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We provide an explicit description of the quantum product of multisymmetric functions using the elementary multisymmetric
functions introduced by Vaccarino.

1. Introduction

Fix a characteristic zero fieldK.The algebrogeometric duality
allows us to identify affine algebraic varieties with the K-
algebra of polynomial functions on it, and, reciprocally, a
finitely generated algebra without nilpotent elements may
be identified with its spectrum, provided with the Zarisky
topology. Affine space K𝑛 is thus identified with the algebra
of polynomials in 𝑛-variables K[𝑥

1
, . . . , 𝑥

𝑛
]. Consider the

action of the symmetric group 𝑆
𝑛
on K𝑛 by permutation of

vector entries. The quotient space K𝑛/𝑆
𝑛
is the configuration

space of 𝑛 unlabeled points with repetitions inK. Polynomial
functions on K𝑛/𝑆

𝑛
may be identified with the algebra

K[𝑥
1
, . . . , 𝑥

𝑛
]
𝑆
𝑛 of 𝑆

𝑛
-invariant polynomials in K[𝑥

1
, . . . , 𝑥

𝑛
].

A remarkable classical fact is that K𝑛/𝑆
𝑛
is again a 𝑛-

dimensional affine space [1]; indeed we have an isomorphism
of algebras

K [𝑥
1
, . . . , 𝑥

𝑛
]
𝑆
𝑛

≃ K [𝑒
1
, . . . , 𝑒

𝑛
] , (1)

where, for 𝛼 ∈ [𝑛] = {1, . . . , 𝑛}, 𝑒
𝛼
is the elementary

symmetric polynomial given by

𝑒
𝛼

(𝑥
1
, . . . , 𝑥

𝑛
) = ∑

|𝑎|=𝛼

𝑥
𝛼

= ∑

𝑎⊆[𝑛], |𝑎|=𝛼

∏

𝑗∈𝑎

𝑥
𝑗
. (2)

The elementary symmetric polynomials are determined by
the identity

𝑛

∏

𝑖=1

(1 + 𝑥
𝑖
𝑡) =

𝑛

∑

𝛼=0

𝑒
𝛼

(𝑥
1
, . . . , 𝑥

𝑛
) 𝑡
𝛼

. (3)

Using characteristic functions one shows for 𝛼
1
, . . . , 𝛼

𝑚
∈ [𝑛]

that

𝑒
𝛼
1

⋅ ⋅ ⋅ 𝑒
𝛼
𝑚

= ∑

𝑎∈N𝑛

𝑐 (𝛼
1
, . . . , 𝛼

𝑚
, 𝑎) 𝑥

𝑎

, (4)

where 𝑐(𝛼
1
, . . . , 𝛼

𝑚
, 𝑎) is the cardinality of the subset of

matrices of format 𝑛 × 𝑚 with entries in {0, 1} such that

𝑛

∑

𝑗=1

𝐴
𝑖𝑗

= 𝛼
𝑖

for 𝑖 ∈ [𝑚] ,

𝑚

∑

𝑖=1

𝐴
𝑖𝑗

= 𝑎
𝑗

for 𝑗 ∈ [𝑛] .

(5)

A subtler situation arises when one considers the config-
uration space

(K𝑑)
𝑛

𝑆
𝑛

(6)

of 𝑛 unlabeled points with repetitions in K𝑑, for 𝑑 ≥ 2. In
this case (K𝑑)

𝑛

/𝑆
𝑛
is no longer an affine space; instead it is

an affine algebraic variety. Polynomial functions on (K𝑑)
𝑛

/𝑆
𝑛

are the so-called multisymmetric functions, also known as
vector symmetric functions or MacMahon symmetric func-
tions [1, 2], and they coincide with the algebra of invariant
polynomials

K [𝑥
11

, . . . , 𝑥
1𝑑

, . . . , 𝑥
𝑛1

, . . . , 𝑥
𝑛𝑑

]
𝑆
𝑛

, (7)
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which admits a presentation of the following form:

K [𝑒
𝛼

| |𝛼| ∈ [𝑛]]

𝐼
𝑛,𝑑

, (8)

where the elementary multisymmetric functions 𝑒
𝛼
, for 𝛼 =

(𝛼
1
, . . . , 𝛼

𝑑
) ∈ N𝑑 a vector such that |𝛼| = 𝛼

1
+ ⋅ ⋅ ⋅ + 𝛼

𝑑
≤ 𝑛,

are defined by the identity
𝑛

∏

𝑖=1

(1 + 𝑥
𝑖1

𝑡
1

+ ⋅ ⋅ ⋅ + 𝑥
𝑖𝑑

𝑡
𝑑
)

= ∑

𝛼∈N𝑑, |𝛼|≤𝑛

𝑒
𝛼

(𝑥
11

, . . . , 𝑥
1𝑑

, . . . , 𝑥
𝑛1

, . . . , 𝑥
𝑛𝑑

) 𝑡
𝛼
1

1
⋅ ⋅ ⋅ 𝑡

𝛼
𝑑

𝑑
.

(9)

Explicitly, the multisymmetric function 𝑒
𝛼
is given by

𝑒
𝛼

(𝑥
11

, . . . , 𝑥
1𝑑

, . . . , 𝑥
𝑛1

, . . . , 𝑥
𝑛𝑑

)

= ∑

𝑎

𝑥
𝑎

= ∑

|𝑎|=𝛼

∏

𝑗∈[𝑑]

∏

𝑖∈𝑎
𝑗

𝑥
𝑖𝑗
,

(10)

where in the middle term we regard 𝑎 ∈ 𝑀
𝑛×𝑑

({0, 1}) as a
matrix such that

𝑛

∑

𝑖=1

𝑎
𝑖𝑗

= 𝛼
𝑗

for 𝑗 ∈ [𝑑] ,

𝑑

∑

𝑗=1

𝑎
𝑖𝑗

≤ 1 for 𝑖 ∈ [𝑛] ,

𝑥
𝑎

=

𝑛

∏

𝑖=1

𝑑

∏

𝑗=1

𝑥

𝑎
𝑖𝑗

𝑖𝑗
;

(11)

and in the right-hand side term we let 𝑎 = (𝑎
1
, . . . , 𝑎

𝑑
) be a

𝑑-tuple of disjoint sets 𝑎
𝑗

⊆ [𝑛] such that

|𝑎| = (
󵄨
󵄨
󵄨
󵄨
𝑎
1

󵄨
󵄨
󵄨
󵄨
, . . . ,

󵄨
󵄨
󵄨
󵄨
𝑎
𝑑

󵄨
󵄨
󵄨
󵄨
) = (𝛼

1
, . . . , 𝛼

𝑑
) . (12)

It is not difficult to check that any multisymmetric func-
tion can be written (not uniquely) as a linear combination
of products of elementary multisymmetric functions. The
nonuniqueness is controlled by the ideal 𝐼

𝑛,𝑑
. For an explicit

description of 𝐼
𝑛,𝑑

the reader may consult Dalbec [3] and
Vaccarino [4].

One checks for 𝛼
1
, . . . , 𝛼

𝑚
∈ N𝑑 that

𝑒
𝛼
1

⋅ ⋅ ⋅ 𝑒
𝛼
𝑚

= ∑

𝑎∈𝑀
𝑛×𝑑
(N)

𝑐 (𝛼
1
, . . . , 𝛼

𝑚
, 𝑎) 𝑥

𝑎

, (13)

where 𝑐(𝛼
1
, . . . , 𝛼

𝑚
, 𝑎) counts the number of cubical matrices

𝐴 = (𝐴
𝑖𝑗𝑙

) ∈ Map ([𝑚] × [𝑛] × [𝑑] , {0, 1}) (14)

such that
𝑚

∑

𝑖=1

𝐴
𝑖𝑗𝑙

= 𝑎
𝑗𝑙

for 𝑗 ∈ [𝑛] , 𝑙 ∈ [𝑑] ,

𝑑

∑

𝑙=1

𝐴
𝑖𝑗𝑙

≤ 1 for 𝑖 ∈ [𝑚] , 𝑗 ∈ [𝑛] ,

𝑛

∑

𝑗=1

𝐴
𝑖𝑗𝑙

= (𝛼
𝑖
)
𝑙

for 𝑖 ∈ [𝑚] , 𝑙 ∈ [𝑑] .

