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High-impedance faults (HIFs) caused by downed conductors in electric power systems are in general difficult to be detected using
traditional protection relays due to small fault currents. The energized downed conductor can pose a safety risk to the public and
cause a fire hazard. This paper presents a new method for locating the line (feeder) section of the HIF with the help of limited
measurements in electric power systems.The discrete wavelet transform is used to extract the features of transients caused by HIFs.
A modified 𝑘-means algorithm associated with genetic algorithms is then utilized to determine the placement of measurement
facilities.The signal energies attained by wavelet coefficients serve as inputs to the support vector machine for locating the HIF line
section. The simulation results obtained from an 18-busbar distribution system show the applicability of the proposed method.

1. Introduction

High-impedance faults (HIFs) in general occur in electric
distribution systems. HIFs occur when a conductor contacts
a tree with a high-impedance or when a broken conductor
touches the ground. These faults may impose fire risks and
cause electric shock that endangers lives of personnel. There-
fore, HIF detection is essential to ensure safety. However,
detection of HIFs using traditional protection devices (e.g.,
overcurrent and distance relay) is difficult because the result-
ing level of fault current is usually smaller than the nominal
current.

Lien et al. proposed a method for detecting HIFs using
three-phase energy variance for the second, fourth, and
sixth harmonics of unbalanced current. Then counters are
designed to detect HIF arcing through statistical confidence
[1]. Emanuel et al. proposed that 120Hz and 180Hz com-
ponents may be employed to detect HIFs. The field test
was supported by a simple theoretical model and laboratory
measurement [2]. Kim et al. usedwavelet transform to extract
HIF features for developing anHIF indicator [3]. Sedighi et al.
presented a statistical pattern recognition, namely, principal

component analysis and Bayes classifier, for detecting HIF
and discriminating it from other disturbances [4]. Lai et al.
used the nearest neighbor rule approach to classify HIF and
low-impedance fault (LIF) with the help of wavelet transform
and voltage/current rms values [5]. Michalik et al. employed
a phase displacement relation between wavelet coefficients of
zero sequence voltages and currents to detect HIFs [6]. Sheng
and Rovnyak used rms current, harmonic magnitudes, and
phases in a decision tree for detecting HIFs [7].

On the other hand, the wavelet transform (WT) has been
widely used for analyzing transient signals because of its
varied window function for the time domain. The features
of signals/functions can be easily extracted/decomposed via
multiresolution analysis (MRA) [8]. There are many papers
using discretewavelet transform (DWT) to detect and classify
PQ events [9–12]. Furthermore, artificial neural networks
(ANNs) can be employed to map the input and output
nonlinear relationship. The support vector machine (SVM),
which is one of the ANNs, has recently been proposed for
nonlinear regression and classification. Dash et al. used three
SVMs for training to achieve fault classification, ground
detection, and section identification, respectively, for the line
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using thyristor-controlled compensated compensators [13].
Srinivasan et al. employed SVMs with linear and polynomial
kernels developed for signature extraction and device identi-
fication [14]. Janik and Lobos used space phasor for feature
extraction from three-phase signals to build distinguished
patterns for SVM classifiers [15]. Other applications using
SVM are, for example, load forecasting [16] and transient
stability analysis [17].

In previous methods, “detection” means identification of
an HIF in a feeder (or transmission line) [1–4] or in one
of the multiple feeders (or transmission lines) [5–7] from
the secondary side of a transformer at a substation. Locating
a line (feeder) section, where an HIF occurs, has not been
addressed in these papers. Moreover, different features, for
example, even harmonics [1], low harmonics [2, 7], wavelet
coefficients [3–5], voltage/current rms values [5], and phase
displacement [6], were considered for detection. There was
no salient result showing which features were better.

In this paper, locating the HIF line (feeder) section
instead of detecting HIFs is addressed in a distribution
system. Placement ofmultiplemeasurement facilities is deter-
mined first by a modified 𝑘-means algorithm associated with
genetic algorithms. The discrete wavelet transform (DWT)
is then used to extract features from these measurement
locations for classification. Finally, the SVM is utilized to
locate an exact HIF line section.

