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The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In
this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system
is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS) is proposed to find as more
solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration
power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present.
Finally, nine construction examples of algebra system are used to evaluate the optimizationmodel and performance of INGHS.The
experimental results show that the proposed algorithmhas strong performance for solving complex construction example problems
of algebra system.

1. Introduction

Algebra system is one of the broad parts of mathematics,
together with number theory, geometry, and analysis. It
has wide applications in astronomy, biology, construction,
computer science, and so on. Many scientific researchers
focus on its studies. However, with the rapid development
of science and technology, more and more complex algebra
systems emerge in large numbers, so the algebra system
researchers meet a lot of difficult problems. One of them
is to construct appropriate examples for the algebra system
so as to prove the existence of the algebra system. This is
because there is the tremendous computing workload to
construct appropriate examples that are satisfied with the
operations of the algebra system. In the current study of
algebra system, the construction examples of algebra system
are often manually achieved. However, for a multielement
complex algebra system, the construction examples are very
difficult. In order to understand the construction example
of algebra system better, we introduce its construction by an
example of N(2, 2, 0) algebra system.

Above all, we begin this section by introducing a simpli-
fied definition of N(2, 2, 0) algebra system [1, 2].

Definition 1. An N(2, 2, 0) algebra is a system (𝑆, ∗, Δ, 0)

where 𝑆 is nonempty set, 0 is a constant element of 𝑆, and ∗
and Δ are two binary operations on 𝑆, obeying the following
axioms. For all 𝑥, 𝑦, 𝑧 ∈ 𝑆,

(F
1
) 𝑥 ∗ (𝑦Δ𝑧) = 𝑧 ∗ (𝑥 ∗ 𝑦),

(F
2
) (𝑥Δ𝑦) ∗ 𝑧 = 𝑦 ∗ (𝑥 ∗ 𝑧),

(F
3
) 0 ∗ 𝑥 = 𝑥.

ForDefinition 1, there are twoworks for researchers to do.

(1) Give some examples to prove the existence of this
algebra.

(2) How many solutions are satisfying the three condi-
tions (F

1
), (F
2
), and (F

3
) simultaneously?
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Example 2. Let 𝑆 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
} be a finite set of distinct

elements. We define operations ∗ and Δ by the following
equations, respectively:

∗ 𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
1
𝑥
11

𝑥
12
⋅ ⋅ ⋅ 𝑥
1𝑛

𝑎
2
𝑥
21

𝑥
22
⋅ ⋅ ⋅ 𝑥
2𝑛

⋅ ⋅ ⋅

𝑎
𝑛
𝑥
𝑛1

𝑥
𝑛2
⋅ ⋅ ⋅ 𝑥
𝑛𝑛

(1)

Δ 𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
1
𝑦
11
𝑦
12
⋅ ⋅ ⋅ 𝑦
1𝑛

𝑎
2
𝑦
21
𝑦
22
⋅ ⋅ ⋅ 𝑦
2𝑛

⋅ ⋅ ⋅

𝑎
𝑛
𝑦
𝑛1
𝑦
𝑛2
⋅ ⋅ ⋅ 𝑦
𝑛𝑛

(2)

In (1) and (2), 𝑎
𝑖
∗ 𝑎
𝑗
= 𝑥
𝑖𝑗
∈ 𝑆, 𝑎

𝑖
Δ𝑎
𝑗
= 𝑦
𝑖𝑗
∈ 𝑆 (𝑖 =

1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛).
Next we consider

(F
1
) 𝑎
𝑖
∗ (𝑎
𝑗
Δ𝑎
𝑘
) = 𝑎
𝑘
∗ (𝑎
𝑖
∗ 𝑎
𝑗
) ⇔ 𝑎

𝑖
∗ (𝑦
𝑗𝑘
) = 𝑎
𝑘
∗ (𝑥
𝑖𝑘
),

(F
2
) (𝑎
𝑖
Δ𝑎
𝑗
)∗𝑎
𝑘
= 𝑎
𝑗
∗(𝑎
𝑖
∗𝑎
𝑘
) ⇔ (𝑦

𝑖𝑗
)∗𝑎
𝑘
= 𝑎
𝑗
∗(𝑥
𝑖𝑘
) ⇔

𝑎
𝑖
∗ (𝑦
𝑗𝑘
) = 𝑎
𝑘
∗ (𝑥
𝑖𝑘
),

(F
3
) 𝑎
1
∗ 𝑎
𝑖
= 𝑎
𝑖
⇔ 𝑥
1𝑖
= 𝑎
𝑖
,

where 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝑛.

For this algebra system, researchers hope to construct
some examples that satisfy the conditions (F

1
), (F
2
), and

(F
3
) and to prove the existence of the algebra. However, the

calculated amount of this work is so large that computing
cost is typically high. Like Example 2, each variable 𝑥

𝑖𝑗
or

𝑦
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛) can take 𝑛 different values

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
); the combinatorial number with the repetition

for all 𝑥
𝑖𝑗
and 𝑦

𝑖𝑗
is 𝑛2𝑛

2

. Obviously it is a NP-hard problem.
It will result in the combination blast when the dimension
increases. So the enumeration method can hardly be used to
construct an example for the algebra system (𝑆, ∗, Δ, 0).