(15)

Recall that an algebra may be analyzed by describing it
by generators and relations or alternatively, as emphasized
by Rota and his collaborators, by finding a suitable basis
such that the structural coefficients are positive integers
with preferably a nice combinatorial interpretation. The
second approach for the case of multisymmetric functions
was undertaken by Vaccarino [4] and his results will be
reviewed in Section 2. The main goal of this work (see
Section 5) is to generalize this combinatorial approach to
multisymmetric functions from the classical to the quantum
setting.

Quantum mechanics, the century old leading small dis-
tances physical theory, is still not quite fully understood by
mathematicians. The transition from classical to quantum
mechanics has been particularly difficult to grasp. An appeal-
ing approach to this problem is to characterize the process of
quantization as a process of deformation of a commutative
Poisson algebra into a noncommutative algebra [5]. In this
approach classical phase space is replaced by quantum phase
space, where an extra dimension parametrized by a formal
variable ℏ is added.

The classical phase space of a Lagrangian theory is natu-
rally endowedwith a closed two-form. In the nondegenerated
case (i.e., in the symplectic case) this two-form can be
inverted given rise to a Poisson bracket on the algebra of
smooth functions on phase space. In a sense, the Poisson
bracket may be regarded as a tangent vector in the space
of deformations of the algebra of functions on phase space,
that is, as an infinitesimal deformation.That this infinitesimal
deformation can be integrated into a formal deformation is a
result according to Fedosov [6] for the symplectic case and
according to Kontsevich [7] for arbitrary Poisson manifolds.

Many Lagrangian physical theories are invariant under a
continuous group of transformations; in that case the two-
form on phase space is necessarily degenerated. Nevertheless,
a Lagrangian theory might be invariant under a finite group
and still retain its nondegenerated character. In the latter
scenario all the relevant constructions leading to the quantum
algebra of functions on phase space are equivariant and thus
give rise to quantum algebra of invariant functions under the
finite group. We follow this path along this work, being as
explicit and calculative as possible. Our main aim is thus to
provide foundations as well as practical tools for dealing with
quantum symmetric functions.

2. Multisymmetric Functions

In this section we introduce Vaccarino’s multisymmetric
functions 𝑒

𝛼
(𝑝) which are defined in analogy with the

elementary multisymmetric functions of Introduction, as
yet the definition is general enough to account for the
symmetrization of arbitrary polynomial functions [4].

Fix 𝑎, 𝑛, 𝑑 ∈ N+. Let 𝑦
1
, . . . , 𝑦

𝑑
and 𝑡

1
, . . . , 𝑡

𝑎
be a pair of

sets of commuting independent variables over K. For 𝛼 =

(𝛼
1
, . . . , 𝛼

𝑎
) ∈ N𝑎 we set

|𝛼| =

𝑎

∑

𝑖=1

𝛼
𝑖
, 𝑡

𝛼

=

𝑎

∏

𝑖=1

𝑡
𝛼
𝑖

𝑖
. (16)
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For 𝑞 ∈ K[𝑦
1
, . . . , 𝑦

𝑑
] and 𝑖 ∈ [𝑛] we let 𝑞(𝑖) = 𝑞(𝑥

𝑖1
, . . . , 𝑥

𝑖𝑑
)

be the polynomial obtained by replacing each appearance of
𝑦
𝑗
in 𝑞 by 𝑥

𝑖𝑗
, for 𝑗 ∈ [𝑑]. For example, for 𝑛 = 2 and 𝑞 =

𝑦
1
𝑦
2
𝑦
3

∈ R[𝑦
1
, 𝑦
2
, 𝑦
3
] we have

𝑞 (1) = 𝑥
11

𝑥
12

𝑥
13

, 𝑞 (2) = 𝑥
21

𝑥
22

𝑥
23

. (17)

Definition 1. Consider 𝛼 ∈ N𝑎 such that |𝛼| ≤ 𝑛 and 𝑝 =

(𝑝
1
, . . . , 𝑝

𝑎
) ∈ K[𝑦

1
, . . . , 𝑦

𝑑
]
𝑎. The multisymmetric functions

𝑒
𝛼
(𝑝) ∈ K[(K𝑑)

𝑛

]
𝑆
𝑛 are determined by the identity

𝑛

∏

𝑖=1

(1 + 𝑝
1

(𝑖) 𝑡
1

+ ⋅ ⋅ ⋅ + 𝑝
𝑎

(𝑖) 𝑡
𝑎
) = ∑

|𝛼|≤𝑛

𝑒
𝛼

(𝑝) 𝑡
𝛼

. (18)

Example 2. For 𝑛 = 3 and 𝑝 = (𝑦
1
𝑦
2
, 𝑦
3
𝑦
4
), we have that

𝑒
(1,1)

(𝑦
1
𝑦
2
, 𝑦
3
𝑦
4
) is equal to 𝑥

13
𝑥
14

𝑥
21

𝑥
22

+ 𝑥
21

𝑥
22

𝑥
33

𝑥
34

+

𝑥
23

𝑥
24

𝑥
31

𝑥
32

+𝑥
11

𝑥
12

𝑥
33

𝑥
34

+𝑥
13

𝑥
14

𝑥
31

𝑥
32

+𝑥
11

𝑥
12

𝑥
23

𝑥
24
and

𝑒
(2,1)

(𝑦
1
𝑦
2
, 𝑦
3
𝑦
4
)=𝑥

11
𝑥
12

𝑥
21

𝑥
22

𝑥
33

𝑥
34

+𝑥
11

𝑥
12

𝑥
23

𝑥
24

𝑥
31

𝑥
32

+

𝑥
13

𝑥
14

𝑥
21

𝑥
22

𝑥
31

𝑥
32
.

Example 3. For 𝑝 = (𝑦
1
, . . . , 𝑦

𝑑
) and 𝛼 ∈ N𝑑 with |𝛼| ∈ [𝑛],

the multisymmetric functions 𝑒
𝛼
(𝑦
1
, . . . , 𝑦

𝑑
) are the elemen-

tary multisymmetric functions defined in Introduction.

Next couple of lemmas follow directly from Definition 1.

Lemma 4. Let 𝛼 ∈ N𝑎 be such that |𝛼| ≤ 𝑛 and let 𝑝 =

(𝑝
1
, . . . , 𝑝

𝑎
) ∈ K[𝑦

1
, . . . , 𝑦

𝑑
]
𝑎. The multisymmetric function

𝑒
𝛼
(𝑝) is given by the combinatorial identity

𝑒
𝛼

(𝑝) = ∑

𝑐

𝑎

∏

𝑙=1

∏

𝑖∈𝑐
𝑙

𝑝
𝑙
(𝑖) , (19)

where 𝑐 = (𝑐
1
, . . . , 𝑐

𝑎
) is a tuple of disjoint subsets of [𝑛], with

|𝑐| = (|𝑐
1
|, . . . , |𝑐

𝑎
|) = 𝛼.

Recall that the symmetrization map K[(K𝑑)
𝑛

] →

K[(K𝑑)
𝑛

]
𝑆
𝑛 sends 𝑓 to

∑

𝜎∈𝑆
𝑛

𝑓 ∘ 𝜎, (20)

where one regards 𝜎 ∈ 𝑆
𝑛
as a map 𝜎 : (K𝑑)

𝑛

→ (K𝑑)
𝑛.

