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An epidemiological model is proposed and studied to understand the transmission dynamics and prevalence of HCV infection in
China. Theoretical analysis indicates that the basic reproduction number 𝑅

0
provides a threshold value determining whether the

disease dies out or not. Two Lyapunov functions are constructed to prove the global asymptotic stability of the disease-free and the
endemic equilibria, respectively. Based on data reported by the National Health and Family Planning Commission of China, the
basic reproduction number is estimated as approximately𝑅

0
= 1.9897, which is much less than that for themodel when a treatment

strategy is not considered. An ever-increasing HCV infection is predicted in the near future. Numerical simulations, performed to
investigate the potential effect of antiviral treatment, show that increasing the treatment cure rate and enlarging the treatment rate
for patients at the chronic stage remain effective in reducing the number of new infections and the equilibrium prevalence. The
finding suggests that treatment measures are significantly beneficial for disease control in terms of reducing new infections and, in
particular, more attention should be paid to treatment for patients at the chronic stage.

1. Introduction

Hepatitis C virus (HCV) has been considered as a leading
cause of liver cirrhosis and hepatocellular carcinoma and
is becoming a major and growing global health problem
[1, 2]. HCV is an enveloped single-stranded RNA virus in the
Flaviviridae family and mutates so rapidly that no vaccine
is currently available [3]. The spread of HCV mainly results
from blood-to-blood contact through blood transfusions,
intravenous drug use (IDU), and the use of inadequately
sterilized or unsterilized medical equipment. According to
the World Health Organization (WHO) estimates [4], nearly
3%of theworld’s population (more than 170million) has been
infected with HCV. In a recent cross-sectional study [5], for
which 8,762 Chinese subjects from six areas of China were
randomly selected, the overall average prevalence of anti-
HCV was estimated to be 0.58% in China, which is much
lower than the WHO estimates. Surveillance data show that
the annual numbers of newly reported HCV cases increased
sharply from 21,145 in 2003 to 223,094 in 2013 [6], which

indicates that HCV infection is becoming a serious threat
to public health in China. Therefore, it is urgently necessary
to understand the present epidemic situation and to provide
suggestions on how to control HCV infections.

Mathematical models have been used to analyze the
spread and control of HCV infection in [7–17] and provide
some insights into the disease’s transmission. Martcheva and
Castillo-Chavez [7] considered an epidemiological model of
hepatitis C in a varying population, divided into susceptible
and infected individuals with acute and chronic hepatitis C,
and studied the role of the chronic infectious stage on the
long-term dynamics of HCV. This model was extended by
Das et al. [8] by incorporating the immune class and was
also extended by Yuan and Yang [9] by incorporating the
latent period. The impacts of HCV treatment on prevalence
among active injecting drug users (IDUs) have been studied
in [10–12] where the treated populations are assumed not to
infect the susceptible populations. Imran et al. [14] and Khan
et al. [17] formulated epidemic models of HCV containing an
isolation class and analyzed the effects of the isolation class on
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the transmission dynamics of the disease. Few models have
been proposed to understand the transmission dynamics of
HCV in mainland China. In [18], Zhang and Zhou extended
the model in [9] by considering recovery from the acute
infected stage and simulated HCV transmission in the near
future based on the available HCV epidemic data from 2003
to 2010 in China. Note that their model does not involve
the treatment class although a treatment strategy has been
available in mainland China for several years [19]. Antiviral
treatment, especially at the early stages of HCV recurrence,
is an extremely effective strategy. How effective antiviral
treatment remains is therefore an issue of great importance
for HCV control, and quantifying this impact through a
mathematical modeling framework falls within the scope of
this study.

The purpose of this study is to formulate a mathematical
model which involves almost all possible stages during HCV
infection with the aim of accessing the potential impact of
antiviral treatment on HCV prevalence of China and then
providing reliable quantitative information on controlling the
HCV epidemic in China. On the basis of the model in [18]
we incorporate the treated and recovered classes with partial
immunity. Note that we consider that the treated individuals
can also infect the susceptible individuals [16], which adds to
the complexity of our model and makes it considerably more
insightful from an epidemiological perspective than previous
models. We analyze the global dynamical behavior of the
proposed system by developing suitable Lyapunov functions
[20] and suggest some measures to control HCV infection in
China.

The paper is organized as follows. In Section 2, we
introduce the model and derive the basic reproduction
number. The global stability of the disease-free equilibrium
and the endemic equilibrium are studied in Sections 3 and 4,
respectively. In Section 5, we apply the model to simulate the
HCV data in China and investigate various control strategies
with numerical simulations. Finally, we conclude the paper
by a discussion in Section 6.

2. Model Formulation

We propose a mathematical model to understand the trans-
mission dynamics and prevalence of HCV in mainland
China using a system of ordinary differential equations. The
population are divided into six classes: 𝑆 (susceptible), 𝐸
(exposed), 𝐴 (infected with acute hepatitis C), 𝐶 (infected
with chronic hepatitis C), 𝑇 (treated population), and 𝑅

(recovered population with partial immunity). Let𝑁 denote
the total population; that is, 𝑁 = 𝑆 + 𝐸 + 𝐴 + 𝐶 + 𝑇 + 𝑅.
New susceptible individuals enter into the 𝑆 class at a fixed
rate Λ. Let 𝑚 be the natural death rate of the population.
Susceptible individuals are infected by patients in the 𝐴,𝐶,
and 𝑇 classes at rates of 𝛽

1
, 𝛽
2
, and 𝛽

3
, respectively. It is

generally thought that the acute phase is more infectious
than the the chronic one and that the treated individuals
have the lowest infectiousness [15, 18], so it is reasonable to
assume that 𝛽

1
> 𝛽
2
> 𝛽
3
. Once infected, the individuals

move into the exposed class 𝐸 and then progress to the acute

stage at a rate of 𝜖. An individual at the acute stage who can
spontaneously clear the virus recovers at rate 𝜉; otherwise
he/she will progress to the chronic stage at rate 𝜎. Acutely
and chronically infected individuals are treated at rates 𝛿 and
𝜇, respectively. After the treatment, some patients succeed in
clearing HCV and move to the class 𝑅 at rate 𝜂, while the
others who have not responded to the treatment move back
to the chronic state𝐶 at rate 𝜃.The disease-induced death rate
in the 𝐶 class is denoted as 𝛼. Individuals in the class 𝑅 lose
their immunity and eventually return to the susceptible class
𝑆 at rate 𝛾. A flow diagram for the model is shown in Figure 1
and the variables and parameters are described in Table 1.The
complete dynamical model is as follows:

𝑑𝑆

𝑑𝑡
= Λ − (𝛽

1
𝐴 + 𝛽

2
𝐶 + 𝛽

3
𝑇) 𝑆 − 𝑚𝑆 + 𝛾𝑅,

𝑑𝐸

𝑑𝑡
= (𝛽
1
𝐴 + 𝛽

2
𝐶 + 𝛽

3
𝑇) 𝑆 − (𝑚 + 𝜖) 𝐸,

𝑑𝐴

𝑑𝑡
= 𝜖𝐸 − (𝑚 + 𝜎 + 𝛿 + 𝜉)𝐴,

𝑑𝐶

𝑑𝑡
= 𝜎𝐴 + 𝜃𝑇 − (𝑚 + 𝛼 + 𝜇)𝐶,

𝑑𝑇

𝑑𝑡
= 𝛿𝐴 + 𝜇𝐶 − (𝑚 + 𝜃 + 𝜂) 𝑇,

𝑑𝑅

𝑑𝑡
= 𝜉𝐴 + 𝜂𝑇 − (𝑚 + 𝛾) 𝑅.