Therefore, for this kind of NP-hard problem, this
paper proposes an intelligent metaheuristic algorithm
to get a set of (𝑥

11
, 𝑥
12
, . . . , 𝑥

1𝑛
; . . . ; 𝑥

𝑛1
, 𝑥
𝑛2
, . . . , 𝑥

𝑛𝑛
) and

(𝑦
11
, 𝑦
12
, . . . , 𝑦

1𝑛
; . . . ; 𝑦

𝑛1
, 𝑦
𝑛2
, . . . , 𝑦

𝑛𝑛
) quickly that satisfy

conditions (F
1
), (F
2
), and (F

3
).

2. The Optimization Model of 𝑁(2, 2, 0)
Algebra System

For the construction example of an𝑁(2, 2, 0) algebra system,
we can consider it as an optimized constraint satisfaction
problem (OCSP) that satisfies conditions (F

1
), (F
2
), and

(F
3
). Then it can be solved by the intelligent optimization

algorithm.

To predigest the solving process and promote its practica-
bility, we turn this problem into nonconstrained optimization
problem. The optimization model is as follows:

min𝐹 (X,Y)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

[𝑓
1
(𝑎
𝑖
, 𝑎
𝑗
, 𝑎
𝑘
) + 𝑓
2
(𝑎
𝑖
, 𝑎
𝑗
, 𝑎
𝑘
) + 𝑓
3
(𝑎
𝑖
)] ,

(3)

where
X = (𝑥

11
, 𝑥
12
, . . . , 𝑥

1𝑛
; . . . ; 𝑥

𝑛1
, 𝑥
𝑛2
, . . . , 𝑥

𝑛𝑛
)

is algebra (𝑆, ∗, 0) ;

Y = (𝑦
11
, 𝑦
12
, . . . , 𝑦

1𝑛
; . . . ; 𝑦

𝑛1
, 𝑦
𝑛2
, . . . , 𝑦

𝑛𝑛
)

is algebra (𝑆, Δ, 0) ;

(4)

for any 𝑎
𝑖
, 𝑎
𝑗
, and 𝑎

𝑘
(𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛; 𝑘 =

1, 2, . . . , 𝑛) in 𝑆 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
},

𝑎
𝑖
∗ 𝑎
𝑗
= 𝑥
𝑖𝑗
∈ 𝑆, 𝑎

𝑖
Δ𝑎
𝑗
= 𝑦
𝑖𝑗
∈ 𝑆,

𝑓
1
(𝑎
𝑖
, 𝑎
𝑗
, 𝑎
𝑘
) = {

0, 𝑎
𝑖
∗ (𝑎
𝑗
Δ𝑎
𝑘
) = 𝑎
𝑘
∗ (𝑎
𝑖
∗ 𝑎
𝑗
)

1, 𝑎
𝑖
∗ (𝑎
𝑗
Δ𝑎
𝑘
) ̸= 𝑎
𝑘
∗ (𝑎
𝑖
∗ 𝑎
𝑗
) ,

𝑓
2
(𝑎
𝑖
, 𝑎
𝑗
, 𝑎
𝑘
) = {

0, (𝑎
𝑖
Δ𝑎
𝑗
) ∗ 𝑎
𝑘
= 𝑎
𝑗
∗ (𝑎
𝑖
∗ 𝑎
𝑘
)

1, (𝑎
𝑖
Δ𝑎
𝑗
) ∗ 𝑎
𝑘
̸= 𝑎
𝑗
∗ (𝑎
𝑖
∗ 𝑎
𝑘
) ,

𝑓
3
(𝑎
𝑖
) = {

0, 0 ∗ 𝑎
𝑖
= 𝑎
𝑖

1, 0 ∗ 𝑎
𝑖
̸= 𝑎
𝑖
.

(5)

The functions 𝑓
1
, 𝑓
2
, and 𝑓

3
are to transform the con-

straint satisfaction problem to a nonconstraint optimization
problem by adding the penalty factors. When 𝑓

1
, 𝑓
2
, and

𝑓
3
meet conditions (F

1
), (F
2
), and (F

3
), respectively, the

objective values of each functions are 0; otherwise, a penalty
factor 1 is as the objective value.

For this problem, there are multiple solutions that
meet conditions (F

1
), (F
2
), and (F

3
). Therefore, sometimes

researchers hope to get as many solutions as possible. To
resolve the multisolution problem, we introduce tube table
(tube table: TT) to store the obtained solutions and to avoid
duplication of solutions. The definite means are as follows:

𝑓
4
(X) = {0 X ∉ TT

𝑛 X ∈ TT,
(6)

where TT is the tube table.𝑓
4
is defined as a penalty function.

If X is not in tube table TT, 𝑓
4
is equal to 0. Otherwise, 𝑓

4
is

assigned a penalty value 𝑛.
Under this condition, the objective function can be

expressed as

min𝐹 (X,Y)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

[𝑓
1
(𝑎
𝑖
, 𝑎
𝑗
, 𝑎
𝑘
)

+ 𝑓
2
(𝑎
𝑖
, 𝑎
𝑗
, 𝑎
𝑘
) + 𝑓
3
(𝑎
𝑖
)] + 𝑓

4
(X) .