Lemma 5. Let 𝛼 ∈ N𝑎 be such that |𝛼| ≤ 𝑛 and 𝑝 =

(𝑝
1
, . . . , 𝑝

𝑎
) ∈ K[𝑦

1
, . . . , 𝑦

𝑑
]
𝑎. The multisymmetric function

𝑒
𝛼
(𝑝) is the symmetrization of the polynomial

𝑝
1

(1) ⋅ ⋅ ⋅ 𝑝
1

(𝛼
1
) ⋅ ⋅ ⋅ 𝑝

𝑖
(

𝑖−1

∑

𝑙=1

𝛼
𝑙
+ 1) ⋅ ⋅ ⋅ 𝑝

𝑖
(

𝑖

∑

𝑙=1

𝛼
𝑙
)

⋅ ⋅ ⋅ 𝑝
𝑎

(

𝑎−1

∑

𝑙=1

𝛼
𝑙
+ 1) ⋅ ⋅ ⋅ 𝑝

𝑎
(

𝑎

∑

𝑙=1

𝛼
𝑙
) .

(21)

Lemma6. Let𝑝 = (𝑝
1
, . . . , 𝑝

𝑎
) ∈ K[𝑦

1
, . . . , 𝑦

𝑑
]
𝑎 be expanded

in monomials as

𝑝
1

= ∑

𝑗
1
∈[𝑘
1
]

𝑐
1𝑗
1

𝑚
1𝑗
1

, . . . , 𝑝
𝑎

= ∑

𝑗
𝑎
∈[𝑘
𝑎
]

𝑐
𝑎𝑗
𝑎

𝑚
𝑎𝑗
𝑎

. (22)

Then

𝑒
𝛼

(𝑝) = ∑

𝛽∈N|𝑘|, 𝑟(𝛽)=𝛼

𝑒
𝛽

(𝑚) 𝑐
𝛽

, (23)

where 𝑚 = (𝑚
11

, . . . , 𝑚
1𝑘
1

, . . . , 𝑚
𝑎1

, . . . , 𝑚
𝑎𝑗
𝑎

), 𝑐 = (𝑐
11

, . . . ,

𝑐
1𝑘
1

, . . . , 𝑐
𝑎1

, . . . , 𝑐
𝑎𝑘
𝑎

), and for 𝛽 = (𝛽
11

, . . . , 𝛽
1𝑘
1

, . . . , 𝛽
𝑎1

, . . . ,

𝛽
𝑎𝑘
𝑎

) ∈ N|𝑘| we set

𝑟 (𝛽) = (𝛽
11

+ ⋅ ⋅ ⋅ + 𝛽
1𝑘
1

, . . . , 𝛽
𝑎1

+ ⋅ ⋅ ⋅ + 𝛽
𝑎𝑘
𝑎

) . (24)

Proof. Let |𝑘| = 𝑘
1

+ ⋅ ⋅ ⋅ + 𝑘
𝑎
and 𝑐𝑡 = (𝑐

11
𝑡
1
, . . . , 𝑐

1𝑘
1

𝑡
1
,

. . . , 𝑐
𝑎1

𝑡
1
, . . . , 𝑐

𝑎𝑘
𝑎

𝑡
𝑎
). Then

∑

𝛼∈N𝑎 , |𝛼|≤𝑛

𝑒
𝛼

(𝑝) 𝑡
𝛼

=

𝑛

∏

𝑖=1

(1 + ∑

𝑗
1
∈[𝑘
1
]

𝑐
1𝑗
1

𝑚
1𝑗
1

(𝑖) 𝑡
1

+ ⋅ ⋅ ⋅ + ∑

𝑗
𝑎
∈[𝑘
𝑎
]

𝑐
𝑎𝑗
𝑎

𝑚
𝑎𝑗
𝑎

(𝑖) 𝑡
𝑎
)

= ∑

𝛽∈N|𝑘|, |𝛽|≤𝑛

𝑒
𝛽

(𝑚) (𝑐𝑡)
𝛽

= ∑

𝛽∈N|𝑘|, |𝛽|≤𝑛

𝑒
𝛽

(𝑚) 𝑐
𝛽

𝑡
𝑟(𝛽)

.

(25)

Thus we get

𝑒
𝛼

(𝑝) = ∑

𝛽∈N|𝑘|, 𝑟(𝛽)=𝛼

𝑒
𝛽

(𝑚) 𝑐
𝛽

. (26)

The following result according to Vaccarino [4] provides
an explicit formula for the product of multisymmetric func-
tions. We include the proof since the same technique carries
over to the more involved quantum case.

Theorem 7. Fix 𝑎, 𝑏, 𝑛 ∈ N+, 𝑝 ∈ K[𝑦
1
, . . . , 𝑦

𝑑
]
𝑎, and 𝑞 ∈

K[𝑦
1
, . . . , 𝑦

𝑑
]
𝑏. Let𝛼 ∈ N𝑎 and𝛽 ∈ N𝑏 be such that |𝛼|, |𝛽| ≤ 𝑛.

Then one has

𝑒
𝛼

(𝑝) 𝑒
𝛽

(𝑞) = ∑

𝛾∈𝐿(𝛼,𝛽,𝑛)

𝑒
𝛾

(𝑝, 𝑞, 𝑝𝑞) , 𝑤ℎ𝑒𝑟𝑒: (27)

(i) (𝑝, 𝑞, 𝑝𝑞) = (𝑝
1
, . . . , 𝑝

𝑎
, 𝑞
1
, . . . , 𝑞

𝑏
, 𝑝
1
𝑞
1
, . . .,𝑝

1
𝑞
𝑏
, . . . ,

𝑝
𝑎
𝑞
1
, . . ., 𝑝

𝑎
𝑞
𝑏
),

(ii) 𝐿(𝛼, 𝛽, 𝑛) is the set of matrices 𝛾 ∈ Map([0, 𝑎] ×

[0, 𝑏],N) such that

𝛾
00

= 0,
󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨

=

𝑎

∑

𝑙=0

𝑏

∑

𝑟=0

𝛾
𝑙𝑟

≤ 𝑛,

𝑏

∑

𝑟=0

𝛾
𝑙𝑟

= 𝛼
𝑙

for 𝑙 ∈ [𝑎] ,

𝑎

∑

𝑙=0

𝛾
𝑙𝑟

= 𝛽
𝑟

for 𝑟 ∈ [𝑏] .

(28)
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Proof. Identify the matrix 𝛾 with the vector
𝛾 = (0, 𝛾

01
, . . . , 𝛾

0𝑏
, 𝛾
10

, . . . , 𝛾
𝑎0

, 𝛾
20

, . . . , 𝛾
2𝑏

, . . . , 𝛾
𝑎0

, . . . , 𝛾
𝑎𝑏

) .