In Section 2, the problem description and assumptions
are provided. The proposed method for locating the HIF
section is given in Section 3. Simulation results obtained from
an 18-busbar distribution system with HIFs are discussed in
Section 4. Concluding remarks are given in Section 5.

2. Problem Description and Assumptions

Power engineers in general deal with the power event
according to the following steps: (i) localization, (ii) classi-
fication, (iii) locating, and (iv) remedial action. These can
be achieved with the help of the power supply monitoring
system. When the monitored signals (voltage and current)
are measured, the important features can be extracted using
digital signal processing techniques. The monitoring system
will assimilate the information including the features into
useful knowledge/information through soft computing and
machine learning for engineers to develop control strategy
and to achieve decision-making.

In the last paragraph, “localization” means to identify
the time for HIFs to occur. “Classification” indicates that
HIFs should be discriminated from other disturbances, for
example, load switching and low-impedance (short circuit)
fault. “Locating” implies that an exact HIF line section should
be identified. The second and third tasks will be emphasized
in this paper. After locating the HIF, proper remedial actions
will be activated by power engineers.

This paper deals with locating the HIF line section in
a distribution system with multiple feeders using a power
supply monitoring system including multiple measurement
facilities at different lines. Locating a line (feeder) section,

where an HIF occurs, has not been addressed in the previous
papers.There are several assumptions in this paper as follows.

(i) The number of measurement facilities is given. In
this paper, it is assumed that the supplier (utility) has
a monitoring system including some measurement
facilities that can be placed at different locations for
recording.

(ii) Locating single HIF is considered. The data-window
size of the signal for processing in this paper is five
cycles. Simultaneous HIFs at different lines hardly
occur.

(iii) Configuration of the studied distribution system is
fixed. If the system topology is changed, the proposed
neural network requires retraining.However, possible
system configurations are generally known to engi-
neers and the corresponding neural networks should
be trained in advance.

(iv) The HIF generally occurs at a single phase of a line
section. The proposed method employed MATLAB/
SIMULINK SimPowerSystems and all the three-phase
transient voltages/currents at each busbar/line in the
system are obtained.

3. The Proposed Method

The presented method includes three stages: (i) determin-
ing measurement sites, (ii) discriminating HIFs from other
disturbances, and (iii) locating the HIF. The measurement
sites are first determined by modified 𝑘-means algorithm
associated with genetic algorithms. The proposed method
then uses the wavelet coefficients of the currents (obtained
by the measurements) as the features for classification of
disturbances and the inputs of the SVM for locating the HIF.

3.1. Determination of Measurement Sites. In general, the
number of power supplymonitoring facilities ismuch smaller
than the regular power, voltage, and current meters that are
installed at all busbars and lines. Hence, a modified 𝑘-means
algorithm is used to partition the system into 𝐶 clusters
(𝐶 is the number of power supply measurement facilities).
𝐶 measurement facilities are placed at the lines near the
pseudocenters of the 𝐶 clusters. This subsection describes
the modified 𝑘-means algorithm for partitioning the system
for placement of the power supply measurement facilities.
Moreover, the proposed modified 𝑘-means algorithm is
enhanced from 𝑘-means [18, 19] and fuzzy-𝑐-means (FCM)
[20, 21] as follows.

