponding probabilities
within each individual quadrant must sum to one. Thus, we
get the following cell probabilities for different quadrants:

𝑃
𝐴

𝑖𝑗
=

𝑝
𝑖𝑗

𝑃
𝐴

=

𝑡
𝑖𝑗

∑
𝑠

𝑖=0
∑
𝑠

𝑗=0
𝑡
𝑖𝑗

, for 0 ≤ 𝑖 ≤ 𝑠, 0 ≤ 𝑗 ≤ 𝑠,

𝑃
𝐶

𝑖𝑗
=

𝑝
𝑖𝑗

𝑃
𝐶

=

𝑡
𝑖𝑗

∑
𝐿−1

𝑖=𝑠+1
∑
𝐿−1

𝑗=𝑠+1
𝑡
𝑖𝑗

, for

𝑠 + 1 ≤ 𝑖 ≤ 𝐿 − 1, 𝑠 + 1 ≤ 𝑗 ≤ 𝐿 − 1.

(A.14)

The second order entropy of the object can be defined as

𝐻
(2)

𝐴
(𝑠) = −

1

2

⋅

𝑠

∑

𝑖=0

𝑠

∑

𝑗=0

𝑃
𝐴

𝑖𝑗
⋅ log
2
𝑃
𝐴

𝑖𝑗
. (A.15)
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Figure 17: Quadrants of cooccurrence matrix.

Similarly, the second order entropy of the background can be
written as
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Hence, the total second order local entropy of the object and
the background can be written as

𝐻
(2)

𝑇
(𝑠) = 𝐻

(2)

𝐴
(𝑠) + 𝐻

(2)

𝐶
(𝑠) . (A.17)

The gray level corresponding to themaximumof𝐻(2)
𝑇
(𝑠) gives

the optimal threshold for object background classification.
In the first modification a different definition of the cooc-

currencematrix is adopted increasing the local entropy values
in vein structures. As mentioned, the cooccurrence matrix
of an image shows the intensity transitions between adjacent
pixels. The original cooccurrence matrix is asymmetric by
considering the horizontally right and vertically lower tran-
sitions. They added some jittering effect to the cooccurrence
matrix that tends to keep the similar spatial structure but with
much less variations; that is, 𝑇 = [𝑡

𝑖𝑗
]
𝑃×𝑄

is computed as
follows:

For every pixel (𝑙, 𝑘) in an image 𝐹

𝑖 = 𝐹 (𝑙, 𝑘) ,

𝑗 = 𝐹 (𝑙, 𝑘 + 1) ,

𝑑 = 𝐹 (𝑙 + 1, 𝑘 + 1) ,

𝑡
𝑖𝑗
= 𝑡
𝑖𝑑
+ 1.

(A.18)

One may wonder whether the modified cooccurrence matrix
still will represent the original spatial structure. Actually, con-
sidering a smooth area in an image where 𝑗 and 𝑑 should
be very close or identical, the above computation in (A.18)
implicitly introduces certain smoothing effect and adds some
structured noise to the cooccurrence matrix. The two matri-
ces still share a similar structure that is important for the valid
thresholding result. Also, the latter one has larger entropy
with a much smaller standard deviation, which is more desir-
able for local entropy thresholding.
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Secondly, they considered the sparse foreground in select-
ing the optimal threshold. The original threshold selection
criterion aims to maximize the local entropy of foreground
and background in a gray scale image without considering
the small proportion of foreground.Therefore, they proposed
selecting the optimal threshold that maximizes the local
entropy of the binarized image that indicates the foreground/
background ratio. The larger the local entropy the more bal-
anced the ratio between foreground and background in the
binary image is.
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