(29)
We have that

∑

|𝛼|, |𝛽|≤𝑛

𝑒
𝛼

(𝑝) 𝑒
𝛽

(𝑞) 𝑡
𝛼

𝑠
𝛽

(30)

is equal to

= ( ∑

|𝛼|≤𝑛

𝑒
𝛼

(𝑝) 𝑡
𝛼

) ( ∑

|𝛽|≤𝑛

𝑒
𝛽

(𝑞) 𝑠
𝛽

)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
)

𝑛

∏

𝑖=1

(1 +

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
) (1 +

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

𝑝
𝑙
(𝑖) 𝑞

𝑟
(𝑖) 𝑡

𝑙
𝑠
𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑤

𝑙0
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑗) 𝑤

0𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

𝑝
𝑙
(𝑖) 𝑞

𝑟
(𝑖) 𝑤

𝑙𝑟
)

= ∑

𝛾

𝑒
𝛾

(𝑝, 𝑞, 𝑝𝑞) 𝑤
𝛾

,

(31)

where for 𝛾 ∈ 𝐿(𝛼, 𝛽, 𝑛) we set

𝑤
𝛾

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

𝑤
𝛾
𝑙𝑟

𝑙𝑟
=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

(𝑡
𝑙
𝑠
𝑟
)
𝛾
𝑙𝑟

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

𝑡
𝛾
𝑙𝑟

𝑙
𝑠
𝛾
𝑙𝑟

𝑟
, (32)

using the conventions
𝑡
0

= 𝑠
0

= 1, 𝑤
𝑙𝑟

= 𝑡
𝑙
𝑠
𝑟

for 𝑙, 𝑟 ≥ 0. (33)

For 𝑤
𝛾 to be equal to 𝑡

𝛼

𝑠
𝛽 we must have

𝑤
𝛾

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

𝑡
𝛾
𝑙𝑟

𝑙
𝑠
𝛾
𝑙𝑟

𝑟
= (

𝑎

∏

𝑙=1

𝑡
∑
𝑏

𝑟=0
𝛾
𝑙𝑟

𝑙
) (

𝑏

∏

𝑟=1

𝑠
∑
𝑎

𝑙=0
𝛾
𝑙𝑟

𝑟
)

= (

𝑎

∏

𝑙=1

𝑡
𝛼
𝑙

𝑙
) (

𝑏

∏

𝑘=1

𝑠
𝛽
𝑟

𝑟
) .

(34)

Thus we conclude that
𝑏

∑

𝑟=0

𝛾
𝑙𝑟

= 𝛼
𝑙

for 𝑙 ∈ [𝑎] ,

𝑎

∑

𝑙=0

𝛾
𝑙𝑟

= 𝛽
𝑟

for 𝑟 ∈ [𝑏] .

(35)

Graphically, a matrix 𝛾 ∈ 𝐿(𝛼, 𝛽, 𝑛) is represented as

0 𝛾
01

𝛾
02

𝛾
03

⋅ ⋅ ⋅ 𝛾
0𝑏

𝛾
10

𝛾
11

𝛾
12

𝛾
13

⋅ ⋅ ⋅ 𝛾
1𝑏

󳨀→ 𝛼
1

𝛾
20

𝛾
21

𝛾
22

𝛾
23

⋅ ⋅ ⋅ 𝛾
2𝑏

󳨀→ 𝛼
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝛾
𝑎0

𝛾
𝑎1

𝛾
𝑎2

𝛾
𝑎3

⋅ ⋅ ⋅ 𝛾
𝑎𝑏

󳨀→ 𝛼
𝑎

↓ ↓ ↓ ↓

𝛽
1

𝛽
2

𝛽
3

⋅ ⋅ ⋅ 𝛽
𝑏
,

(36)

where the horizontal and vertical arrows represent, respec-
tively, row and column sums.

Example 8. For 𝑛 = 3, 𝑝 = (𝑦
1
𝑦
2
, 𝑦
1
), and 𝑞 = (𝑦

1
𝑦
2
, 𝑦
3
) we

have

𝑒
(1,1)

(𝑦
1
𝑦
2
, 𝑦
1
) 𝑒
(2,1)

(𝑦
1
𝑦
2
, 𝑦
3
)

= ∑

𝛾

𝑒
𝛾

(𝑦
1
𝑦
2
, 𝑦
1
, 𝑦
1
𝑦
2
, 𝑦
3
, 𝑦
2

1
𝑦
2

2
, 𝑦
1
𝑦
2
𝑦
3
, 𝑦
2

1
𝑦
2
, 𝑦
1
𝑦
3
) ,

(37)

where 𝛾 = (𝛾
10

, 𝛾
20

, 𝛾
01

, 𝛾
02

, 𝛾
11

, 𝛾
12

, 𝛾
21

, 𝛾
22

) ∈ N8 is such that
|𝛾| ≤ 3 and

𝛾
10

+ 𝛾
11

+ 𝛾
12

= 1, 𝛾
20

+ 𝛾
21

+ 𝛾
22

= 1,

𝛾
01

+ 𝛾
11

+ 𝛾
21

= 2, 𝛾
02

+ 𝛾
12

+ 𝛾
22

= 1.

(38)

Looking at the solutions inN of the system of linear equations
above we obtain

𝑒
(1,1)

(𝑦
1
𝑦
2
, 𝑦
1
) 𝑒
(2,1)

(𝑦
1
𝑦
2
, 𝑦
3
)

= 𝑒
(1,1,1)

(𝑦
3
, 𝑦
2

1
𝑦
2

2
, 𝑦
2

1
𝑦
2
) + 𝑒

(1,1,1)
(𝑦
1
𝑦
2
, 𝑦
1
𝑦
2
𝑦
3
, 𝑦
2

1
𝑦
2
)

+ 𝑒
(1,1,1)

(𝑦
1
𝑦
2
, 𝑦
2

1
𝑦
2

2
, 𝑦
1
𝑦
3
) .

(39)

Example 9. For 𝑛 = 4, 𝑝 = (𝑦
2

1
𝑦
2
, 𝑦
3

2
𝑦
3
, 𝑦
1
𝑦
2
𝑦
3
), and 𝑞 =

(𝑦
3

1
𝑦
2

2
𝑦
3
, 𝑦
2

1
𝑦
3
, 𝑦
2
𝑦
3
) we have

𝑒
(1,1,1)

(𝑦
2

1
𝑦
2
, 𝑦
3

2
𝑦
3
, 𝑦
1
𝑦
2
𝑦
3
) 𝑒
(1,2,1)

(𝑦
3

1
𝑦
2

2
𝑦
3
, 𝑦
2

1
𝑦
3
, 𝑦
2
𝑦
3
)

= ∑

𝛾

𝑒
𝛾

(𝑦
2

1
𝑦
2
, 𝑦
3

2
𝑦
3
, 𝑦
1
𝑦
2
𝑦
3
, 𝑦
3

1
𝑦
2

2
𝑦
3
, 𝑦
2

1
𝑦
3
, 𝑦
2
𝑦
3
,

𝑦
5

1
𝑦
3

2
, 𝑦
4

1
𝑦
2
𝑦
3
, 𝑦
2

1
𝑦
2

2
𝑦
3
, 𝑦
3

1
𝑦
5

2
𝑦
2

3
, 𝑦
4

2
𝑦
2

3
, 𝑦
1
𝑦
4

2
𝑦
3
,

𝑦
4

1
𝑦
3

2
𝑦
2

3
, 𝑦
3

1
𝑦
2
𝑦
2

3
, 𝑦
2

1
𝑦
2

2
𝑦
3
) ,

(40)
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where 𝛾 = (𝛾
10
, 𝛾
20
, 𝛾
30
, 𝛾
01
, 𝛾
02
, 𝛾
03
, 𝛾
11
, 𝛾
12
, 𝛾
13
, 𝛾
21

, 𝛾
22
, 𝛾
23
,

𝛾
31
, 𝛾
32
, 𝛾
33

) ∈ N15 is such that |𝛾| ≤ 4 and

𝛾
10

+ 𝛾
11

+ 𝛾
12

+ 𝛾
13

= 1, 𝛾
20

+ 𝛾
21

+ 𝛾
22

+ 𝛾
23

= 1,

𝛾
30

+ 𝛾
31

+ 𝛾
32

+ 𝛾
33

= 1, 𝛾
01

+ 𝛾
11

+ 𝛾
21

+ 𝛾
31

= 1,

𝛾
02

+ 𝛾
12

+ 𝛾
22

+ 𝛾
32

= 2, 𝛾
03

+ 𝛾
13

+ 𝛾
23

+ 𝛾
33

= 1.