Let 𝐽(𝑈, 𝑉) be an objective:

𝐽 (𝑈, 𝑉) =

𝑁

∑

𝑖=1

𝐶

∑

𝑐=1

(𝑈
𝑐𝑖
) ×
𝑋𝑖 − 𝑉𝑐


2
, (1)

where 𝐶 is the number of clusters;𝑁 represents the number
of data (line section); 𝑉

𝑐
signifies the vector of the center in

the 𝑐th clustering; 𝑋
𝑖
is the 𝑖th (known) data vector for clus-

tering;𝑈
𝑐𝑖
denotes the characteristic value (0 or 1) as a weight-

ing factor between 𝑉
𝑐
and 𝑋

𝑖
. If the minimum of 𝐽(𝑈, 𝑉) is
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gained, the 𝑁 sets of vectors are partitioned into 𝐶 clusters
and 𝑉

𝑐
is formulated by

𝑉
𝑐
=
∑
𝑁

𝑖=1
𝑈
𝑐𝑖
× 𝑋
𝑖

∑
𝑁

𝑖=1
𝑈
𝑐𝑖

, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑖 ≤ 𝑁. (2)

Matrix of the characteristic values can be defined as follows:

𝑈 = [𝑈
𝑐𝑖
] ∈ 𝑅
𝐶×𝑁
. (3)

For the 𝑖th column in the matrix 𝑈, the sum of all elements
equals one and only one element in this column is unity. The
traditional 𝑘-means algorithm did not consider (1), which is
implemented in this proposed enhanced 𝑘-means algorithm.

The unknown variables in the problem of placement of
measurement facilities are 𝑈

𝑐𝑖
, 𝑐 = 1, . . . , 𝐶, and 𝑖 = 1, . . . , 𝑁.

Traditional optimization methods involving the gradients
of objective function cannot minimize (1) because of dis-
continuity of the objective function. The genetic algorithm
was adopted to minimize (1) herein because the genetic
algorithm can deal with binary variable 𝑈

𝑐𝑖
efficiently [22].

The population size, crossover rate, and mutation rate in
the genetic algorithm were assigned with 100, 0.9, and 0.01,
respectively.

In this paper, 𝑋
𝑖
represents one of the current vectors

(signal energies calculated by DWT) caused by an HIF at a
line ℓ. The dimension (1 × 3660 herein) of 𝑋

𝑖
varies with

the number of studied cases. Symbols 𝐶 and𝑁 (3660 in this
paper) are the numbers of measurement facilities and the
scenarios with HIFs, respectively. Let 𝐿 be the number of
the line sections. Then 𝐿 𝑋

𝑖
’s need to be partitioned into 𝐶

clusters. The vector 𝑉
𝑐
(1 × 3660) consisting of the virtual

HIF currents serves as the center in the 𝑐th cluster. All vec-
tors of the HIF currents 𝑋

𝑖
’s in the 𝑐th cluster geometrically

center at𝑉
𝑐
.Therefore, the criterion for placingmeasurement

facilities in the electric distribution system is as follows:
place a measurement facility at line ℓ, at which the total
Euclidean distance between𝑋

𝑖
’s (HIFs occurring at line ℓ) and

𝑉
𝑐
is minimal, in the 𝑐th cluster.

3.2. Discrete Wavelet Transform (DWT). Fourier transform
(FT) is a suitable approach for studying problems with
steady state responses. Short-time Fourier transform (STFT)
divides the full-time interval into a number of small/equal-
time intervals, which can be individually analyzed using FT.
Although the result obtained from STFT contains time and
frequency information, the equal-time intervals are fixed.
Thus, STFT cannot be used to detect the transient signals. On
the other hand, the discrete wavelet transform (DWT) has
been widely used for analyzing the transient signals due to
its varied scale and wavelet functions [23–25].The features of
signals can be easily extracted via themultiresolution analysis
(MRA). DWT avoids the disadvantages of both FT and STFT.

A signal can be represented as a sum of wavelet functions
𝜑(𝑡) and scale functions 𝜙(𝑡) with coefficients at different
time shifts and scales (frequencies) using DWT. DWT can
extract the features of transient signals by decomposing signal
components overlapping in both time and frequency [8].