(1)

Since 𝑑𝑁/𝑑𝑡 = Λ−𝑚𝑁−𝛼𝐶 ≤ Λ−𝑚𝑁, we can study the
dynamical behavior of system (1) in the positively invariant
set:

D = {(𝑆, 𝐸, 𝐴, 𝐶, 𝑇, 𝑅) ∈ R
6

+
:

𝑆 + 𝐸 + 𝐴 + 𝐶 + 𝑇 + 𝑅 ≤
Λ

𝑚
} .

(2)

By using the next generation matrix approach given in [21],
we obtain the basic reproduction number:

𝑅
0

=
Λ𝜖

𝑚 (𝑚 + 𝜖) (𝑚 + 𝜎 + 𝛿 + 𝜉)

⋅ (𝛽
1
+ ((𝛽
2
(𝛿𝜃 + 𝜎 (𝑚 + 𝜃 + 𝜂))

+ 𝛽
3
(𝜇𝜎 + 𝛿 (𝑚 + 𝛼 + 𝜇)))

⋅ ((𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃)
−1
)) ,

(3)

which can be interpreted as the average number of new
infections generated by a single infectious individual in the
acute (𝐴), chronic (𝐶), and treated (𝑇) classes.

To investigate the effect of therapy, we study variation in
the basic reproduction number 𝑅

0
with treatment rates 𝛿,
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Table 1: Parameters and initial data chosen for the simulation.

Variable and parameter Description Initial or default values Source
Variables

𝑆(𝑡) Susceptible population 1.287 × 10
9 LS

𝐸(𝑡) Exposed population 4187 LS
𝐴(𝑡) Acutely infected population 151360 LS
𝐶(𝑡) Chronically infected population 1.04 × 10

6 LS
𝑇(𝑡) Treated population 50000 LS
𝑅(𝑡) Recovered population with partial immunity 2 × 10

5 LS
Parameters

Λ Recruitment rate 1.573 × 10
7 year−1 See text

𝑚 Natural death rate 0.007 year−1 [18, 24]
𝛽
1

Transmission rate of acutely infected population 3.0769 × 10
−11 LS

𝛽
2

Transmission rate of chronically infected population 2.5846 × 10
−11 LS

𝛽
3

Transmission rate of treated population 2.0846 × 10
−11 LS

𝜖 Rate of progression to acute stage from the exposed 6 year−1 [18]
𝜉 Recovery rate for the acute state 0.5 year−1 [15]
𝜎 Rate of moving from acute stage to chronic stage 4 year−1 [18]
𝛿 Treatment rate of acutely infected population 0.1545 year−1 see text
𝜇 Treatment rate of chronically infected population 0.04 year−1 [15]
𝜂 Treatment cure rate 0.67 year−1 [15]
𝜃 Treatment failure rate 0.82 year−1 [15]
𝛼 HCV induced death rate at the chronic stage 0.001 year−1 [18]
𝛾 Rate of waning immunity 0.025 year−1 [15]

LS, least square.

Λ
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Figure 1: A schematic flow diagram illustrating the transmission
dynamics of the HCV infection with treatment.

𝜇, treatment failure rate 𝜃, and cure rate 𝜂. Calculating the
derivative of 𝑅

0
with respect to 𝜇 gives

𝜕𝑅
0

𝜕𝜇
=

−Λ𝜖

𝑚 (𝑚 + 𝜖) (𝑚 + 𝜎 + 𝛿 + 𝜉)

⋅
[𝛿𝜃 + 𝜎 (𝑚 + 𝜃 + 𝜂)] [(𝛽

2
− 𝛽
3
)𝑚 + (𝛽

2
𝜂 − 𝛽
3
𝛼)]

[(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃]
2

.

(4)

Note that 𝛽
1

> 𝛽
2

> 𝛽
3
; then 𝜕𝑅

0
/𝜕𝜇 < 0 if the

condition 𝛽
2
𝜂 − 𝛽

3
𝛼 > 0 holds. This condition is likely to

be true because the disease-induced death rate 𝛼 is always

relatively low [7] (i.e., 𝜂 > 𝛼). Thus, 𝑅
0
decreases with

increasing treatment uptake for the patients at the chronic
stage. Similarly, by finding the derivative of 𝑅

0
with respect to

𝜃,

𝜕𝑅
0

𝜕𝜃
=

Λ𝜖

𝑚 (𝑚 + 𝜖) (𝑚 + 𝜎 + 𝛿 + 𝜉)

⋅
[𝜇𝜎 + 𝛿 (𝑚 + 𝛼 + 𝜇)] [(𝛽

2
− 𝛽
3
)𝑚 + (𝛽

2
𝜂 − 𝛽
3
𝛼)]

[(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃]
2

,

(5)

we obtain 𝜕𝑅
0
/𝜕𝜃 > 0 provided 𝛽

2
𝜂 − 𝛽

3
𝛼 > 0, which

implies that decreasing the treatment failure rate 𝜃 results in
𝑅
0
declining and thus is beneficial to disease control.
Regardless, 𝑅

0
is inversely related to 𝜂:

𝜕𝑅
0

𝜕𝜂
=

−Λ𝜖

𝑚 (𝑚 + 𝜖) (𝑚 + 𝜎 + 𝛿 + 𝜉)

⋅
[𝜇𝜎 + 𝛿 (𝑚 + 𝛼 + 𝜇)] [𝛽

2
𝜃 + 𝛽
3
(𝑚 + 𝛼 + 𝜇)]

[(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃]
2

< 0.

(6)
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Therefore, a higher cure rate leads to lower 𝑅
0
and a lower

intensity of the epidemic. Differentiating 𝑅
0
with respect to 𝛿

yields

𝜕𝑅
0

𝜕𝛿
= − Λ𝜖 (𝑚 (𝑚 + 𝜖) [(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃]

⋅ [(𝑚 + 𝜎 + 𝛿 + 𝜉)]
2
)
−1

× [(𝛽
1
− 𝛽
3
)𝑚 (𝑚 + 𝛼 + 𝜇)

+ (𝛽
1
− 𝛽
2
)𝑚𝜃 + (𝛽

2
− 𝛽
3
)𝑚𝜎

+ (𝑚 + 𝛼 + 𝜇) (𝛽
1
𝜂 − 𝛽
3
𝜉)

+ 𝛽
2
(𝜎𝜂 − 𝜃𝜉) + 𝛼 (𝛽

1
𝜃 − 𝛽
3
𝜎)] .

(7)

If (𝛽
3
/𝛽
1
)𝜎 < 𝜃 < (𝜂/𝜉)𝜎, then 𝜕𝑅

0
/𝜕𝛿 < 0. Thus, we get a

sufficient condition to make sure that 𝑅
0
is inversely related

to 𝛿, which means that increasing treatment uptake for the
patients at the acute stage is beneficial to control the disease
for certain conditions of the treatment failure rate.

Model (1) always has a disease-free equilibrium 𝑃 =

(Λ/𝑚, 0, 0, 0, 0, 0). There is an endemic equilibrium 𝑃
∗

=

(𝑆
∗
, 𝐸
∗
, 𝐴
∗
, 𝐶
∗
, 𝑇
∗
, 𝑅
∗
) if 𝑅
0
> 1, where

𝑆
∗
=

Λ

𝑚𝑅
0

, 𝐸
∗
=
(𝑚 + 𝜎 + 𝛿 + 𝜉)

𝜖
𝐴
∗
,

𝐴
∗
=
Λ (𝑅
0
− 1)

𝐴𝑅
0

,

𝐶
∗
=

𝛿𝜃 + 𝜎 (𝑚 + 𝜃 + 𝜂)

(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃
𝐴
∗
,

𝑇
∗
=

𝜇𝜎 + 𝛿 (𝑚 + 𝛼 + 𝜇)

(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃
𝐴
∗
,

𝑅
∗
=

1

𝑚 + 𝛾
(𝜉 + 𝜂

𝜇𝜎 + 𝛿 (𝑚 + 𝛼 + 𝜇)

(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃
)𝐴
∗
,

(8)

with

𝐴 =
𝑚 + 𝜖

𝜖
(𝑚 + 𝜎 + 𝛿 + 𝜉)

−
𝛾

𝑚 + 𝛾
(𝜉 + 𝜂

𝜇𝜎 + 𝛿 (𝑚 + 𝛼 + 𝜇)

(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃
) > 0.