(7)
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It is clear that, for this optimization problem, the objective
value of optimal solution is min𝐹∗ = 0.

In order to solve the nonconstrained optimization prob-
lem,we propose a newharmony search (HS) algorithmwhich
is a big improvement for classicalHS algorithm [1] andNGHS
[3] method. We called it improved NGHS (INGHS).

3. Classical Harmony Search (HS) and NGHS

Classical harmony search (HS) is derivative-free metaheuris-
tic algorithm [4, 5]. It mimics the improvisation process of
music players and attains the ideal harmony by adjusting the
HM. HS algorithm has the same feature as genetic algorithm
(GA). The HS algorithm is good at identifying the new
regions of the searching space in a reasonable time; however,
it has difficulties performing a local search for numerical
applications [3, 6–8].

So, several variants of HS have been proposed to improve
the performance of the HS algorithm [3, 6–14], such as local-
best harmony search algorithmwith dynamic subpopulations
(DLHS) [6], self-adaptive global best harmony search algo-
rithm (SGHS) [7], intelligent tuned harmony search (ITHS)
[8] algorithm, and exploratory power of the harmony search
(EHS) [3] algorithm. In addition, Zou et al. presented a
novel global harmony search algorithm for unconstrained
problems (NGHS) [9, 10]. The literature [11] presents the
recent advances in HS algorithm. Tuo and Yong proposed
HSTL methods for large scale optimization problem and
presented an improved harmony search with chaos (HSCH)
[12], as well as other variants [13–15] of HS and some
applications [16–19] of HS.

Consider an optimization model as follows:

min 𝑓 (X) , X = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
)

subject to 𝑥
𝑖
∈ [𝑥
𝐿

𝑖
, 𝑥
𝑈

𝑖
] , 𝑖 = 1, 2, . . . , 𝐷,

(8)

where 𝑓(X) is the optimization objective function, X is
the solution vector that consists of 𝐷 decision variables
𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝐷), and [𝑥𝐿

𝑖
, 𝑥
𝑈

𝑖
] is feasible range of values

for decision variable 𝑥
𝑖
.

In the HS algorithm,X represents the harmony and 𝑓(X)
denotes themelody of harmonyX. HS uses three rules (mem-
ory consideration, pitch adjustments, and randomization) to
optimize the harmony memories (HM) composed of HMS
harmony vectors.

3.1. The Classical Harmony Search (HS) Algorithm. The steps
in the procedure of classical harmony search algorithm are as
follows.

Step 1 (initialize the harmony memory). The harmony mem-
ory (HM) consists of HMS harmony vectors. Each harmony
vector is generated from a uniformdistribution in the feasible
space, as

𝑥
𝑗

𝑖
= 𝑥
𝐿

𝑖
+ 𝑟 ⋅ (𝑥

𝑈

𝑖
− 𝑥
𝐿

𝑖
) ,

𝑖 = 1, 2, . . . , 𝐷; 𝑗 = 1, 2, . . . ,HMS,
(9)

where𝐷 andHMS represent the number of decision variables
and the size of harmony memory, respectively, and 𝑟 denotes
a uniform distribution random number between 0 and 1, as

HM =

[
[
[
[
[

[

X1
X2
.
.
.

XHMS

]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑥
1

1
𝑥
1

2
⋅ ⋅ ⋅ 𝑥

1

𝐷

𝑥
2

1
𝑥
2

2
⋅ ⋅ ⋅ 𝑥

2

𝐷

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
HMS
1

𝑥
HMS
2

⋅ ⋅ ⋅ 𝑥
HMS
𝐷

]
]
]
]
]
]

]

. (10)

Step 2 (improvise a new harmony via three rules). There are
three rules that can be used to improvise a new harmony
vector Xnew.

(a) Memory Consideration. A decision variable value of
the harmony vector will be adopted by choosing from the
harmony memory with probability HMCR.

(b) Pitch Adjustment. Get a component randomly from an
adjacent value of one decision variable of a harmony vector
with probability PAR.

(c) Random Generation. Generate a component randomly in
the feasible region with probability 1-HMCR.

The improvisation procedure of a new harmony vector
works as Algorithm 2.

A trial harmony vector Xnew is generated in Step 2. Next,
in Step 3, it will be decided whether to survive.

Step 3 (select operator). Get the worst harmony vectorXworst

from the HM (see Algorithm 1).

Step 4 (check stopping criterion). If the stopping criterion
(maximum function evaluation times: maxFEs) is satisfied,
computation is terminated. Otherwise, Steps 2 and 3 are
repeated.

3.2. The NGHS Algorithm. In the novel global harmony
search (NGHS) algorithm [9], three significant parameters,
harmony memory considering rate (HMCR), fret width
(FW), and pitch adjusting rate (PAR), are excluded from
NGHS and a random selection rate (𝑝

𝑚
) is included in

the NGHS. In Step 3, NGHS works as Algorithm 3, where
𝑥
best
𝑖

and 𝑥worst
𝑖

, respectively, represent indexes of the best
harmony and the worst harmony in HM. rand(0, 1) is a
uniformly generated random number in [0, 1], and it should
set parameter 𝑝

𝑚
= 2/𝐷 for the 0-1 knapsack problem and set

parameter 𝑝
𝑚
= 0.01∼0.1 for continuous optimal problem.