According to DWT, a time-varying function (signal) 𝑓(𝑡) ∈
𝐿
2
(𝑅) can be expressed as follows:

𝑓 (𝑡) = ∑

𝑘

𝑐
0 (𝑘) 𝜙 (𝑡 − 𝑘) +∑

𝑘

∑

𝑗=1

𝑑
𝑗 (𝑘) 2

−𝑗/2
𝜑 (2
−𝑗
𝑡 − 𝑘)

= ∑

𝑘

𝑐
𝑗0
(𝑘) 2
−𝑗0/2𝜙 (2

−𝑗0𝑡 − 𝑘)

+∑

𝑘

∑

𝑗=𝑗0

𝑑
𝑗 (𝑘) 2

−𝑗/2
𝜑 (2
−𝑗
𝑡 − 𝑘) ,

(4)

where 𝑐
0
and 𝑑

𝑗
represent the scaling (coarse) coefficient at

scale 0 and wavelet (detailed) coefficient at scale 𝑗, respec-
tively.The symbol 𝑘 represents the translation coefficient.The
scales 𝑗 = 1, 2, . . . denote the different (high to low) frequency
bands. The variable 𝑗

𝑜
is an integer. The translated and scaled

(dilated) version of the wavelet, 𝜑(2−𝑗𝑡 − 𝑘), used in the
multiresolution analysis (MRA), constructs a time-frequency
picture of the signal.

There are some other wavelets in the wavelet theory [8]:
Haar wavelets have compact support (a finite bounded set)
but are discontinuous. Shannonwavelets are very smooth but
are not compactly supported and they decay at infinity very
slowly. Compared with these wavelets, Daubechies-4 belongs
to a class of orthonormal basis-generating, continuous, and
compactly supported wavelets. Daubechies-4 is adopted in
this paper to extract the features of the line currents at scales
1, 2, and 3 with a sampling rate of 128 points/cycle.

3.3. Multiresolution Analysis (MRA). As shown in (4), 𝑓(𝑡)
is constructed by 𝜙(𝑡) and decomposed by 𝜑(𝑡) at different
scales (resolution levels). 𝜑(𝑡) generates the detailed version
of 𝑓(𝑡) and 𝜙(𝑡) generates the coarse version of 𝑓(𝑡). It can be
shown that [8]

𝑐
𝑗+1 (𝑘) = ∑

𝑚

ℎ (𝑚 − 2𝑘) 𝑐𝑗 (𝑚) , (5)

𝑑
𝑗+1 (𝑘) = ∑

𝑚

ℎ
1 (𝑚 − 2𝑘) 𝑐𝑗 (𝑚) , (6)

where ℎ(𝑚 − 2𝑘) and ℎ
1
(𝑚 − 2𝑘) are the low-pass and high-

pass filters, respectively [8]. These two equations show that
the scaling and wavelet coefficients at different scale levels
can be obtained by convolving the expansion coefficients
at scale 𝑗 by the time-reversed recursion coefficients ℎ(⋅)
and ℎ

1
(⋅) and then downsampling or decimating to give the

expansion coefficients at the next level of 𝑗 + 1. The term
“downsampling” indicates that the number at lower scale 𝑗
is double compared with that at higher scale 𝑗 + 1 due to the
filters ℎ(𝑚 − 2𝑘) and ℎ

1
(𝑚 − 2𝑘). This process is called the

“analysis (decomposition)” from the fine scale to the coarse
scale. The reverse process, called synthesis (construction),
from the coarse scale to the fine scale, is omitted here. Figure 1
illustrates a three-scale MRA decomposition for a signal.The
symbols ℎ, ℎ

1
, and “↓2” denote the low-pass filter, high-pass

filter, and “downsampling,” respectively.
The small scales represent high-frequency ranges. Only

the wavelet coefficient (𝑑
𝑗
) is regarded as a feature due to
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Figure 1: A three-scale MRA decomposition for a signal.

the high-frequency phenomena fromHIFs.More specifically,
if the sampling rate from the measurement facility is 128
points/cycle, then scales 1, 2, and 3 cover 3.84∼1.92 kHz, 1.92∼
0.96 kHz, and 0.96∼0.48 kHz, respectively. Lower harmonics
were not considered for the SVM because they (with large
values) do not provide significant discrimination among
lines.