(9)

3. Global Stability of
the Disease-Free Equilibrium

Theorem 1. (i) If 𝑅
0
≤ 1, then the unique disease-free equilib-

rium 𝑃 of system (1) is globally asymptotically stable inD.
(ii) If 𝑅

0
> 1, then 𝑃 is unstable and system (1) is uniformly

persistent; that is, there exists a constant 𝜖
0
> 0 such that, for

all initial values (𝑆(0), 𝐸(0), 𝐴(0), 𝐶(0), 𝑇(0), 𝑅(0)) ∈ R
+
×

Int (R5
+
), the solutions of system (1) satisfy lim inf

𝑡→∞
𝑆(𝑡) >

𝜖
0
, lim inf

𝑡→∞
𝐸(𝑡) > 𝜖

0
, lim inf

𝑡→∞
𝐴(𝑡) > 𝜖

0
,

lim inf
𝑡→∞

𝐶(𝑡) > 𝜖
0
, lim inf

𝑡→∞
𝑇(𝑡) > 𝜖

0
, and

lim inf
𝑡→∞

𝑅(𝑡) > 𝜖
0
.

Proof. (i) Construct a continuously differentiable and posi-
tive definite Lyapunov function

𝐿 =
𝑚

Λ
𝐸 +

𝑚 (𝑚 + 𝜖)

Λ𝜖
𝐴 + 𝐻 (𝛽

3
𝜇 + 𝛽
2
(𝑚 + 𝜃 + 𝜂)) 𝐶

+ 𝐻 (𝛽
2
𝜃 + 𝛽
3
(𝑚 + 𝛼 + 𝜇)) 𝑇,

(10)

where𝐻 is

𝐻 =
1

𝑅
0
((𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃)

. (11)

Calculating the derivative of 𝐿 along (1), we obtain

𝑑𝐿

𝑑𝑡
=
𝑚

Λ

𝑑𝐸

𝑑𝑡
+
𝑚 (𝑚 + 𝜖)

Λ𝜖

𝑑𝐴

𝑑𝑡

+ 𝐻 (𝛽
3
𝜇 + 𝛽
2
(𝑚 + 𝜃 + 𝜂))

𝑑𝐶

𝑑𝑡

+ 𝐻 (𝛽
2
𝜃 + 𝛽
3
(𝑚 + 𝛼 + 𝜇))

𝑑𝑇

𝑑𝑡

=
𝑚

Λ
((𝛽
1
𝐴 + 𝛽

2
𝐶 + 𝛽

3
𝑇) 𝑆 − (𝑚 + 𝜖) 𝐸)

+
𝑚 (𝑚 + 𝜖)

Λ𝜖
(𝜖𝐸 − (𝑚 + 𝜎 + 𝛿 + 𝜉)𝐴)

+ 𝐻 (𝛽
3
𝜇 + 𝛽
2
(𝑚 + 𝜃 + 𝜂))

⋅ (𝜎𝐴 + 𝜃𝑇 − (𝑚 + 𝛼 + 𝜇)𝐶)

+ 𝐻 (𝛽
2
𝜃 + 𝛽
3
(𝑚 + 𝛼 + 𝜇))

⋅ (𝛿𝐴 + 𝜇𝐶 − (𝑚 + 𝜃 + 𝜂) 𝑇)

=
𝑚

Λ
(𝛽
1
𝐴 + 𝛽

2
𝐶 + 𝛽

3
𝑇) 𝑆 −

1

𝑅
0

(𝛽
1
𝐴 + 𝛽

2
𝐶 + 𝛽

3
𝑇)

=
1

𝑅
0

(𝛽
1
𝐴 + 𝛽

2
𝐶 + 𝛽

3
𝑇) (𝑅

0

𝑚

Λ
𝑆 − 1) .

(12)

In the domain D, it is easy to see that 𝑆 ≤ Λ/𝑚, which
gives (𝑚/Λ)𝑆 ≤ 1. Thus, if 𝑅

0
≤ 1, then we have 𝑑𝐿/𝑑𝑡 ≤ 0

for all 𝑆, 𝐴, 𝐶, 𝑇 > 0. Every solution of system (1) converges to
M, whereM is the largest invariant set in {(𝑆, 𝐸, 𝐴, 𝐶, 𝑇, 𝑅) ∈

D : 𝑑𝐿/𝑑𝑡 = 0}. When 𝑅
0
< 1, the equality 𝑑𝐿/𝑑𝑡 = 0

holds if and only if 𝐴 = 𝐶 = 𝑇 = 0, which implies that
𝐸 = 𝑅 = 0 and 𝑆 = Λ/𝑚 from (1). When 𝑅

0
= 1, the equality

𝑑𝐿/𝑑𝑡 = 0 holds if and only if 𝐴 = 𝐶 = 𝑇 = 0 or 𝑆 = Λ/𝑚.
Both of these cases indicate that M = 𝑃. By the LaSalle
largest invariant set theorem, the disease-free equilibrium 𝑃

is globally asymptotically stable if 𝑅
0
≤ 1.
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(ii) The Jacobian matrix of system (1) at 𝑃 is

𝐽 (𝑃) =

(
(
(
(
(
(
(
(
(
(
(

(

−𝑚 0 −𝛽
1

Λ

𝑚
−𝛽
2

Λ

𝑚
−𝛽
3

Λ

𝑚
𝛾

0 − (𝑚 + 𝜖) 𝛽
1

Λ

𝑚
𝛽
2

Λ

𝑚
𝛽
3

Λ

𝑚
0

0 𝜖 − (𝑚 + 𝜎 + 𝛿 + 𝜉) 0 0 0

0 0 𝜎 − (𝑚 + 𝛼 + 𝜇) 𝜃 0

0 0 𝛿 𝜇 − (𝑚 + 𝜃 + 𝜂) 0

0 0 𝜉 0 𝜂 − (𝑚 + 𝛾)

)
)
)
)
)
)
)
)
)
)
)

)

. (13)

For convenience of denotation, let ℎ
1
= 𝑚 + 𝜖, ℎ

2
= 𝑚 + 𝜎 +

𝛿+ 𝜉, ℎ
3
= 𝑚+𝛼+𝜇, and ℎ

4
= 𝑚+𝜃+ 𝜂. Then we obtain the

characteristic equation at 𝑃 as follows:

(𝜆 + 𝑚) (𝜆 + 𝑚 + 𝛾)

⋅ [(𝜆 + ℎ
1
) (𝜆 + ℎ

2
) (𝜆 + ℎ

3
) (𝜆 + ℎ

4
)

− 𝜇𝜃 (𝜆 + ℎ
1
) (𝜆 + ℎ

2
)

− 𝛽
1

Λ

𝑚
𝜖 (𝜆 + ℎ

3
) (𝜆 + ℎ

4
) + 𝛽
1

Λ

𝑚
𝜖𝜇𝜃

− 𝛽
2

Λ

𝑚
𝜖𝜎 (𝜆 + ℎ

4
) − 𝛽
2

Λ

𝑚
𝜖𝛿𝜃 − 𝛽

3

Λ

𝑚
𝜖𝜇𝜎

−𝛽
3

Λ

𝑚
𝜖𝛿 (𝜆 + ℎ

3
)]