3.3. The Proposed HS Method. In this section, we proposed
a new harmony search algorithm which is improved based
on classical HS algorithm and NGHS method, so we call the
proposed algorithm INGHS.

Since the HS algorithm origination, it has been applied
to many practical optimization problems. However, for large
scale optimization problems, classical HS has slow conver-
gence and low precision, which is due to the fact that because
a new decision variable value in harmonymemory (HM) can
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If fitness (Xnew
) is better than fitness (Xworst

) then
Xworst

= Xnew; (Xworst is the worst harmony vector in HM).
EndIf

Algorithm 1

For 𝑖 = 1 to𝐷 do
If rand(0, 1) <HMCR then

𝑥
new
𝑖

= 𝑥
𝑗

𝑖
, 𝑗 ∈ 𝑈{1, 2, . . . ,HMS}

If rand(0, 1) < PAR then
𝑥
new
𝑖

= 𝑥
new
𝑖

± rand() × FW(𝑖); //FW: fretwidth
𝑥
new
𝑖

= min (max (𝑥new
𝑖
, 𝑥
𝐿

𝑖
) , 𝑥
𝑈

𝑖
)

Endif
Else
𝑥
new
𝑖

= 𝑥
𝐿

𝑖
+ (𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) × rand()

Endif
End For

Algorithm 2: The improvisation procedure of new harmony vector by HS.

For 𝑖 = 1 to 𝐷 do
𝑥
𝑟

𝑖
= 2 × 𝑥

best
𝑖
− 𝑥

worst
𝑖

𝑥
𝑟

𝑖
= min (max (𝑥𝑟

𝑖
, 𝑥
𝐿

𝑖
) , 𝑥
𝑈

𝑖
)

𝑥
new
𝑖

= 𝑥
worst
𝑖

+ rand(0, 1) × (𝑥𝑟
𝑖
− 𝑥

worst
𝑖

).
If rand(0, 1) ≤ 𝑝

𝑚
%random mutation

𝑥
new
𝑖

= 𝑥
𝐿

𝑖
+ (𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) × rand(0, 1)

EndIf
EndFor

Algorithm 3: The NGHS modifies improvisation step.

be generated only by using pitch adjustment and random-
ization strategies during the search procedure, the memory
consideration rule is only used to adjust the existing decision
variable values according to the harmony memory (HM).
Thus HS can maintain a strong performance of exploration,
but not a good performance of exploitation, and, in the
later stage of search, it is characterized by slow convergent.
Therefore, for solving the large scale optimization problem,
the key is to balance the global exploration performance and
the local exploitation ability.

Because the construction example of the algebra is a large
scale high-dimensional optimization problem, to achieve the
most satisfactory optimization performance by applying the
HS algorithm to a given problem, we adopt four optimization
strategies and dynamical parameter control method to bal-
ance the global exploration power and the local exploitation
ability.

It is of very importance between the convergence and the
diversity in order to improve the efficiency of the search. In
the classical HS algorithm, a new harmony is generated in
Step 2. After the selecting operation in Step 3, the population

variance may increase or decrease. With a high population
variance, the diversity and exploration power will increase,
and in the same time the convergence and the exploitation
power will decrease accordingly. Conversely, with a low
population variance, the convergence and the exploitation
power will increase [8]; the diversity and the exploration
power will decrease. So it is significant how to keep the
balance between the convergence and the diversity. Classical
HS algorithm loses its ability easily at the later evolution
process [3], because of improvising a new harmony from
HM with a high HMCR and local adjusting with PAR. And
HM diversity decreases gradually from the early iteration to
the last. However, in HS algorithm, a low HMCR employed
will increase the probability (1-HMCR) of random select in
search space; the exploration power will improve, but the
local search ability and the exploitation accuracy cannot be
improved by the single pitch adjusting strategy.

To overcome the inherent weaknesses of HS, in this
section, we present INGHS method to construct example for
algebra. The INGHS algorithm works as Algorithm 4 and
Figure 1.
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Yes

Yes

Yes

Yes

Yes No

NoNo

No

No

Yes

No

No

Initialize parameters, termination criterion

Begin

Initialize harmony memory (HM)

rand(0,1) <Pm

Xnew
= Xworst

, i = 1

t = 1

rand(0,1) <HMCR Memory
consideration

rand(0, 1) <PAR

Local pitch
adjustment

rand(0,1) <NGP NG strategy

Random
selection

i = i + 1

i + 1 ≤ D

Termination criterion is met?

Output result

t = t + 1

Update operators

Figure 1: The flow chart of the proposed algorithm.

In Algorithm 4, to resolve the discrete optimization
problems, the function Round(𝑥) is used to round each
element of 𝑥 to the nearest integer.

(1) Novel Global (NG) Best Strategy. In NGHS algorithm, the
novel global best strategy is very effective to explore the global
best solution. So, in the proposed method, the novel global
best strategy is adopted (see Algorithm 5), where the best and
worst, respectively, represent indexes of the best harmony and
the worst harmony in HM.