3.4. Parseval Theorem. When the MRA is applied to a tran-
sient signal, a large amount of wavelet coefficients will be
attained. Although the wavelet coefficients are useful, it is
difficult for SVM to train/validate that much information.
More specifically, if sampling rate is 128 points/cycle and
five cycles are utilized, the numbers of wavelet coefficients at
scales 1, 2, and 3 are 320, 160, and 80 due to “downsampling,”
respectively. Implementing 560×𝐶 input neurons in an SVM
becomes impractical, where𝐶 is the number of measurement
facilities defined in Section 3.1. A trade-off treatment using
Parseval’s theorem is presented in this paper:

∫
𝑓(𝑡)


2
𝑑𝑡 = ∑

𝑘


𝑐
𝑗0
(𝑘)


2

+∑

𝑘

∑

𝑗=1


𝑑
𝑗 (𝑘)



2

. (7)

In this paper, only ∑
𝑘
∑
𝑗=1
|𝑑
𝑗
(𝑘)|
2 in (7) is calculated

because the HIF belongs to transients. This term is called
“current energy” or simply “energy” in this paper. Applications
of ∑
𝑘
∑
𝑗=1
|𝑑
𝑗
(𝑘)|
2 are as follows.

(i) Determination of measurement facility placement:
∑
𝑘
∑
𝑗=1
|𝑑
𝑗
(𝑘)|
2 is computed for each line section to

be an element of 𝑋
𝑖
for a given scenario described

in Section 3.1. The number of given scenarios is 3660
which will be discussed in Section 4.1.

(ii) Feature extraction of transient signals: ∑
𝑘
∑
𝑗=1
|𝑑
𝑗
(𝑘)|
2

is separated into the first to third scales (𝑑
1
∼ 𝑑
3
, 𝑗 =

1, 2, and 3) for an HIF current at each line section.
These features will serve as inputs for SVM.

3.5. Support Vector Machine (SVM). Traditional multilayer
neural networks have some limitations: (i) many inputs due
to need of diversity for inputs, (ii) requirement of crucial
features for inputs, (iii) trial and error for number of neurons
in the hidden layer, and (iv)multimodalwithmany localmin-
imums. Avoiding the above demerits, SVM is a supervised
artificial neural network designed for solving classification
problems [26, 27]. In essence, SVM maximizes the margin

between the training data and the decision boundary, which
can be formulated as a quadratic optimization problem. The
subset of patterns that are closest to the decision boundary is
called the support vector.

SVM maximizes the separating margin between two
classes, given by a set of 𝑃 data pairs (𝑥

𝑝
, 𝑐
𝑝
), where 𝑥

𝑝

and 𝑐
𝑝
denote the input vector and class, 𝑝 = 1, 2, . . . , 𝑃,

respectively. For linear separable training pairs of two classes,
the separating hyperplane ℎ(𝑥) is given by

ℎ (𝑥) = 𝑤
𝑡
𝑥 + 𝑏 = 0, (8)

where𝑤 and 𝑏 are the vectors of weighting factors and biases,
respectively. If a nonlinear hyperplane𝜓(⋅) is considered, then

ℎ (𝑥) = 𝑤
𝑡
𝜓 (𝑥) + 𝑏 = 0. (9)

The maximal separating margin can be attained by mini-
mizing the following primal problem if two classes are not
linearly distributed [28]:

min 1

2
𝑤
𝑡
𝑤 + 𝐾

𝑃

∑

𝑝=1

𝜉
𝑝 (10)

subject to 𝑐
𝑝
(𝑤
𝑡
𝜓 (𝑥
𝑝
) + 𝑏) ≥ 1 − 𝜉

𝑝
, 𝑝 = 1, 2, . . . , 𝑃,

(11)

where 𝜉
𝑝
is the so-called fulfilling variable. The symbol 𝐾 is

a regularization parameter. In order to search a proper 𝐾,
performance of the trained SVMneeds assessment as follows.
The training data are divided into two sets. One is used to
train the SVM while the other, called the validation set, is
used for evaluating the SVM. According to the performance
on the validation set, a proper value of 𝐾 can be attained.