= (𝜆 + 𝑚) (𝜆 + 𝑚 + 𝛾) (𝜆
4
+ 𝑘
1
𝜆
3
+ 𝑘
2
𝜆
2
+ 𝑘
3
𝜆 + 𝑘
4
) = 0,

(14)

where

𝑘
1
= ℎ
1
+ ℎ
2
+ ℎ
3
+ ℎ
4
,

𝑘
2
= ℎ
1
ℎ
2
+ ℎ
1
ℎ
3
+ ℎ
1
ℎ
4
+ ℎ
2
ℎ
3

+ ℎ
2
ℎ
4
+ ℎ
3
ℎ
4
− 𝜇𝜃 − 𝛽

1

Λ

𝑚
𝜖,

𝑘
3
= ℎ
1
ℎ
2
ℎ
3
+ ℎ
1
ℎ
2
ℎ
4
+ ℎ
1
ℎ
3
ℎ
4
+ ℎ
2
ℎ
3
ℎ
4
− 𝜇𝜃 (ℎ

1
+ ℎ
2
)

− 𝛽
1

Λ

𝑚
𝜖 (ℎ
3
+ ℎ
4
) − 𝛽
2

Λ

𝑚
𝜖𝜎 − 𝛽

3

Λ

𝑚
𝜖𝛿,

𝑘
4
= ℎ
1
ℎ
2
ℎ
3
ℎ
4
− 𝜇𝜃ℎ

1
ℎ
2
− 𝛽
1

Λ

𝑚
𝜖ℎ
3
ℎ
4
+ 𝛽
1

Λ

𝑚
𝜖𝜇𝜃

− 𝛽
2

Λ

𝑚
𝜖𝜎ℎ
4
− 𝛽
2

Λ

𝑚
𝜖𝛿𝜃 − 𝛽

3

Λ

𝑚
𝜖𝜇𝜎 − 𝛽

3

Λ

𝑚
𝜖𝛿ℎ
3
.

(15)

Denote the eigenvalues of the characteristic equation (14) as
𝜆
𝑖
, 𝑖 = 1, 2, . . . , 6. Obviously, 𝜆

1
= −𝑚 < 0, 𝜆

2
= −(𝑚+𝛾) < 0,

and 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
satisfy the equation (𝜆4+𝑘

1
𝜆
3
+𝑘
2
𝜆
2
+𝑘
3
𝜆+

𝑘
4
) = 0. When 𝑅

0
> 1, we get

𝑘
4
= ℎ
1
ℎ
2
(ℎ
3
ℎ
4
− 𝜇𝜃) − 𝛽

1

Λ

𝑚
𝜖 (ℎ
3
ℎ
4
− 𝜇𝜃)

− 𝛽
2

Λ

𝑚
𝜖 (𝜎ℎ
4
+ 𝛿𝜃) − 𝛽

3

Λ

𝑚
𝜖 (𝛿ℎ
3
+ 𝜇𝜎)

= ℎ
1
ℎ
2
(ℎ
3
ℎ
4
− 𝜇𝜃)

⋅ [1 −
Λ𝜖

𝑚ℎ
1
ℎ
2

(𝛽
1
+
𝛽
2
(𝛿𝜃 + 𝜎ℎ

4
) + 𝛽
3
(𝜇𝜎 + 𝛿ℎ

3
)

ℎ
3
ℎ
4
− 𝜇𝜃

)]

= (𝑚 + 𝜖) (𝑚 + 𝜎 + 𝛿 + 𝜉)

⋅ [(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃]

× [1 −
Λ𝜖

𝑚 (𝑚 + 𝜖) (𝑚 + 𝜎 + 𝛿 + 𝜉)

⋅ (𝛽
1
+ ((𝛽
2
(𝛿𝜃 + 𝜎 (𝑚 + 𝜃 + 𝜂))

+ 𝛽
3
(𝜇𝜎 + 𝛿 (𝑚 + 𝛼 + 𝜇)))

⋅ ((𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃)
−1
))]

= (𝑚 + 𝜖) (𝑚 + 𝜎 + 𝛿 + 𝜉)

⋅ [(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃] (1 − 𝑅
0
)

< 0,

(16)

which means that 𝜆
3
𝜆
4
𝜆
5
𝜆
6
= 𝑘
4
< 0. This indicates that

at least one of 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
has positive real part. Thus, 𝑃 is

unstable if 𝑅
0
> 1.

Define
𝑋 = {(𝑆, 𝐸, 𝐴, 𝐶, 𝑇, 𝑅) |

𝑆 ≥ 0, 𝐸 ≥ 0, 𝐴 ≥ 0, 𝐶 ≥ 0, 𝑇 ≥ 0, 𝑅 ≥ 0} ,

𝑋
0
= {(𝑆, 𝐸, 𝐴, 𝐶, 𝑇, 𝑅) |

𝑆 ≥ 0, 𝐸 > 0, 𝐴 > 0, 𝐶 > 0, 𝑇 > 0, 𝑅 > 0} ,
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𝜕𝑋
0
= 𝑋 \ 𝑋

0
,

𝑀
𝜕
= {(𝑆 (0) , 𝐸 (0) , 𝐴 (0) , 𝐶 (0) , 𝑇 (0) , 𝑅 (0)) |

(𝑆 (𝑡) , 𝐸 (𝑡) , 𝐴 (𝑡) , 𝐶 (𝑡) , 𝑇 (𝑡) , 𝑅 (𝑇))

satisfies (1) ,

(𝑆 (𝑡) , 𝐸 (𝑡) , 𝐴 (𝑡) , 𝐶 (𝑡) , 𝑇 (𝑡) , 𝑅 (𝑇)) ∈ 𝜕𝑋
0
,

∀𝑡 ≥ 0} .

(17)

It then suffices to show that system (1) is uniformly persis-
tent with respect to (𝑋

0
, 𝜕𝑋
0
). First, it is easy to see that

both 𝑋 and 𝑋
0
are positively invariant. Obviously, 𝜕𝑋

0
is

relatively closed in 𝑋. Furthermore, it follows from (2) that
system (1) is point dissipative. Next we prove that 𝑀

𝜕
=

{(𝑆, 0, 0, 0, 0, 0) | 𝑆 ≥ 0}. Assume, by contradiction, that 𝜑
0
=

(𝑆(0), 𝐸(0), 𝐴(0), 𝐶(0), 𝑇(0), 𝑅(0)) ∈ 𝑀
𝜕
and there exists a

𝑡
0
≥ 0 such that at least one of 𝐸(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝑇(𝑡), 𝑅(𝑡) is

greater than zero at 𝑡 = 𝑡
0
; for example,𝐴(𝑡

0
) > 0 and 𝐸(𝑡

0
) =

𝐶(𝑡
0
) = 𝑇(𝑡

0
) = 𝑅(𝑡

0
) = 0. Then we get 𝐶󸀠(𝑡

0
) = 𝜎𝐴(𝑡

0
) > 0,

𝑇
󸀠
(𝑡
0
) = 𝛿𝐴(𝑡

0
) > 0, 𝑅󸀠(𝑡

0
) = 𝜉𝐴(𝑡

0
) > 0. This indicates

that there exists a 𝑡
1

> 0 such that 𝐶(𝑡) > 0, 𝑇(𝑡) > 0,
𝑅(𝑡) > 0, and 𝐸(𝑡) > 0, 𝐴(𝑡) > 0, for 𝑡

0
< 𝑡 < 𝑡

0
+ 𝑡
1
,

which means that (𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝑇(𝑡), 𝑅(𝑡)) ∉ 𝜕𝑋
0
for

𝑡
0
< 𝑡 < 𝑡

0
+ 𝑡
1
, contradicting the assumption that 𝜑

0
∈ 𝑀
𝜕
.