(41)

Looking at the solutions inN of the system of linear equations
above we obtain

𝑒
(1,1,1)

(𝑦
2

1
𝑦
2
, 𝑦
3

2
𝑦
3
, 𝑦
1
𝑦
2
𝑦
3
) 𝑒
(1,2,1)

(𝑦
3

1
𝑦
2

2
𝑦
3
, 𝑦
2

1
𝑦
3
, 𝑦
2
𝑦
3
)

= 𝑒
(1,1,1,1)

(𝑦
2
𝑦
3
, 𝑦
4

1
𝑦
2
𝑦
3
, 𝑦
4

2
𝑦
2

3
, 𝑦
1
𝑦
2
𝑦
3
)

+ 𝑒
(1,1,1,1)

(𝑦
2
𝑦
3
, 𝑦
4

1
𝑦
2
𝑦
3
, 𝑦
3

1
𝑦
5

2
𝑦
2

3
, 𝑦
3

1
𝑦
2
𝑦
2

3
)

+ 𝑒
(1,1,1,1)

(𝑦
2
𝑦
3
, 𝑦
5

1
𝑦
3

2
, 𝑦
4

2
𝑦
2

3
, 𝑦
3

1
𝑦
2
𝑦
2

3
)

+ 𝑒
(1,1,1,1)

(𝑦
2

1
𝑦
3
, 𝑦
2

1
𝑦
2

2
𝑦
3
, 𝑦
4

2
𝑦
2

3
, 𝑦
4

1
𝑦
3

2
𝑦
2

3
)

+ 𝑒
(1,1,1,1)

(𝑦
2

1
𝑦
3
, 𝑦
2

1
𝑦
2

2
𝑦
3
, 𝑦
3

1
𝑦
5

2
𝑦
2

3
, 𝑦
3

1
𝑦
2
𝑦
2

3
)

+ 𝑒
(1,1,1,1)

(𝑦
2

1
𝑦
3
, 𝑦
4

1
𝑦
2
𝑦
3
, 𝑦
1
𝑦
4

2
𝑦
3
, 𝑦
4

1
𝑦
3

2
𝑦
2

3
)

+ 𝑒
(1,1,1,1)

(𝑦
2

1
𝑦
3
, 𝑦
4

1
𝑦
2
𝑦
3
, 𝑦
3

1
𝑦
5

2
𝑦
2

3
, 𝑦
2

1
𝑦
2

2
𝑦
3
)

+ 𝑒
(1,1,1,1)

(𝑦
2

1
𝑦
3
, 𝑦
5

1
𝑦
3

2
, 𝑦
1
𝑦
4

2
𝑦
3
, 𝑦
3

1
𝑦
2
𝑦
2

3
)

+ 𝑒
(1,1,1,1)

(𝑦
2

1
𝑦
3
, 𝑦
5

1
𝑦
3

2
, 𝑦
4

2
𝑦
2

3
, 𝑦
2

1
𝑦
2

2
𝑦
3
)

+ 𝑒
(1,1,1,1)

(𝑦
3

1
𝑦
2

2
𝑦
3
, 𝑦
2

1
𝑦
2

2
𝑦
3
, 𝑦
4

2
𝑦
2

3
, 𝑦
3

1
𝑦
2
𝑦
2

3
)

+ 𝑒
(1,1,1,1)

(𝑦
3

1
𝑦
2

2
𝑦
3
, 𝑦
4

1
𝑦
2
𝑦
3
, 𝑦
1
𝑦
3

2
𝑦
2

3
, 𝑦
2

1
𝑦
2

2
𝑦
3
)

+ 𝑒
(1,1,1,1)

(𝑦
3

1
𝑦
2

2
𝑦
3
, 𝑦
4

1
𝑦
2
𝑦
3
, 𝑦
3

2
𝑦
2

3
, 𝑦
2

1
𝑦
2

2
𝑦
3
) .

(42)

3. Review of Deformation Quantization

In this section we review a few needed notions on defor-
mation quantization. We assume the reader to be somewhat
familiar with Kontsevich’s work [7], although that level of
generality is not necessary to understand the applications to
the quantization of canonical phase space. A Poisson bracket
[8, 9] on a smooth manifold 𝑀 is aR-bilinear antisymmetric
map

{ , } : 𝐶
∞

(𝑀) × 𝐶
∞

(𝑀) 󳨀→ 𝐶
∞

(𝑀) , (43)

where 𝐶
∞

(𝑀) is the space of real-valued smooth functions
on 𝑀, and for 𝑓, 𝑔, ℎ ∈ 𝐶

∞

(𝑀) the following identities hold:

{𝑓, 𝑔ℎ} = {𝑓, 𝑔} ℎ + 𝑔 {𝑓, ℎ} ,

{𝑓, {𝑔, ℎ}} = {{𝑓, 𝑔} , ℎ} + {𝑔, {𝑓, ℎ}} .

(44)

A manifold equipped with a Poisson bracket is called a
Poisson manifold. The Poisson bracket { , } is determined

by an antisymmetric bilinear form 𝛼 on 𝑇
∗

𝑀, that is, by
the Poisson bivector 𝛼 ∈ ⋀

2

𝑇𝑀 given in local coordinates
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
) on 𝑀 by

𝛼
𝑖𝑗

= {𝑥
𝑖
, 𝑥
𝑗
} . (45)

The bivector 𝛼 determines the Poisson bracket as follows:

{𝑓, 𝑔} = 𝛼 (𝑑𝑓, 𝑑𝑔) = ∑

𝑖,𝑗∈[𝑑]

𝛼
𝑖𝑗

𝜕𝑓

𝜕𝑥
𝑖

𝜕𝑔

𝜕𝑥
𝑗

, for 𝑓, 𝑔 ∈ 𝐶
∞

(𝑀) .

(46)

If the Poisson bivector 𝛼
𝑖𝑗
is nondegenerated (i.e., det(𝛼

𝑖,𝑗
) ̸=

0) the Poisson manifold 𝑀 is called symplectic.

Example 10. The space R2𝑑 is a symplectic Poisson man-
ifold with Poisson bracket given in the linear coordinates
(𝑥
1
, . . . , 𝑥

𝑑
, 𝑦
1
, . . . , 𝑦

𝑑
) by

{𝑓, 𝑔} =

𝑑

∑

𝑖=1

(

𝜕𝑓

𝜕𝑥
𝑖

𝜕𝑔

𝜕𝑦
𝑖

−

𝜕𝑓

𝜕𝑦
𝑖

𝜕𝑔

𝜕𝑥
𝑖

) , for 𝑓, 𝑔 ∈ 𝐶
∞

(R
2𝑑

) .

(47)

Equivalently, the Poisson bracket { , } on 𝐶
∞

(R2𝑑) is deter-
mined by the identities

{𝑥
𝑖
, 𝑥
𝑗
} = 0, {𝑦

𝑖
, 𝑦
𝑗
} = 0, {𝑥

𝑖
, 𝑦
𝑗
} = 𝛿

𝑖𝑗
, for 𝑖, 𝑗 ∈ [𝑑] .

(48)

This example is the so-called canonical phase space with 𝑛

degrees of freedom.