(2) Parameters Dynamically Changed. To balance the explo-
ration and exploitation power of the INGHS algorithm
efficiently, HMCR, PAR, FW, and NGP parameters are

dynamically adapted to a suitable range with the increase
of generations. Equation (11) shows the dynamic change of
HMCR, PAR, and NGP, respectively,

HMCR = HMCRmin + (HMCRmax −HMCRmin)

× (
𝑡

𝑇max
) ,

NGP = NGPmin + (NGPmax −NGPmin) × (
𝑡

𝑇max
)

3

,

PAR = PARmax −
(PARmax − PARmin) × 𝑡

𝑇max

(11)

(see [8]).
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Xnew
= Xworst %%% worst is the index of the worst harmony in HM

For i = 1 to D
If rand(0,1) < Pm

% Random playing: randomly select any pitch within bounds
𝑥
new
𝑖

= Round (𝑥𝐿
𝑖
+ (𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) × rand(0, 1))

Else
If rand(0,1) < HMCR

%Memory considering: randomly select a note stored in HM
𝑥
new
𝑖

= 𝑥
𝑎

𝑖
; 𝑎 ∈ 𝑈(1, 2, . . . ,HMS)

If rand(0,1) < PAR
% Pitch adjusting: randomly adjust the pitch slightly
𝑥
new
𝑖

= Round(𝑥new
𝑖

± rand(0, 1) × FW(𝑖))
EndIf

ElseIf rand(0,1) < NGP %
𝑥
𝑟
= Round (2𝑥best

𝑖
− 𝑥

worst
𝑖

)

𝑥
new
𝑖

= Round (𝑥worst
𝑖

+ rand (0, 1) × (𝑥
𝑟
− 𝑥

worst
𝑖

))

EndIf
EndIf

EndFor % Finished improvising a new harmony

Algorithm 4: The pseudocode of the proposed algorithm INGHS.

If rand(0, 1) < NGP (NGP is the rate of choosing the novel global best strategy)
𝑥
𝑟
= Round (2𝑥best

𝑖
− 𝑥

worst
𝑖

)

𝑥
new
𝑖

= Round (𝑥worst
𝑖

+ rand (0, 1) × (𝑥
𝑟
− 𝑥

worst
𝑖

))

End

Algorithm 5

It can be seen that the parameter HMCR gradually
increased from HMCRmin to HMCRmax linearly and the
parameter NGP increased with low velocity in the early
stage and it increased sharply in the final stage. That is
because, in the beginning, in order to explore the global
optimal solution, the harmony consideration rules and NG
strategies are carried out with a smaller probability, and,
in later stage, INGHS methods begin to focus on the local
exploitation that needs a high probability to employ the NG
strategy and harmony consideration rules. The benefits of
doing so can get more opportunities to reinforce the global
exploration by strengthening disturbance in the early stage
and can acquire high precision solution by carrying local
intensification search in the later stage. For the same reason,
FW is decreased gradually in order to reduce perturbation
step size step by step, and the variation of PAR from 0.55 to
0.3 is to reduce the probability of pitch adjustment.

3.4. The Construction Example for 𝑁(2, 2, 0) Algebra System
with the Proposed HS Method. For an N(2, 2, 0) algebra
system, there are multiple solutions that meet the conditions.
Sometimes we need to obtain multiple solutions. So we adopt
the proposed HS algorithm and tube table technology to
resolve the multisolution problem. Its flow chart is as shown
in Figure 2 and in Pseudocode 1.

3.5. Effect of Parameters HMCR and NGP on INGHS Perfor-
mance. In this section, we determine the effect of parameters
HMCRmax, HMCRmin, NGPmax, and NGPmin on the perfor-
mance of the proposed algorithm INGHS. The experiments
are investigated for algebra system (𝑆, ∗, Δ, 0), where 𝑆 =

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔}.

(1) Investigation for 𝑁𝐺𝑃max and 𝑁𝐺𝑃min (initialize
HMCRmax = 0.9, HMCRmin = 0.6). Let NGPmin change from
0.1 to 0.6; then, for each NGPmin, let NGPmax = 0.5 to 1. So
there are 6 × 6 = 36 pairs of parameters (NGPmin, NGPmax).
For each pair of parameters (NGPmin, NGPmax), we execute
the proposed algorithm (INGHS) |𝑆|4 (74 = 2401) times and
then record the number of solutions obtained. The result is
shown in Figure 3.

(2) Investigation for 𝐻𝑀𝐶𝑅max and 𝐻𝑀𝐶𝑅min (initialize
NGPmax = 0.5, NGPmin = 0.15). Let HMCRmin = 0.2 to 0.7
and let HMCRmax = 0.5 to 1, respectively. For each pair of
parameters (HMCRmin, HMCRmax), the proposed algorithm
INGHS is performed |𝑆|4 (74 = 2401) times and then we
record the number of solutions obtained. The number of
solutions obtained is shown in Figure 4.