Equations (10) and (11) can be transformed into the
unconstrained Lagrangian:

𝐿 (𝑤, 𝑏, 𝜉, 𝜇) =
1

2
𝑤
𝑡
𝑤 + 𝐾

𝑃

∑

𝑝=1

𝜉
𝑝

+

𝑃

∑

𝑝=1

𝜇
𝑝
[𝑐
𝑝
(𝑤
𝑡
𝜓 (𝑥
𝑝
) + 𝑏) − 1 + 𝜉

𝑝
] ,

(12)

where 𝜇
𝑝

is the dual variable (Lagrange multiplier) for
inequality constraint, (11). Obviously, the form of (11) is the
same as the output of a neuron if 𝜑(⋅) and 𝜉

𝑝
are considered

the activating function of a neuron and nonnegative slack
variable, respectively.

4. Simulation Results

4.1. Simulation Data. The applicability of the proposed
methodology is verified by simulation results in this section.
An 18-busbar radial system with 17 line sections illustrated in
Figure 2 serves as a sample system in this paper. Its busbar and
line data are provided in [29]. To train the SVM, the original
load level was varied within ±10% (61 conditions) and the
HIFs occur at different angles within 0∘∼359∘ (4 conditions)
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Figure 2: One-line diagram for studied distribution system.

and at 15 different line sections for obtaining a total of 3660
(= 61 × 4 × 15) data. 70%, 10%, and 20% of these 3660 data
were used stochastically for training, validating, and testing
the proposed SVM, respectively.The arc of HIF was modeled
with two antiparallel DC sources and diodes which were
connected to a random resistor [2]. The proposed methods
were implemented by MATLAB 7.0 (SimPowerSystems) on
a C2D (Core 2 Due) 2.13 GHz computer (RAM 3.5G). The
data-window size of the signal for processing in this paper is
five cycles.

Because the power supply measurement facilities are
more expensive than general meters, the number of measure-
ment facilities is limited. Discussion of purchasing the mea-
surement facilities and determination of a proper number for
themeasurement facilities are beyond the scope of this paper.
Hence, 14, 11, 8, 4, and 2 measurement facilities (i.e., 𝐶) are
assumed to be available in this paper. Table 1 illustrates the
SVM information associated with measurements. Because
HIF energies of the first to third scales (𝑑

1
∼ 𝑑
3
) were consid-

ered, the number of input neurons equals measurements (𝐶)
multiplied by 3. These are cases 1∼5. Moreover, the current at
the neural line of the main transformer is generally available
and can be utilized. These are cases 6∼10. Finally, four binary
bits are sufficient for discriminating 15 line sections excluding
primary sides (line 1) and the main transformer (denoted by
line 2) in this system.

4.2. Feature Extraction by DWT. As described in Sections 3.3
and 3.4, the “energies” for HIF currents of the first to third
scales at each line section are used as features for SVM inputs.
Assume that an HIF occurs (90∘) at line section 12. Figure 3
shows the energy distribution of the neighborhood of line
section 12 (i.e., line sections 11 and 13). The energies for the

Table 1: SVM information associated with measurements.

Facility number (𝐶) Input neurons Output neurons
Case 1 2 2 × 3 4
Case 2 4 4 × 3 4
Case 3 8 8 × 3 4
Case 4 11 11 × 3 4
Case 5 14 14 × 3 4
Case 6 2 + 1 3 × 3 4
Case 7 4 + 1 5 × 3 4
Case 8 8 + 1 9 × 3 4
Case 9 11 + 1 12 × 3 4
Case 10 14 + 1 15 × 3 4

first to sixth scales at these three line sections are shown. It is
apparent that the normal energy and HIF energy are almost
the same for the current of the fourth (also for fifth and sixth)
scale. Hence, current energies for the fourth to sixth scales
cannot serve as features and only current energies for the
first to third scales are considered further. Please note that
the energies are normalized to be per unit and are in terms
of log

10
because the energies of the fifth and sixth scales are

much larger than those of other scales.