Other cases can be proved in the same way. Thus we have
𝑀
𝜕
= {(𝑆, 0, 0, 0, 0, 0) | 𝑆 ≥ 0}. Let 𝜑

0
be an initial value.

There is only one equilibrium 𝑃 in 𝑀
𝜕
, so ∪
𝜑0∈𝑀𝜕

𝜔(𝜑
0
) = 𝑃.

Therefore, 𝑃 is a compact and isolated invariant set for 𝜑
0
in

𝜕𝑋
0
.

Next we claim that there exists a positive constant 𝛿
0
such

that any solution 𝑢(𝑡, 𝜑
0
), 𝜑
0
∈ 𝑋
0
, satisfies

lim
𝑡→∞

sup 󵄩󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝜑0) − 𝑃
󵄩󵄩󵄩󵄩󵄩
≥ 𝛿
0
, i.e., 𝑊𝑠 (𝑃) ∩ 𝑋

0
= 0. (18)

Suppose the claim is not true. Then lim
𝑡→∞

sup ‖𝑢(𝑡, 𝜑
0
) −

𝑃‖ < 𝛿
0
, for any 𝛿

0
> 0; namely, there exists a positive

constant 𝜂
0
such that Λ/𝑚− 𝛿

0
< 𝑆(𝑡) < Λ/𝑚+ 𝛿

0
, 𝐸(𝑡) < 𝛿

0
,

𝐴(𝑡) < 𝛿
0
, 𝐶(𝑡) < 𝛿

0
, 𝑇(𝑡) < 𝛿

0
, and 𝑅(𝑡) < 𝛿

0
, for any 𝑡 > 𝜂

0
.

While 𝑡 > 𝜂
0
, we have

𝑑𝐸

𝑑𝑡
> (𝛽
1
𝐴 + 𝛽

2
𝐶 + 𝛽

3
𝑇) (

Λ

𝑚
− 𝛿
0
) − (𝑚 + 𝜖) 𝐸. (19)

Consider the auxiliary system

𝑑𝑥
1

𝑑𝑡
= (𝛽
1
𝑥
2
+ 𝛽
2
𝑥
3
+ 𝛽
3
𝑥
4
) (

Λ

𝑚
− 𝛿
0
) − (𝑚 + 𝜖) 𝑥1,

𝑑𝑥
2

𝑑𝑡
= 𝜖𝑥
1
− (𝑚 + 𝜎 + 𝛿 + 𝜉) 𝑥2,

𝑑𝑥
3

𝑑𝑡
= 𝜎𝑥
2
+ 𝜃𝑥
4
− (𝑚 + 𝛼 + 𝜇) 𝑥

3
,

𝑑𝑥
4

𝑑𝑡
= 𝛿𝑥
2
+ 𝜇𝑥
3
− (𝑚 + 𝜃 + 𝜂) 𝑥

4
,

𝑑𝑥
5

𝑑𝑡
= 𝜉𝑥
2
+ 𝜂𝑥
4
− (𝑚 + 𝛾) 𝑥

5
.

(20)

Define

𝑀
1
(𝛿
0
) =

(
(
(

(

−(𝑚 + 𝜖) 𝛽
1
(
Λ

𝑚
− 𝛿
0
) 𝛽

2
(
Λ

𝑚
− 𝛿
0
) 𝛽
3
(
Λ

𝑚
− 𝛿
0
) 0

𝜖 − (𝑚 + 𝜎 + 𝛿 + 𝜉) 0 0 0

0 𝜎 − (𝑚 + 𝛼 + 𝜇) 𝜃 0

0 𝛿 𝜇 − (𝑚 + 𝜃 + 𝜂) 0

0 𝜉 0 𝜂 − (𝑚 + 𝛾)

)
)
)

)

. (21)

Let 𝑠(𝑀
1
(𝛿
0
)) be the maximum real part of the eigenvalues

of 𝑀
1
(𝛿
0
). Since 𝑀

1
(𝛿
0
) is irreducible and has nonnegative

off-diagonal elements, 𝑠(𝑀
1
(𝛿
0
)) is a simple eigenvalue of

𝑀
1
(𝛿
0
) with a positive eigenvector. It follows from Lemma

2.1 in [22] that 𝑠(𝑀
1
(0)) > 0 when 𝑅

0
> 1. Since 𝑠(𝑀

1
(𝛿
0
))

is continuous for small 𝛿
0
, there exists a positive constant 𝛿

0

small enough such that 𝑠(𝑀
1
(𝛿
0
)) > 0. Therefore, there is a

positive eigenvalue of 𝑀
1
(𝛿
0
) with a positive eigenvector. It

is easy to see 𝑥
𝑖
→ ∞ as 𝑡 → ∞, 𝑖 = 1, 2, . . . , 5. Then

according to the comparison principle we have

lim
𝑡→∞

𝐸 (𝑡) = ∞, lim
𝑡→∞

𝐴 (𝑡) = ∞, lim
𝑡→∞

𝐶 (𝑡) = ∞,

lim
𝑡→∞

𝑇 (𝑡) = ∞, lim
𝑡→∞

𝑅 (𝑡) = ∞,

(22)

which contradicts our assumption. This completes the proof
of the claim,which implies that𝑃 is an isolated invariant set in
𝑋 and𝑊𝑠(𝑃)∩𝑋

0
= 0. Using the uniform persistence theory

(Theorem 4.2) in [23], we obtain that system (1) is uniformly
persistent if 𝑅

0
> 1. This completes the proof.

4. Global Stability of the Endemic Equilibrium

The global stability of the endemic equilibrium is studied
under the simplified assumption that the immune loss rate is
zero (i.e., 𝛾 = 0). Thus, we can omit the decoupled equation
for 𝑑𝑅/𝑑𝑡 and the following theorem holds.

Theorem 2. When 𝑅
0
> 1, if 𝛾 = 0, then the unique endemic

equilibrium 𝑃
∗ is globally asymptotically stable inD.
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Proof. Construct a continuously differentiable and nonnega-
tive Lyapunov function:

𝑉 = 𝑆 − 𝑆
∗
− 𝑆
∗ ln 𝑆

𝑆∗
+ 𝐸 − 𝐸

∗

− 𝐸
∗ ln 𝐸

𝐸∗
+ 𝑎
1
(𝐴 − 𝐴

∗
− 𝐴
∗ ln 𝐴

𝐴∗
)

+ 𝑎
2
(𝐶 − 𝐶

∗
− 𝐶
∗ ln 𝐶

𝐶∗
) + 𝑎
3
(𝑇 − 𝑇

∗
− 𝑇
∗ ln 𝑇

𝑇∗
) ,

(23)

where

𝑎
1
=
𝑚 + 𝜖

𝜖
, 𝑎

2
=

(𝛽
3
𝜇 + 𝛽
2
(𝑚 + 𝜃 + 𝜂)) 𝑆

∗

(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃
,

𝑎
3
=

(𝛽
2
𝜃 + 𝛽
3
(𝑚 + 𝛼 + 𝜇)) 𝑆

∗

(𝑚 + 𝛼 + 𝜇) (𝑚 + 𝜂) + (𝑚 + 𝛼) 𝜃
.