It can be seen from Figure 3 that most solutions can
be obtained when NGPmin = 0.2 and NGPmax = 0.5.
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Set TT as empty
For 𝐿 = 1 to Max Loop times (ML)

Run the proposed HS algorithm to get a best solution Xnew;
If the objective function value 𝐹(Xnew

) == 0

Put Xnew into tube table TT.
EndIf

EndFor

Pseudocode 1

No

Yes

Yes

No

Initialize the max amount of looping (ML) and set tube
table (TT) as empty set

Begin

L = 1

Output result

is not in TT and satisfies conditions

TT ← TT ∪

L + 1 ≤ ML

L = L + 1

(F1), (F2), and (F3)

Perform INGHS algorithm to find an optimal solution Xnew

Xnew

Xnew

Figure 2: The flow chart for construction example of algebra system based on INGHS algorithm.

From Figure 4, we find that most solutions are found when
HMCRmin = 0.6 and HMCRmax = 0.9.

From the above, the proposed algorithm has better
performance when it is set as HMCRmin = 0.6, HMCRmax =
0.9, NGPmin = 0.2, and NGPmax = 0.5.

4. Computational Experiments and Results

In this section, we have tested the proposed algorithm over
a set of N(2, 2, 0) algebra system construction examples
problems.

4.1. The Proposed Algorithm for Solving the Construction
Examples of Algebra System. Definition 1 is chosen as the

optimization objective algebra system. For Definition 1, we,
respectively, set the following:

(1) 𝑆 = {𝑎, 𝑏};

(2) 𝑆 = {𝑎, 𝑏, 𝑐};

(3) 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑};

(4) 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒};

(5) 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓};

(6) 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔};
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Figure 3: Variation of number of solutions with change in NGPmax
and NGPmin.
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Figure 4: Variation of number of solutions with change in
HMCRmax and HMCRmin.

(7) 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ};

(8) 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖};

(9) 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗}; 𝑛 = |𝑆| represents the
number of set 𝑆, 𝐷 = 2𝑛

2.

Then we use the proposed algorithm to construct the
examples for the algebra system on 𝑆.

In order to deal with the optimization problems easily, we
replace the elements 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, and 𝑗with 1, 2, 3, 4,
5, 6, 7, 8, 9, and 10, respectively. So, for each 𝑆, the upper limit
of variables about optimization problems is set as |𝑆| and the
lower limit is set as 1.

4.2.The Parameters Setting for Algorithms. In the experiment
test, we set the following parameter values: 𝑇max = 500 × 𝐷;
for NGHS algorithm, HMS = 10, 𝑝

𝑚
= min(0.01, 2/𝐷); for

the proposed algorithm (INGHS), HMS = 10, HMCRmax =
0.9, HMCRmax = 0.6, NGPmax = 0.55, NGPmin = 0.15,
PARmax = 0.8, PARmin = 0.25, FWmax = 𝑛/2, FWmin = 𝑛/10,
and 𝑝

𝑚
= min(0.01, 2/𝐷).

When 𝑛 = 2 and 𝑛 = 3, there are 3 and 16 solutions for the
N(2, 2, 0) algebra system, respectively. So we set max looping
times (ML) = 3 and 16, respectively. When 𝑛 > 3 and 𝑛 < 9,
we do not know howmany solutions are there for the algebra
system. So we setML = 𝑛4. However, with the increasing of 𝑛,
there are much more solutions, and computer’s running time
is very long. So we set ML = 8000 and 5000 when 𝑛 = 9 and
𝑛 = 10.

4.3.The Experiment Results andAnalysis. In order to evaluate
the performance of the proposed algorithm INGHS, we
compared its success rate of finding the solutions with HS,
HSTL, and NGHS algorithms in the same conditions. The
results are shown in Table 1.

When 𝑆 = {𝑎, 𝑏} (𝑛 = 2), the solutions, as shown in (12a)–
(12c), are obtained by using the proposed algorithm. And
when 𝑆 = {𝑎, 𝑏, 𝑐} (𝑛 = 3), the solutions obtained by INGHS
method are shown in (13a)–(13p). For other instances (𝑛 > 3),
due to the existence of many solutions, we only present one
solution for each instance. All is shown in (14)–(20).

The first solution on 𝑛 = 2 is as follows:

∗ 𝑎 𝑏

𝑎 𝑎 𝑏

𝑏 𝑎 𝑏

Δ 𝑎 𝑏

𝑎 𝑎 𝑎

𝑏 𝑏 𝑏

(12a)

The second solution on 𝑛 = 2 is as follows:

∗ 𝑎 𝑏

𝑎 𝑎 𝑏

𝑏 𝑏 𝑎

Δ 𝑎 𝑏

𝑎 𝑎 𝑏

𝑏 𝑏 𝑎

(12b)

The third solution on 𝑛 = 2 is as follows:

∗ 𝑎 𝑏

𝑎 𝑎 𝑏

𝑏 𝑏 𝑏

Δ 𝑎 𝑏

𝑎 𝑎 𝑏

𝑏 𝑏 𝑏

(12c)

The first solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑐

(13a)

The second solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑎 𝑏 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑎

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑐

(13b)
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The third solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑏 𝑏 𝑏

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑏

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑏

(13c)

The fourth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑎 𝑏 𝑐

𝑐 𝑐 𝑐 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑎 𝑐

𝑏 𝑏 𝑏 𝑐

𝑐 𝑐 𝑐 𝑐

(13d)