4.3. Scaled Energies at Line Sections. AnHIF occurring at line
section 12 is discussed in this section. Figure 4 illustrates the
HIF currents in terms of the DWT-scaled energy distribu-
tions at each line section.The vertical axis denotes the energy
magnitude while the horizontal axis means the 𝑑

1
∼ 𝑑
3
at

each line section. Please note that the energies are normalized
to be per unit.
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(a) 1st–6th normal and HIF energies at line section 11
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(b) 1st–6th normal and HIF energies at line section 12
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(c) 1st–6th normal and HIF energies at line section 13

Figure 3: Energy distributions near faulted line.
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Figure 4: HIF energy distributions at all line sections.
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Table 2: Different 𝐶s and corresponding clusters (𝑘-means).

𝐶 Line clusters

14 (1, 2), (3), (4), (5), (6), (7 ), (8), (9), (10), (11, 12), (13), (14),
(15, 16), (17 )

11 (1, 2), (3), (4, 5, 6), (7, 8), (9), (10), (11, 12), (13), (14), (15,
16), (17 )

8 (1, 2), (3), (4, 5, 6), (7, 8), (9), (10), (11, 12), (13, 14, 15, 16, 17)
4 (1, 2), (3, 4, 5, 6, 7, 8, 9, 11, 12), (10), (13, 14, 15, 16, 17)
2 (1, 2), (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)

Table 3: Different 𝐶s and corresponding clusters (FCM).

𝐶 Line clusters

14 (1), (2), (3), (4), (5), (6), (7 ), (8), (9, 10, 13, 17), (11), (12),
(14), (15), (16)

11 (1, 2), (3), (4), (5), (6), (7, 8), (9, 10, 13, 17), (11), (12), (14),
(15, 16)

8 (1, 2), (3), (4, 5, 6), (7, 8), (9, 10, 13, 17), (11), (12), (14, 15, 16)
4 (1, 2), (3, 4, 5, 6), (7, 8, 11, 12), (9, 10, 13, 14, 15, 16, 17)
2 (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)

When the busbar load varies and the HIF occurs at
distinct angles, the above phenomena will be discriminated.
Hence, the “energies” of the HIF currents of the first to third
scales are important features for locating theHIF line section.

4.4. Measurement Facility Placement. Because 14, 11, 8, 4, and
2 power supply measurement facilities are assumed to be
available in the test sample, 𝐶 may be 14, 11, 8, 4, or 2 and
𝑁 = 3660, respectively (𝐶 and𝑁were defined in Section 3.1).
For a given 𝐶, the same 3660 sets of data were employed to
perform the HIF current energy clustering by the modified
𝑘-means algorithm. Table 2 illustrates the different 𝐶’s and
corresponding clusters. Each cluster is quoted by parentheses.
The line section with an italic font in Table 2 denotes the one
installed with ameasurement facility. Traditional FCM is also
employed to study the line section clustering as shown in
Table 3. As can be seen, some clusters obtained by the FCM
are infeasible because lines in a cluster may not be adjacent
to each other. For example, in the last row of Table 3, line
sections 7, 8, and 9 in a cluster are not adjacent to line sections
10∼17.