(24)

It can be verified that the global minimum of 𝑉 occurs at the
endemic equilibrium 𝑃

∗, and the function 𝑉 takes the value
𝑉 = 0 at the endemic equilibrium 𝑃

∗.
Differentiating 𝑉 along the solutions of system (1) and

using the equilibrium relations, we obtain

𝑑𝑉

𝑑𝑡
= (1 −

𝑆
∗

𝑆
) (Λ − 𝛽

1
𝑆𝐴 − 𝛽

2
𝑆𝐶 − 𝛽

3
𝑆𝑇 − 𝑚𝑆)

+ (1 −
𝐸
∗

𝐸
) (𝛽
1
𝑆𝐴 + 𝛽

2
𝑆𝐶 + 𝛽

3
𝑆𝑇 − (𝑚 + 𝜖) 𝐸)

+ 𝑎
1
(1 −

𝐴
∗

𝐴
) (𝜖𝐸 − (𝑚 + 𝜎 + 𝛿 + 𝜉)𝐴)

+ 𝑎
2
(1 −

𝐶
∗

𝐶
) (𝜎𝐴 + 𝜃𝑇 − (𝑚 + 𝛼 + 𝜇)𝐶)

+ 𝑎
3
(1 −

𝑇
∗

𝑇
) (𝛿𝐴 + 𝜇𝐶 − (𝑚 + 𝜃 + 𝜂) 𝑇)

= 𝑀 − 𝑚𝑆 − 𝛽
1
𝐸
∗ 𝑆𝐴

𝐸
− 𝛽
2
𝐸
∗ 𝑆𝐶

𝐸

− 𝛽
3
𝐸
∗ 𝑆𝑇

𝐸
− Λ

𝑆
∗

𝑆
− 𝑎
1
𝜖𝐴
∗ 𝐸

𝐴

− 𝑎
2
𝜎C∗𝐴

𝐶
− 𝑎
2
𝜃𝐶
∗𝑇

𝐶
− 𝑎
3
𝛿𝑇
∗𝐴

𝑇
− 𝑎
3
𝜇𝑇
∗𝐶

𝑇

= 𝑏
1
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) + 𝑏
2
(3 −

𝑆
∗

𝑆
−

𝐸
∗

𝑆∗𝐴∗

𝑆𝐴

𝐸
−
𝐴
∗

𝐸∗

𝐸

𝐴
)

+ 𝑏
3
(4 −

𝑆
∗

𝑆
−

𝐸
∗

𝑆∗𝐶∗

𝑆𝐶

𝐸
−
𝐴
∗

𝐸∗

𝐸

𝐴
−
𝐶
∗

𝐴∗

𝐴

𝐶
)

+ 𝑏
4
(5 −

𝑆
∗

𝑆
−

𝐸
∗

𝑆∗𝐶∗

𝑆𝐶

𝐸
−
𝐴
∗

𝐸∗

𝐸

𝐴
−
𝐶
∗

𝑇∗

𝑇

𝐶
−
𝑇
∗

𝐴∗

𝐴

𝑇
)

+ 𝑏
5
(5 −

𝑆
∗

𝑆
−

𝐸
∗

𝑆∗𝑇∗

𝑆𝑇

𝐸
−
𝐴
∗

𝐸∗

𝐸

𝐴
−
𝐶
∗

𝐴∗

𝐴

𝐶
−
𝑇
∗

𝐶∗

𝐶

𝑇
)

+ 𝑏
6
(4 −

𝑆
∗

𝑆
−

𝐸
∗

𝑆∗𝑇∗

𝑆𝑇

𝐸
−
𝐴
∗

𝐸∗

𝐸

𝐴
−
𝑇
∗

𝐴∗

𝐴

𝑇
)

+ 𝑏
7
(2 −

𝐶
∗

𝑇∗

𝑇

𝐶
−
𝑇
∗

𝐶∗

𝐶

𝑇
) ,

(25)

where 𝑀 = Λ + 𝑚𝑆
∗
+ (𝑚 + 𝜖)𝐸

∗
+ 𝑎
1
(𝑚 + 𝜎 + 𝛿 + 𝜉)𝐴

∗
+

𝑎
2
(𝑚+𝛼+𝜇)𝐶

∗
+𝑎
3
(𝑚+ 𝜃+ 𝜂)𝑇

∗ and 𝑏
𝑖
(𝑖 = 1, . . . , 7) satisfy

the following equations:

2𝑏
1
+ 3𝑏
2
+ 4𝑏
3
+ 5𝑏
4
+ 5𝑏
5
+ 4𝑏
6
+ 2𝑏
7
= 𝑀,

𝑏
1
= 𝑚𝑆
∗
,

𝑏
1
+ 𝑏
2
+ 𝑏
3
+ 𝑏
4
+ 𝑏
5
+ 𝑏
6
= Λ,

𝑏
2
+ 𝑏
3
+ 𝑏
4
+ 𝑏
5
+ 𝑏
6
= 𝑎
1
𝜖𝐸
∗
,

𝑏
3
+ 𝑏
5
= 𝑎
2
𝜎𝐴
∗
,

𝑏
4
+ 𝑏
7
= 𝑎
2
𝜃𝑇
∗
,

𝑏
4
+ 𝑏
6
= 𝑎
3
𝛿𝐴
∗
,

𝑏
5
+ 𝑏
7
= 𝑎
3
𝜇𝐶
∗
,

𝑏
2
= 𝛽
1
𝑆
∗
𝐴
∗
,

𝑏
3
+ 𝑏
4
= 𝛽
2
𝑆
∗
𝐶
∗
,

𝑏
5
+ 𝑏
6
= 𝛽
3
𝑆
∗
𝑇
∗
.

(26)

Obviously, 𝑏
1
> 0 and 𝑏

2
> 0. Next we will show that

𝑏
𝑖
≥ 0 (𝑖 = 3, . . . , 7). From the equations above, we have

𝑏
3
= 𝑎
2
𝜎𝐴
∗
− 𝑎
3
𝜇𝐶
∗
+ 𝑏
7
= 𝛽
2
𝑆
∗
𝐶
∗
− 𝑎
2
𝜃𝑇
∗
+ 𝑏
7
,

𝑏
4
= 𝑎
2
𝜃𝑇
∗
− 𝑏
7
,

𝑏
5
= 𝑎
3
𝜇𝐶
∗
− 𝑏
7
,

𝑏
6
= 𝑎
3
𝛿𝐴
∗
− 𝑎
2
𝜃𝑇
∗
+ 𝑏
7
= 𝛽
3
𝑆
∗
𝑇
∗
− 𝑎
3
𝜇𝐶
∗
+ 𝑏
7
.

(27)

At the equilibrium, the equalities 𝜎𝐴∗ +𝜃𝑇∗ = (𝑚+𝛼+𝜇)𝐶
∗,

𝛿𝐴
∗
+ 𝜇𝐶
∗
= (𝑚 + 𝜃 + 𝜂)𝑇

∗ hold. Then by substituting the
values of 𝑎

2
and 𝑎
3
, it is easy to obtain that

𝑎
2
𝜎𝐴
∗
− 𝑎
3
𝜇𝐶
∗
= 𝛽
2
𝑆
∗
𝐶
∗
− 𝑎
2
𝜃𝑇
∗
,

𝑎
3
𝛿𝐴
∗
− 𝑎
2
𝜃𝑇
∗
= 𝛽
3
𝑆
∗
𝑇
∗
− 𝑎
3
𝜇𝐶
∗
.

(28)

In order to assure 𝑏
𝑖
≥ 0 (𝑖 = 3, 4, 5, 6), from (27) we know

that 𝑏
7
must satisfy the inequalities:

max {0, 𝑎
3
𝜇𝐶
∗
− 𝑎
2
𝜎𝐴
∗
, 𝑎
3
𝜇𝐶
∗
− 𝛽
3
𝑆
∗
𝑇
∗
}

≤ 𝑏
7
≤ min {𝑎

2
𝜃𝑇
∗
, 𝑎
3
𝜇𝐶
∗
} .