Example 11. Let (g, [ , ]) be Lie algebra over R of dimension
𝑑.The dual vector space g∗ is a Poissonmanifoldwith Poisson
bracket given on 𝑓, 𝑔 ∈ 𝐶

∞

(g∗) by

{𝑓, 𝑔} (𝛼) = ⟨𝛼, [𝑑
𝛼
𝑓, 𝑑

𝛼
𝑔]⟩ , (49)

where 𝛼 ∈ g∗ and the differentials 𝑑
𝛼
𝑓 and 𝑑

𝛼
𝑔 are

regarded as elements of g via the identifications 𝑇
∗

𝛼
g∗ =

g∗∗ = g. Choose a linear basis 𝑒
1
, . . . , 𝑒

𝑑
for g. The structural

coefficients 𝑐
𝑘

𝑖𝑗
of g are given, for 𝑖, 𝑗, 𝑘 ∈ [𝑑], by

[𝑒
𝑖
, 𝑒
𝑗
] =

𝑑

∑

𝑘=1

𝑐
𝑘

𝑖𝑗
𝑒
𝑘
. (50)

Let (𝑥
1
, . . . , 𝑥

𝑑
) be the linear system of coordinates on g∗

relative to the basis 𝑒
1
, . . . , 𝑒

𝑑
of g. The Poisson bracket is

determined by continuity and the identities

{𝑥
𝑖
, 𝑥
𝑗
} =

𝑑

∑

𝑘=1

𝑐
𝑘

𝑖𝑗
𝑥
𝑘
. (51)

A formal deformation, or deformation quantization, of a
Poisson manifold 𝑀 is an associative product, called the star
product,

⋆ : 𝐶
∞

(𝑀) [[ℏ]] ⊗R[[ℏ]]𝐶
∞

(𝑀) [[ℏ]] 󳨀→ 𝐶
∞

(𝑀) [[ℏ]] ,

(52)

defined on the space 𝐶
∞

(𝑀)[[ℏ]] of formal power series in ℏ

with coefficients in𝐶
∞

(𝑀) such that the following conditions
hold for 𝑓, 𝑔 ∈ 𝐶

∞

(𝑀):
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(i) 𝑓 ⋆ 𝑔 = ∑
∞

𝑛=0
𝐵
𝑛
(𝑓, 𝑔)ℏ

𝑛, where the maps
𝐵
𝑛

( , ) : 𝐶
∞

(𝑀) × 𝐶
∞

(𝑀) 󳨀→ 𝐶
∞

(𝑀) (53)

are bidifferential operators.
(ii) 𝑓 ⋆ 𝑔 = 𝑓𝑔 + (1/2){𝑓, 𝑔}ℏ + 𝑂(ℏ

2

), where 𝑂(ℏ
2

) stand
for terms of order 2 and higher in the variable ℏ.

Kontsevich in [7] constructed a ⋆-product for any finite
dimensional Poisson manifold. For linear Poisson manifolds
the Kontsevich ⋆-product goes as follows. Fix a Poisson
manifold (R𝑑, 𝛼); the Kontsevich⋆-product is given on𝑓, 𝑔 ∈

𝐶
∞

(𝑀) by

𝑓 ⋆ 𝑔 =

∞

∑

𝑛=0

𝐵
𝑛

(𝑓, 𝑔)

ℏ
𝑛

𝑛!

=

∞

∑

𝑛=0

( ∑

Γ∈G
𝑛

𝜔
Γ
𝐵
Γ

(𝑓, 𝑔))

ℏ
𝑛

𝑛!

, where

(54)

(i) G
𝑛
is a collection of graphs, called admissible graphs,

each with 2𝑛 edges;
(ii) for each graph Γ ∈ G

𝑛
, the constant 𝜔

Γ
∈ R is

independent of 𝑑 and 𝛼 and it is computed through
an integral in an appropriated configuration space;

(iii) 𝐵
Γ
( , ) : 𝐶

∞

(R𝑑) × 𝐶
∞

(R𝑑) → 𝐶
∞

(R𝑑) is
a bidifferential operator associated with the graph
Γ ∈ G

𝑛
and the Poisson bivector 𝛼. The definition

of the operators 𝐵
Γ
( , ) is quite explicit and fairly

combinatorial in nature.

Remark 12. Kontsevich himself has highlighted the fact that
explicitly computing the integrals defining the constants
𝜔
Γ
is a daunting task currently beyond reach. One can

however use the symbols 𝜔
Γ
as variables, and they will

define a deformation quantization (with an extended ring of
constants) as soon as these variables satisfy a certain system
of quadratic equations [10].

We are going to use the Kontsevich⋆-product in a slightly
modified form

Let G =

∞

∐

𝑛=0

G
𝑛
, for Γ ∈ G, set Γ = 𝑛 iff Γ ∈ G

𝑛
. (55)

With this notation the Kontsevich ⋆-product is given on
functions 𝑓, 𝑔 ∈ 𝐶

∞

(R𝑑) by

𝑓 ⋆ 𝑔 = ∑

Γ∈G

𝜔
Γ

Γ!

𝐵
Γ

(𝑓, 𝑔) ℏ
Γ

. (56)

Remark 13. The Kontsevich ⋆-product is defined over R

since 𝑐
Γ

∈ R. If 𝛼 is a regular Poisson bivector, that is, the
entries 𝛼

𝑖𝑗
of the Poisson bivector are polynomial functions,

then the ⋆-product on 𝐶
∞

(R𝑑) is restricted to a well-
defined ⋆-product on the space R[𝑥

1
, . . . , 𝑥

𝑑
] of polynomial

functions on R𝑑. We are interested in the quantization of
symmetric polynomial functions; thus we assume that 𝛼 is
a regular Poisson bivector and work with quantum algebra
(R[𝑥

1
, . . . , 𝑥

𝑑
], ⋆).

4. Quantum Symmetric Functions

Let 𝑆
𝑛
be the symmetric group on 𝑛 letters. For each subgroup

𝐾 ⊆ 𝑆
𝑛
, consider the Polya functor 𝑃

𝐾
: R-alg → R-alg

from the category of associative R-algebras to itself, defined
on objects as follows [10]. Let 𝐴 beR-algebra; the underlying
vector space of 𝑃

𝐾
𝐴 is given by

𝑃
𝐾

𝐴 = (𝐴
⊗𝑛

)
𝐾

=

𝐴
⊗𝑛

⟨𝑎
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑎
𝑛

− 𝑎
𝜎1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑎
𝜎𝑛

| 𝑎
𝑖
∈ 𝐴, 𝜎 ∈ 𝐾⟩ .

(57)

Elements of 𝑃
𝐾

𝐴 are written as 𝑎
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑎
𝑛
. For 𝑎

𝑖𝑗
∈ 𝐴, the

following identity determines the product on 𝑃
𝐾

𝐴:

|𝐾|
𝑚−1

𝑚

∏

𝑖=1

(

𝑛

⨂

𝑗=1

𝑎
𝑖𝑗
) = ∑

𝜎∈{1}×𝐾
𝑚−1

𝑛

⨂

𝑗=1

(

𝑚

∏

𝑖=1

𝑎
𝑖𝜎
−1

𝑖
(𝑗)

). (58)

The Polya functor 𝑃
𝐾

is also known as the coinvariants
functor. The invariants functor

𝐼
𝐾

: R-alg 󳨀→ R-alg,

𝐴 󳨀→ (𝐴
⊗𝑛

)

𝐾

(59)

is given on objects by

(𝐴
⊗𝑛

)

𝐾

= {𝑎 ∈ 𝐴
⊗𝑛

| 𝑔𝑎 = 𝑎 for 𝑔 ∈ 𝐾} . (60)

The product on (𝐴
⊗𝑛

)
𝐾 comes from the inclusion (𝐴

⊗𝑛

)
𝐾

⊂

𝐴
⊗𝑛.
The functors 𝐼

𝐾 and 𝑃
𝐾
are naturally isomorphic to each

other [10].
Suppose a finite group 𝐾 acts on a Poisson manifold

𝑀 and that the induced action of 𝐾 on (𝐶
∞

(𝑀)[[ℏ]], ⋆)

is by algebra automorphisms; then we define the algebra of
quantum 𝐾-symmetric functions on 𝑀 as

(𝐶
∞

(𝑀) [[ℏ]] , ⋆)
𝐾

≃ (𝐶
∞

(𝑀) [[ℏ]] , ⋆)
𝐾

. (61)

Let (R𝑑, 𝛼) be a regular Poisson manifold. The Cartesian
product of Poisson manifolds is naturally endowed with
the structure of a Poisson manifold; thus we get a regular
Poisson manifold structure on (R𝑑)

𝑛. We use the following
coordinates on the 𝑛-fold Cartesian product ofR𝑑 with itself:

(R
𝑑

)

𝑛

= {(𝑥
1
, . . . , 𝑥

𝑛
) | 𝑥

𝑖
= (𝑥

𝑖1
, . . . , 𝑥

𝑖𝑑
) ∈ R

𝑑

,

𝑥
𝑖𝑗

∈ R, (𝑖, 𝑗) ∈ [𝑛] × [𝑑]} .