More specifically, the condition for 𝐶 = 2 and 𝑐 = 2 in
the last row of Table 2 is described here: Table 4 illustrates
the distances (norm) between 𝑋

𝑖
, 𝑖 = 3, 4, . . . , 17, and its

clustering center 𝑉
2
(𝑐 = 2) for 𝐶 = 2. As can be seen, the

distance between 𝑋
12

and 𝑉
2
is the smallest. Therefore, the

measurement facility is placed at line section 12.
In this paper, the dimension of𝑋

𝑖
is 1 × 3660 where 3660

is the number of scenarios from the test system. Each element
of 𝑋
𝑖
is the total energy at line section 𝑖 for one of the 3660

cases. Moreover, there are 17 𝑋
𝑖
’s (number of lines) for the

18-busbar system where 17 is the line number.
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Figure 5: Total energy disturbances for 3 different disturbances.

4.5. Classification among HIF, Short Circuit, and Switching.
There are 930 cases with short circuits (low-impedance faults,
LIFs) and 620 cases with capacitor switching (CS) for further
investigation of energy distributions. Figure 5 shows the total
energy of the first to third scales for different HIFs, LIFs, and
CS. The vertical axis denotes the percentage of occurrence
for the three individual disturbances. The horizontal axis
includes 15 energy ranges (log

10
). More specifically, ranges 1,

2, and 15 represent 3.48–3.56, 3.57–3.65, and 10.09–10.79 p.u.,
respectively. It can be found that HIFs include smaller total
energies from range 1 to range 5. Hence, the total energy can
be employed to discriminate HIFs from other disturbances,
for example, LIF and CS.

4.6. Accuracy of Locating HIFs by SVM. As described in
Section 4.1, 70%, 10%, and 20% of the 3660 data are used
stochastically for training, validating, and testing, respec-
tively. Table 5 illustrates the number of iterations, CPU time
for training the SVM, and the accuracy rate for the 10 cases
defined in Table 1. The following comments can be drawn
from Table 5.

(i) The numbers of iterations for all cases are almost the
same for the SVM despite the different number of
input neurons.

(ii) The CPU time required varies with the number of
input neurons.

(iii) Accuracy rates are greater than 99% except for cases 1
and 6.

(iv) Cases 1 and 6 with only two measurement facilities
still gain accuracy rate of 97.4% and 98.36%, respec-
tively. This result ensures the advantage of the pro-
posed method using the SVM.

(v) The neutral current at the substation improves accu-
racy rates only for cases 1 and 2 (corresponding to
cases 6 and 7) with fewer measurements.
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Table 4: Distances (×105) between 𝑋
𝑖
and its clustering center.

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

𝑋
8

𝑋
9

𝑋
10

𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑋
15

𝑋
16

𝑋
17

746.02 577.24 699.47 666.77 316.63 292.76 564.36 575.65 202.95 189.19 578.97 342.92 548.87 547.7 578.97

Table 5: Performance of SVM.
Iterations number CPU sec. Accuracy rate (%)

Case 1 32 170 97.40
Case 2 29 163 99.18
Case 3 33 226 99.86
Case 4 30 234 99.72
Case 5 30 260 99.72
Case 6 32 171 98.36
Case 7 29 171 99.72
Case 8 33 234 99.86
Case 9 30 241 99.72
Case 10 31 279 99.72

5. Conclusions

This paper proposed a new method for locating the line
section with an HIF using DWT, modified 𝑘-means, and
SVM. Compared with the existing methods involving iden-
tification of an HIF in a feeder (or transmission line) or in
one of the multiple feeders from the secondary side of a
substation, the proposed approach is able to locate anHIF line
section in a distribution system with multiple feeders using
a power supply monitoring system including multiple power
supply measurement facilities at different lines. Classification
of disturbances and locating the HIF are addressed.

The features (current energies) at three distinct scales
(frequency bands) were extracted by MRA in DWT. These
features provide important information for the SVM to locate
the line sectionwith anHIF.Moreover, the energies ofHIF are
discriminated obviously from those of LIF and CS.

The simulation results obtained from an 18-busbar distri-
bution system show that good accuracy can still be attained
using only a few measurements (e.g., two in this paper) due
to the SVM. Hence, SVM is very useful when only a few
measurements are available.
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