(29)



8 Discrete Dynamics in Nature and Society

2003 2005 2007 2009 2011 2013
0

0.5

1

1.5

2

2.5

21145
39380

52927
70681

92378
108446

131849

153039
173872

201622

223094

Time (years)

N
ew

 re
po

rt
ed

 ca
se

s i
n 

Ch
in

a
×10

5

(a)

2003 2006 2009 2012 2015 2018 2021
0

1

2

3

4

5

6

7

8

9

Time (years)

×10
5

N
ew

 re
po

rt
ed

 ca
se

s (
𝜀
E
)

𝜇 = 0.04

3𝜇

5𝜇

(b)

Figure 2: (a) Annual newly reported HCV cases for mainland China; (b) goodness of fit and prediction of HCV trends until 2021. Stars
represent the reported number of people with HCV by year. The solid line shows the fit based on the current circumstances (𝜇 = 0.04). The
dashed and dash dot lines show the prediction at higher treatment rates 𝜇 = 0.12 and 𝜇 = 0.2 for patients at the chronic stage from 2015,
respectively. All the other parameters are as shown in Table 1.

Using (28) yields

𝑎
3
𝜇𝐶
∗
> 0, 𝑎

3
𝜇𝐶
∗
> 𝑎
3
𝜇𝐶
∗
− 𝑎
2
𝜎𝐴
∗
,

𝑎
3
𝜇𝐶
∗
> 𝑎
3
𝜇𝐶
∗
− 𝛽
3
𝑆
∗
𝑇
∗
,

𝑎
2
𝜃𝑇
∗
> 0,

𝑎
2
𝜃𝑇
∗
> 𝑎
2
𝜃𝑇
∗
− 𝛽
2
𝑆
∗
𝐶
∗
= 𝑎
3
𝜇𝐶
∗
− 𝑎
2
𝜎𝐴
∗
,

𝑎
2
𝜃𝑇
∗
> 𝑎
2
𝜃𝑇
∗
− 𝑎
3
𝛿𝐴
∗
= 𝑎
3
𝜇𝐶
∗
− 𝛽
3
𝑆
∗
𝑇
∗
,

(30)

and then inequalities (29) must have a nonnegative solution,
and so has (27). This indicates that 𝑏

𝑖
≥ 0 (𝑖 = 3, . . . , 7).

Because the geometric mean is always less than or equal to
the arithmetic mean, we have 𝑑𝑉/𝑑𝑡 ≤ 0 and the equality
holds if and only if (𝑆, 𝐸, 𝐴, 𝐶, 𝑇) take the equilibrium values
(𝑆
∗
, 𝐸
∗
, 𝐴
∗
, 𝐶
∗
, 𝑇
∗
). Therefore, by LaSalle’s Invariance Prin-

ciple, it follows that the endemic equilibrium 𝑃
∗ is globally

asymptotically stable in the feasible regionD.

5. Numerical Results

The annual reported HCV case numbers have been released
by the National Health and Family Planning Commission of
China [6], shown in Figure 2(a). The birth rate is fixed as
0.0121 in [24] and the total population of China is about
1.3 × 10

9, so we obtain that the recruitment rate is Λ =

0.0121 × 1.3 × 10
9
= 1.573 × 10

7 per year. Okosun [16] chose
the rate of progression for treatment from acute infected
individuals as in the interval (0.12, 0.189); thus, we choose

the mean treatment rate for the patients at the acute stage as
𝛿 = 0.1545 per year. By fitting (1) to the annual reportedHCV
data (Figure 2(a)) we obtain estimates for the transmission
rates and the initial population size, which are listed in Table 1
and the goodness of fit is shown in Figure 2(b). Figure 2(b)
shows that the estimated reported case numbers will reach
809,970 in 2021 inmainlandChina if the current surveillance,
testing, and interventions are unchanged.

Using the estimated parameter values we calculated the
basic reproduction number 𝑅

0
as 1.9897, which is similar to

other estimates in the literature [25, 26] but is smaller than
the value of 4.0636 estimated in [18]. This is because the
treated individuals included in our model have relatively low
infectiousness, which results in a smaller basic reproduction
number.Moreover, it is interesting to note that the prevalence
of HCV infection in China (Figure 3) is estimated as 0.51%
in 2013 and 0.58% in 2014, which is in good agreement with
the cross-sectional study [5]. Note that this estimated HCV
prevalence is much lower than the WHO estimation. This
is partial because strict HCV screening in blood began in
the 1990s in China, which reduced the transmission rate of
HCV by blood transfusion and other sources of iatrogenic
infection.

To examine the impact of treatment on HCV
transmission dynamics and prevalence and identify the
most effective measures to control the transmission of
HCV in mainland China we investigated variation in
the basic reproduction number and prevalence (i.e.,
(𝐸(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡))/𝑁(𝑡)) with parameters associated
with treatment. If the treatment rate 𝜇 for the infected
people at the chronic stage increases threefold, then
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Figure 3: Plots of the prevalence against time at varying parameter values: (a) the treatment rate 𝜇 for patients at the acutely infected stage;
(b) the treatment rate 𝛿 for patients at the chronic stage; (c) the treatment cure rate 𝜂; (d) the treatment failure rate 𝜃. All the other parameters
are as shown in Table 1.

the predicted reported case number will decrease by 13.21%
to 702,960 in 2021, while if 𝜇 increases fivefold, then the
predicted number will decrease by 24.74% to 609,580 in
2021, as shown in Figure 2(b). It follows from Figure 3
that the HCV prevalence in China will continue to rise and
reach 1.63% in year 2021 under the current circumstances.
Figure 3(a) shows that increasing the treatment rate 𝜇 for the
patients at the chronic stage by 200% and 400% from the
baseline value can decrease the prevalence in 2021 by 19.75%
and 47.15%, respectively. Figure 3(b) shows that increasing the
treatment rate𝛿 for the patients at the acute stage by 200%and
400% from the baseline value can decrease the prevalence

in 2021 by 32.16% and 61.28%, respectively. Figure 3(c)
shows that increasing the cure rate 𝜂 by 200% from 𝜂 = 0.67

can decrease the prevalence in 2021 by 11.01%. It follows
from Figure 3(d) that reducing the treatment failure rate 𝜃

by 50% and 25% from the baseline value can decrease the
prevalence in 2021 by 8.37% and 14.44%, respectively. These
results indicate that, to decrease the prevalence effectively, it
will be better to enlarge the treatment rate for the patients at
the acute and chronic stage and cure rate and decrease the
treatment failure rate in the short term.

To access the effectiveness of treatment interventions in
the long term, we examine the effects of the corresponding
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Figure 4: (a) Plots of the basic reproduction number 𝑅
0
by varying 𝑘 (the rates of change of 𝜇; 𝛿; 𝜂; and 𝜃); (b) plots of the prevalence at the

steady state by varying 𝑘 (the rates of change of 𝜇; 𝛿; 𝜂; and 𝜃). Each column of markers denote that 𝑘 increases 10% per time. All the other
parameters are as shown in Table 1.

Table 2: PRCC values for 𝑅
0
and prevalence at endemic equilibrium.