(62)

The ring of regular functions on (R𝑑)
𝑛 is the ring of polyno-

mials on 𝑑𝑛 commutative variables:

R [(R
𝑑

)

𝑛

] = R [𝑥
11

, . . . , 𝑥
1𝑑

, . . . , 𝑥
𝑛1

, . . . , 𝑥
𝑛𝑑

] . (63)

Consider another set of commutative variables 𝑦
1
, . . . , 𝑦

𝑑
.

Recall from Section 2 that for 𝑓 ∈ R[𝑦
1
, . . . , 𝑦

𝑑
] and 𝑖 ∈ [𝑛]

we set 𝑓(𝑖) = 𝑓(𝑥
𝑖1

, . . . , 𝑥
𝑖𝑑

) ∈ R[𝑥
𝑖1

, . . . , 𝑥
𝑖𝑑

] ⊆ R[(R𝑑)
𝑛

].
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The Poisson bracket on (R𝑑)
𝑛 is determined by the

following identities:

{𝑥
𝑘𝑖

, 𝑥
𝑙𝑗
} = 𝛿

𝑘𝑙
𝛼
𝑖𝑗

(𝑘) , for 𝑖, 𝑗 ∈ [𝑑] , 𝑘, 𝑙 ∈ [𝑛] , (64)

where the coordinates𝛼
𝑖𝑗
of the Poisson bivector𝛼 = ∑ 𝛼

𝑖𝑗
𝜕
𝑖
∧

𝜕
𝑗
are regarded as polynomials in R[𝑦

1
, . . . , 𝑦

𝑛
]. The Poisson

bracket on (R𝑑)
𝑛 is 𝑆

𝑛
-invariant; indeed for 𝜎 ∈ 𝑆

𝑛
we have

{𝑥
𝜎𝑘𝑖

, 𝑥
𝜎𝑙𝑗

} = 𝛿
𝜎𝑘,𝜎𝑙

𝛼
𝑖𝑗

(𝜎𝑘) = 𝜎 (𝛿
𝑘𝑙

𝛼
𝑖𝑗

(𝑘)) . (65)

Next results [10] provide a natural construction of
groups acting as algebra automorphisms on the algebras
(R[R𝑑][[ℏ]], ⋆).

Theorem 14. Let (R𝑑, { , }) be a regular Poissonmanifold and
let 𝐾 be a subgroup of 𝑆

𝑑
such that the Poisson bracket { , } is

𝐾-equivariant. Then the action of 𝐾 on (R[R𝑑][[ℏ]], ⋆) is by
algebra automorphisms.

Corollary 15. Let (R𝑑, { , }) be a regular Poisson manifold
and consider a subgroup 𝐾 ⊆ 𝑆

𝑛
. Then 𝐾 acts by algebra

automorphisms on (R[(R𝑑)
𝑛

][[ℏ]], ⋆).

Definition 16. Let (R𝑑, { , }) be a regular Poisson manifold.
The algebra of quantum symmetric functions on (R𝑑)

𝑛 is
given by

(R [(R
𝑑

)

𝑛

] [[ℏ]] , ⋆)

𝑆
𝑛

≃ (R [(R
𝑑

)

𝑛

] [[ℏ]] , ⋆)

𝑆
𝑛

. (66)

Example 17. Consider R2𝑑 with its canonical symplectic
Poisson structure; then (R2𝑑)

𝑛 is also a symplectic Poisson
manifold. Choose coordinates on (R2𝑑)

𝑛 as follows:

(R
2𝑑

)

𝑛

= {(𝑥
1
, 𝑦
1
, . . . , 𝑥

𝑛
, 𝑦
𝑛
) | 𝑥

𝑖
= (𝑥

𝑖1
, . . . , 𝑥

𝑖𝑑
) ,

𝑦
𝑖
= (𝑦

𝑖1
, . . . , 𝑦

𝑖𝑑
) ,

𝑥
𝑖𝑗
, 𝑦
𝑖𝑗

∈ R} .

(67)

The 𝑆
𝑛
-invariant Poisson bracket on (R2𝑑)

𝑛 is given for 𝑖, 𝑗 ∈

[𝑑] and 𝑘, 𝑙 ∈ [𝑛] by

{𝑥
𝑘𝑖

, 𝑥
𝑙𝑗
} = 0, {𝑦

𝑘𝑖
, 𝑦
𝑙𝑗
} = 0, {𝑥

𝑘𝑖
, 𝑦
𝑙𝑗
} = 𝛿

𝑘𝑙
𝛿
𝑖𝑗
.

(68)

Example 18. Let g be 𝑑-dimensional Lie algebra over R

and let g∗ be its dual vector space. Then g∗ is a Poisson
manifold, and therefore (g∗)

𝑛 is also a Poisson manifold. The
𝑆
𝑛
-invariant Poisson bracket on (g∗)

𝑛 is given, for 𝑖, 𝑗 ∈ [𝑑]

and 𝑘, 𝑙 ∈ [𝑛], by

{𝑥
𝑘𝑖

, 𝑥
𝑙𝑗
} = 𝛿

𝑘𝑙

𝑑

∑

𝑚=0

𝑐
𝑚

𝑖𝑗
𝑥
𝑘𝑚

, (69)

where 𝑐
𝑚

𝑖𝑗
are the structural coefficients of g.

Specializing Definition 16 we obtain the following natural
notions. The algebra of quantum symmetric functions on
(R2𝑑)

𝑛 is given by

(R [(R
2𝑑

)

𝑛

] [[ℏ]] , ⋆)

𝑆
𝑛

≃ (R [(R
2𝑑

)

𝑛

] [[ℏ]] , ⋆)

𝑆
𝑛

. (70)

More generally, the algebra of quantum symmetric functions
on (g∗)

𝑛 is given by

(R [(g
∗

)
𝑛

] [[ℏ]] , ⋆)
𝑆
𝑛

≃ (R [(g
∗

)
𝑛

] [[ℏ]] , ⋆)

𝑆
𝑛

. (71)

5. ⋆-Product of Multisymmetric Functions

We are ready to state and proof the main result of this work
which extends Theorem 7 from the classical to the quantum
case: we provide an explicit formula for the ⋆-product of
multisymmetric functions.

Recall that the ⋆-product can be expanded as a formal
power series in ℏ as

𝑓 ⋆ 𝑔 =

∞

∑

𝑛=0

𝐵
𝑛

(𝑓, 𝑔)

ℏ
𝑛

𝑛!