The fifth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑏

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑏

(13e)

The sixth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑎

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑎

(13f)

The seventh solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑎 𝑏 𝑐

𝑐 𝑎 𝑏 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑎 𝑏 𝑐

𝑐 𝑎 𝑏 𝑐

(13g)

The eighth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑐 𝑏

𝑐 𝑐 𝑏 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑐 𝑏

𝑐 𝑐 𝑏 𝑐

(13h)

The ninth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑐

𝑐 𝑏 𝑏 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑐

𝑐 𝑏 𝑏 𝑐

(13i)

The tenth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑐 𝑏 𝑐

𝑐 𝑐 𝑏 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑐 𝑏 𝑐

𝑐 𝑐 𝑏 𝑐

(13j)

The eleventh solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

(13k)

The twelfth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑐

𝑐 𝑐 𝑐 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑐

𝑐 𝑐 𝑐 𝑐

(13l)

The thirteenth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑐

𝑐 𝑐 𝑐 𝑏

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑏 𝑐

𝑐 𝑐 𝑐 𝑏

(13m)

The fourteenth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑎 𝑐

𝑐 𝑐 𝑐 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑎 𝑐

𝑐 𝑐 𝑐 𝑐

(13n)

The fifteenth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑐 𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑐 𝑐

𝑏 𝑏 𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

(13o)

The sixteenth solution on 𝑛 = 3 is as follows:

∗ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑐 𝑎

𝑐 𝑐 𝑎 𝑏

Δ 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐

𝑏 𝑏 𝑐 𝑎

𝑐 𝑐 𝑎 𝑏

(13p)

One of the solutions on 𝑛 = 4 (𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}) is as
follows:

∗ 𝑎 𝑏 𝑐 𝑑

𝑎 𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 𝑏 𝑐 𝑑

𝑐 𝑑 𝑐 𝑐 𝑑

𝑑 𝑑 𝑐 𝑐 𝑑

Δ 𝑎 𝑏 𝑐 𝑑

𝑎 𝑎 𝑎 𝑑 𝑑

𝑏 𝑏 𝑏 𝑐 𝑐

𝑐 𝑐 𝑐 𝑐 𝑐

𝑑 𝑑 𝑑 𝑑 𝑑

(14)

One of the solutions on 𝑛 = 5 (𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}) is as
follows:

∗ 𝑎 𝑏 𝑐 𝑑 𝑒

𝑎 𝑎 𝑏 𝑐 𝑑 𝑒

𝑏 𝑏 𝑏 𝑑 𝑑 𝑏

𝑐 𝑐 𝑑 𝑑 𝑑 𝑐

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑

𝑒 𝑎 𝑏 𝑐 𝑑 𝑒

Δ 𝑎 𝑏 𝑐 𝑑 𝑒

𝑎 𝑎 𝑏 𝑐 𝑑 𝑎

𝑏 𝑏 𝑏 𝑑 𝑑 𝑏

𝑐 𝑐 𝑑 𝑑 𝑑 𝑐

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑

𝑒 𝑒 𝑏 𝑐 𝑑 𝑒

(15)
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Figure 5: The convergence curve and the box plot when 𝑛 = 5.

One of the solutions on 𝑛 = 6 (𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}) is
as follows:

∗ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑏 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑐 𝑐 𝑐 𝑐 𝑑 𝑐 𝑐

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑

𝑒 𝑒 𝑒 𝑐 𝑑 𝑒 𝑒

𝑓 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

Δ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 𝑎 𝑎 𝑐 𝑑 𝑒 𝑎

𝑏 𝑏 𝑏 𝑐 𝑑 𝑒 𝑏

𝑐 𝑐 𝑐 𝑐 𝑑 𝑐 𝑐

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑

𝑒 𝑒 𝑒 𝑐 𝑑 𝑒 𝑒

𝑓 𝑓 𝑓 𝑐 𝑑 𝑒 𝑓

(16)

One of the solutions on 𝑛 = 7 (𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔})
is as follows:

∗ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑏 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑐 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑑 𝑑 𝑒 𝑑 𝑑 𝑒 𝑓 𝑒

𝑒 𝑑 𝑒 𝑑 𝑑 𝑒 𝑓 𝑒

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

𝑔 𝑑 𝑒 𝑑 𝑑 𝑒 𝑓 𝑒

Δ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑎 𝑎 𝑎 𝑎 𝑑 𝑑 𝑓 𝑑

𝑏 𝑏 𝑏 𝑏 𝑒 𝑒 𝑓 𝑒

𝑐 𝑐 𝑐 𝑐 𝑑 𝑑 𝑓 𝑑

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑓 𝑑

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑓 𝑒

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

𝑔 𝑔 𝑔 𝑔 𝑒 𝑒 𝑓 𝑒

(17)

One of the solutions on 𝑛 = 8 (𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓,

𝑔, ℎ}) is as follows:

∗ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

𝑏 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐

𝑑 𝑑 𝑑 𝑐 𝑐 𝑐 𝑐 𝑑 𝑑

𝑒 𝑒 𝑒 𝑐 𝑐 𝑒 𝑓 𝑒 𝑒

𝑓 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐

𝑔 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

ℎ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

Δ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

𝑎 𝑎 𝑎 𝑐 𝑑 𝑒 𝑐 𝑎 𝑎

𝑏 𝑏 𝑏 𝑐 𝑑 𝑒 𝑐 𝑏 𝑏

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐

𝑑 𝑑 𝑑 𝑐 𝑐 𝑐 𝑐 𝑑 𝑑

𝑒 𝑒 𝑒 𝑐 𝑐 𝑒 𝑐 𝑒 𝑒

𝑓 𝑓 𝑓 𝑐 𝑐 𝑓 𝑐 𝑓 𝑓

𝑔 𝑔 𝑔 𝑐 𝑑 𝑒 𝑐 𝑔 𝑔

ℎ ℎ ℎ 𝑐 𝑑 𝑒 𝑐 ℎ ℎ

(18)
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Figure 6: The convergence curve and the box plot when 𝑛 = 6.
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Figure 7: The convergence curve and the box plot when 𝑛 = 7.

One of the solutions on 𝑛 = 9 (𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒,

𝑓, 𝑔, ℎ, 𝑖}) is as follows:

∗ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑐 𝑏 𝑒 𝑒 𝑔 𝑏 𝑐

𝑑 𝑑 𝑏 𝑏 𝑏 𝑏 𝑑 𝑏 𝑏 𝑑

𝑒 𝑐 𝑏 𝑐 𝑏 𝑒 𝑒 𝑔 𝑏 𝑐

𝑓 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

𝑔 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

ℎ 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

𝑖 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

Δ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

𝑎 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑏 𝑏 𝑎

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

𝑐 𝑐 𝑏 𝑐 𝑏 𝑐 𝑐 𝑏 𝑏 𝑐

𝑑 𝑑 𝑏 𝑏 𝑏 𝑏 𝑑 𝑏 𝑏 𝑑

𝑒 𝑒 𝑏 𝑒 𝑏 𝑒 𝑒 𝑏 𝑏 𝑒

𝑓 𝑓 𝑏 𝑒 𝑑 𝑒 𝑓 𝑏 𝑏 𝑓

𝑔 𝑔 𝑏 𝑔 𝑏 𝑔 𝑔 𝑏 𝑏 𝑔

ℎ ℎ 𝑏 𝑏 𝑏 𝑏 ℎ 𝑏 𝑏 ℎ

𝑖 𝑖 𝑏 𝑐 𝑑 𝑐 𝑖 𝑏 𝑏 𝑖

(19)
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Figure 8: The convergence curve and the box plot when 𝑛 = 8.

One of the solutions on 𝑛 = 10 (𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓,

𝑔, ℎ, 𝑖, 𝑗}) is as follows:

∗ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗

𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗

𝑏 𝑒 𝑒 𝑐 𝑒 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

𝑐 𝑒 𝑒 𝑐 𝑒 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

𝑑 𝑑 𝑒 𝑐 𝑓 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒 𝑐 𝑒 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

𝑓 𝑓 𝑒 𝑐 𝑒 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

𝑔 𝑒 𝑒 𝑐 𝑒 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

ℎ ℎ 𝑏 𝑐 𝑒 𝑒 𝑒 𝑔 ℎ 𝑒 𝑒

𝑖 𝑖 𝑒 𝑐 𝑒 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

𝑗 𝑒 𝑒 𝑐 𝑒 𝑒 𝑒 𝑔 𝑒 𝑒 𝑒

Δ 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗

𝑎 𝑎 𝑒 𝑒 𝑑 𝑒 𝑓 𝑒 ℎ 𝑖 𝑒

𝑏 𝑏 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑏 𝑒 𝑒

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐

𝑑 𝑑 𝑒 𝑒 𝑓 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒

𝑓 𝑓 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒

𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔

ℎ ℎ 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 ℎ 𝑒 𝑒

𝑖 𝑖 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒

𝑗 𝑗 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒

(20)

FromTable 1, it can be seen obviously that the success rate
of all instances of the proposed method is higher than HS,
HSTL, and NGHS.

For instance, 𝑛 = 6, 7, 8, 9, and 10, and Figures 5, 6, 7,
8, 9, and 10 show the convergence curves of three algorithms
(HS, NGHS, and INGHS). It is evident from Figures 5–10 that
the proposed algorithm is better than HS and NGHS for all

instances. The convergence curve of the proposed algorithm
can maintain falling until it finds the best solution. When
𝑛 > 6, the convergence curve of INGHS method falls faster
thanHS,HSTL, andNGHS algorithms, and it keeps declining
actively until the best solution is found.

5. Conclusions

This paper has investigated nine construction example prob-
lems of algebra system and converted the construction exam-
ple problems into optimization problems. A novel harmony
search algorithm (INGHS) is proposed to solve the problems.
Global best strategy and dynamic parameters adjustment are
employed in INGHS.The experimental results on 9 instances
of algebra system demonstrate that the proposed algorithm
is more effective than HS, HSTL, and NGHS algorithms.
Further research will investigate the INGHS algorithm to
solve the combinatorial optimization problems and some
practical optimization problems.
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Figure 9: The convergence curve and the box plot when 𝑛 = 9.
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