Input parameters Distributions 𝑅
0

Prevalence
PRCC 𝑃 value PRCC 𝑃 value

𝛽
1

𝑈(7.6923 × 10
−12

, 7.6923 × 10
−10

) 0.0395 0.0781 0.0337 0.1328
𝛽
2

𝑈(7.6923 × 10
−12

, 7.6923 × 10
−10

) 0.7609 0 0.4823 0
𝛽
3

𝑈(7.6923 × 10
−12

, 7.6923 × 10
−10

) 0.4123 0 0.2284 0
𝜂 𝑈(0.01, 1) −0.8065 0 −0.7549 0
𝛿 𝑈(0.01, 1) −0.0311 0.1645 −0.0380 0.0902
𝜇 𝑈(0.01, 1) −0.7644 0 −0.7151 0
𝜃 𝑈(0.01, 1) 0.0386 0.0845 0.2219 0
𝛾 𝑈(0.01, 1) — — 0.6550 0

treatment parameters 𝜇, 𝛿, 𝜂, and 𝜃 on the basic reproduction
number andprevalence at the endemic equilibrium (i.e., (𝐸∗+
𝐴
∗
+ 𝐶
∗
+ 𝑇
∗
)/𝑁
∗). Let 𝑘 (0 ≤ 𝑘 ≤ 1) be the rate of change

of each parameter; then we could increase the treatment rate
for the patients at the chronic (or acute) stage (represented by
(1 + 𝑘)𝜇 or ((1 + 𝑘)𝛿)), the cure rate ((1 + 𝑘)𝜂), and decrease
the treatment failure rate ((1 − 𝑘)𝜃) by increasing parameter
𝑘. In particular, increasing 𝜇 by 30% or decreasing 𝜃 by
30% from baseline values (while keeping other parameters
fixed) can reduce 𝑅

0
by 16.56% or 11.83% and can reduce

the equilibrium prevalence by 27.98% or 19.54%, respectively.
However, increasing 𝛿 or 𝜂 by 30% from baseline values
can only reduce 𝑅

0
by 0.36% or 9.42% and reduce the

equilibrium prevalence by 0.56% or 15.47%, respectively. It
follows from Figure 4 that increasing the treatment rate 𝜇

for the patients at the chronic stage and the cure rate 𝜂 and
decreasing the treatment failure rate 𝜃 are more effective
than increasing the treatment rate 𝛿 for the patients at the
acute stage in terms of reducing both the basic reproduc-
tion number and the equilibrium prevalence in the long
run.

To examine the sensitivity of our results to parameter
variation, we used Latin hypercube sampling (LHS) and
partial rank correlation coefficients (PRCCs) [27, 28] to
examine the dependence of 𝑅

0
and the equilibrium preva-

lence on each parameter. Because of limited information
on the distributions of each parameter, we chose a uniform
distribution as in [28] for all input parameters with ranges
listed in Table 2. To know whether the significance of any
parameter varies over an entire time interval during model
dynamics, PRCC values were calculated for numerous times
and plotted versus time. This enables us to assess whether
the significance of one parameter changes over an entire
time interval during the progression of the model dynamics.
Figure 5(a) shows PRCC values plotted from 2003 to 2021 and
it indicates that there are five PRCC values that are signifi-
cantly different from zero and that the PRCC values of the
eight examined parameters vary little with time and stabilize
at fixed values in about 2006. It follows from Figure 5(b)
that the first four parameters with themost significant impact
on 𝑅
0
are the transmission rate for the chronically infected

individuals 𝛽
2
and the transmission rate for the treated
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Figure 5: (a) PRCCs of the eight parameters for prevalence from 2003 to 2021. (b) PRCCs for 𝑅
0
. (c) PRCCs for the equilibrium prevalence.

Sample size is set to 2000. ∗ denotes PRCCs are significant (𝑃 value < 0.01). Parameter values and ranges are as shown in Tables 1 and 2.

population 𝛽
3
, the cure rate 𝜂, and the treatment rate 𝜇 for

the population with chronic infection. This implies that a
greater efficacy of treatment, a larger treatment uptake for the
population with chronic infection, and lower transmission
rates at the chronic stage definitely result in lower new
HCV infections. Moreover, these four parameters 𝜂, 𝜇, 𝛽

2
, 𝛽
3

also have significant impact on equilibrium prevalence, as
shown in (Figure 5(c)). It is worth mentioning that the
rate of waning immunity 𝛾, although it has no effect on
𝑅
0
, greatly affects the equilibrium prevalence because quick

waning of immunity significantly increases the number of the
susceptible individuals and hence the prevalence. It should be
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noted that the transmission rate 𝛽
1
and the treatment rate 𝛿

for the population with acute infection have little effect on
both the basic reproduction number 𝑅

0
and the prevalence

at the endemic equilibrium because of the relative short
duration of the acute stage.

6. Discussion

In order to understand the prevalence of HCV infection
in China based on the reported data [6] and examine the
role that treatment plays in the transmission dynamics, we
proposed a mathematical model which includes realistic
features of HCV transmission such as treatment and partial
immunity. Theoretically, the global dynamics of our model
are determined by the basic reproduction number 𝑅

0
. The

disease-free equilibrium is globally asymptotically stable if
𝑅
0
≤ 1, which means that hepatitis C can be entirely elim-

inated from the population. When 𝑅
0
> 1, hepatitis C will

persist in the population and the endemic equilibrium is
globally asymptotically stable for a special case. It is worth
mentioning that although the constructed Lyapunov function
𝑉(𝑡) is deterministic when proving the global stability of the
positive steady state, the coefficients 𝑏

𝑘
(𝑘 = 3, 4, . . . , 7) of

function 𝑑𝑉/𝑑𝑡 which appeared in (25) were chosen to be a
positive solution of (27) and are nonunique, which is more
general than the proof of Theorem 3.3 in [15].

When the model was applied to HCV transmission in
China, we estimated the basic reproduction number 𝑅

0
as

1.9897, which is similar to other estimates in the literature
[25, 26] but is smaller than the value 4.0636 estimated in
[18]. This is because the treated population has relatively low
infectiousness which is included in our model, resulting in
a smaller basic reproduction number. Goodness of fit and
prediction of HCV trends (Figure 2(b)) show amore accurate
result than the overestimated simulation in [18] and the
prediction indicates that newly reported cases will continue
to rise rapidly in the near future. Moreover, we estimate that
the prevalence of HCV infection in China (Figure 3) was
0.51% in 2013 and 0.58% in 2014, in good agreement with the
cross-sectional study [5], and will reach 1.63% in 2021. These
findings lead us to believe that the exact HCV prevalence is
much lower than what the WHO estimation indicates. Also,
HCV screening in blood, a practice that may significantly
reduce the transmission rate of HCV by blood transfusion
and other sources of iatrogenic infection, began in the 1990s
in China, and thus it is reasonable to believe that strict blood
screening and other procedural measures are preventing the
spread of HCV and are leading to a lower prevalence.

It follows from sensitivity analysis (Figure 5) that the
transmission rate 𝛽

3
of the treated population contributes

greatly to the transmission of HCV throughout the period
of the disease spread. So the prevalence of HCV may
be underestimated in [10–12] because in their models the
treated population are assumed not to infect the susceptible
populations. Figures 4 and 5 show that the basic reproduction
number 𝑅

0
and equilibrium prevalence are not sensitive to

the transmission rate 𝛽
1
and the treatment rate 𝛿 for the

population with acute infection, indicating that the acute

stage does not substantially affect the transmission of HCV
in the long run due to its relatively short duration, but it
may affect the prevalence at the beginning of the epidemic
(Figure 3(b)).

It should be acknowledged that one limitation of our
results is that the reported national data may not be com-
pletely composed of exposed people who enter into the acute
stage.The datamay contain some cases diagnosed at the acute
or chronic stage; though the number of these cases is low, it
may still result in a slight overestimate of the prevalence of
HCV in China. However, the slightly overestimated results
were not caused by our model, but rather by the deficiency of
data which did not distinguish which stage the reported cases
came from. More realistic models about HCV infection on
complex networks [29–31] will be studied in the future work.
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