. (72)

Theorem 19. Let (R𝑑, { , }) be a regular Poissonmanifold and
let (R[(R𝑑)

𝑛

][[ℏ]], ⋆)
𝑆
𝑛 be the algebra of quantum symmetric

functions on (R𝑑)
𝑛. Fix 𝑎, 𝑏, 𝑛 ∈ N+, 𝑝 ∈ 𝑅[𝑦

1
, . . . , 𝑦

𝑑
]
𝑎, and

𝑞 ∈ 𝑅[𝑦
1
, . . . , 𝑦

𝑑
]
𝑏. Let 𝛼 ∈ N𝑎 and 𝛽 ∈ N𝑏 be such that

|𝛼|, |𝛽| ≤ 𝑛. The ⋆-product of 𝑒
𝛼
(𝑝) and 𝑒

𝛽
(𝑞) is given by

𝑒
𝛼

(𝑝) ⋆ 𝑒
𝛽

(𝑞)

=

∞

∑

𝑚=0

( ∑

𝛾∈𝑄(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝐵 (𝑝, 𝑞))) ℏ
𝑚

, 𝑤ℎ𝑒𝑟𝑒

(73)

(i) 𝐵(𝑝, 𝑞) = (𝑝, 𝑞, . . . , 𝐵
𝑘
(𝑝, 𝑞), . . .) and

𝐵
𝑘

(𝑝, 𝑞) = (𝐵
𝑘

(𝑝
1
, 𝑞
1
) , . . . , 𝐵

𝑘
(𝑝
1
, 𝑞
𝑏
) , . . . ,

𝐵
𝑘

(𝑝
𝑎
, 𝑞
1
) , . . . , 𝐵

𝑘
(𝑝
𝑎
, 𝑞
𝑏
)) ,

(74)

(ii) 𝑄(𝛼, 𝛽, 𝑛, 𝑚) is the subset ofMap([0, 𝑎] × [0, 𝑏] ×N,N)

consisting of cubical matrices

𝛾 : [0, 𝑎] × [0, 𝑏] × N 󳨀→ N 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (75)

(a) 𝛾
00𝑘

= 0 for 𝑘 ≥ 0; if either 𝑙 = 0 or 𝑟 = 0, then
𝛾
𝑙𝑟𝑘

= 0 for 𝑘 ≥ 1,
(b) |𝛾| = ∑

𝑎

𝑙=0
∑
𝑏

𝑟=0
∑
∞

𝑘=0
𝛾
𝑙𝑟𝑘

≤ 𝑛, and
∑
𝑎

𝑙=0
∑
𝑏

𝑟=0
∑
∞

𝑘=0
𝑘𝛾
𝑙𝑟𝑘

= 𝑚,

(c) ∑
𝑏

𝑟=0
∑
∞

𝑘=0
𝛾
𝑙𝑟𝑘

= 𝛼
𝑙
for 𝑙 ∈ [𝑎], and

∑
𝑎

𝑙=0
∑
∞

𝑘=0
𝛾l𝑟𝑘 = 𝛽

𝑟
for 𝑗 ∈ [𝑏].
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Proof. We have

∑

|𝛼|, |𝛽|≤𝑛

∞

∑

𝑚=0

𝐵
𝑚

(𝑒
𝛼

(𝑝) , 𝑒
𝛽

(𝑞)) 𝑡
𝛼

𝑠
𝛽

ℏ
𝑚

= ∑

|𝛼|, |𝛽|≤𝑛

(𝑒
𝛼

(𝑝) ⋆ 𝑒
𝛽

(𝑞)) 𝑡
𝛼

𝑠
𝛽

= ( ∑

|𝛼|≤𝑛

𝑒
𝛼

(𝑝) 𝑡
𝛼

) ⋆ ( ∑

|𝛽|≤𝑛

𝑒
𝛽

(𝑞) 𝑠
𝛽

)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
) ⋆

𝑛

∏

𝑖=1

(1 +

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
) ⋆ (1 +

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

𝑝
𝑙
(𝑖) ⋆ 𝑞

𝑟
(𝑖) 𝑡

𝑙
𝑠
𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

∞

∑

𝑘=0

𝐵
𝑘

(𝑝
𝑙
(𝑖) , 𝑞

𝑟
(𝑖)) 𝑡

𝑙
𝑠
𝑟
ℏ
𝑘

)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑤

𝑙00
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑤

0𝑟0

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

∞

∑

𝑘=0

𝐵
𝑘

(𝑝
𝑙
(𝑖) , 𝑞

𝑟
(𝑖)) 𝑤

𝑙𝑟𝑘
)

= ∑

𝛾∈𝑄(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝐵 (𝑝, 𝑞)) 𝑤
𝛾

, where:

𝑤
𝛾

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

𝑘=0

𝑤
𝛾
𝑙𝑟𝑘

𝑙𝑟𝑘
=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

𝑘=0

(𝑡
𝑙
𝑠
𝑟
ℏ
𝑘

)

𝛾
𝑙𝑟𝑘

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

𝑘=0

𝑡
𝛾
𝑙𝑟𝑘

𝑙
𝑠
𝛾
𝑙𝑟𝑘

𝑟
ℏ
𝑘𝛾
𝑙𝑟𝑘

,

(76)

and we are using the conventions

𝑡
0

= 𝑠
0

= 1, 𝑤
𝑟𝑢𝑘

= 𝑡
𝑟
𝑠
𝑢
ℏ
𝑘 for 𝑟, 𝑢, 𝑚 ≥ 0. (77)

For 𝑤
𝛾 to be equal to 𝑡

𝛼

𝑠
𝛽

ℏ
𝑚 we must have

(

𝑎

∏

𝑙=0

𝑡
𝛼
𝑙

𝑙
) (

𝑏

∏

𝑟=0

𝑠
𝛽
𝑟

𝑟
) ℏ

𝑚

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

𝑘=0

𝑡
𝛾
𝑙𝑟𝑘

𝑙
𝑠
𝛾
𝑙𝑟𝑘

𝑟
ℏ
𝑘𝛾
𝑙𝑟𝑘

= (

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

𝑘=0

𝑡
𝛾
𝑙𝑟𝑘

𝑙
) (

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

𝑘=0

𝑠
𝛾
𝑙𝑟𝑘

𝑟
)

⋅ (

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

𝑘=0

ℏ
𝑘𝛾
𝑙𝑟𝑘

)

= (

𝑎

∏

𝑙=1

𝑡
∑
𝑏

𝑟=0
∑
∞

𝑘=0
𝛾
𝑙𝑟𝑘

𝑙
) (

𝑏

∏

𝑟=1

𝑠
∑
𝑎

𝑙=0
∑
∞

𝑘=0
𝛾
𝑙𝑟𝑘

𝑟
)

⋅ ℏ
∑
𝑎

𝑙=0
∑
𝑏

𝑟=0
∑
∞

𝑘=0
𝑘𝛾
𝑙𝑟𝑘

(78)

and thus we conclude that
𝑏

∑

𝑟=0

∞

∑

𝑘=0

𝛾
𝑙𝑟𝑘

= 𝛼
𝑙

for 𝑙 ∈ [𝑎] ,

𝑎

∑

𝑙=0

∞

∑

𝑘=0

𝛾
𝑙𝑟𝑘

= 𝛽
𝑟

for 𝑗 ∈ [𝑏] ,

𝑎

∑

𝑙=0

𝑏

∑

𝑟=0

∞

∑

𝑘=0

𝑘𝛾
𝑙𝑟𝑘

= 𝑚.

(79)

Corollary 20. With the assumptions of Theorem 19, the Pois-
son bracket of the multisymmetric functions 𝑒

𝛼
(𝑝) and 𝑒

𝛽
(𝑞) is

given by

{𝑒
𝛼

(𝑝) , 𝑒
𝛽

(𝑞)} = 2 ∑

𝛾∈𝑄(𝛼,𝛽,𝑛,1)

𝑒
𝛾

(𝐵 (𝑝, 𝑞)) . (80)

Proof. It follows fromTheorem 19 and the identity

{𝑒
𝛼

(𝑝) , 𝑒
𝛽

(𝑞)} = 2

𝜕

𝜕ℏ

(𝑒
𝛼

(𝑝) ⋆ 𝑒
𝛼

(𝑞))
󵄨
󵄨
󵄨
󵄨 ℏ=0

. (81)

For our next result we regard (R[(R𝑑)
𝑛

][[ℏ]], ⋆)
𝑆
𝑛 as

topological algebra with topology induced by the inclusion

(R [(R
𝑑

)

𝑛

] [[ℏ]] , ⋆)

𝑆
𝑛

⊆ (R [(R
𝑑

)

𝑛

] [[ℏ]] , ⋆) , (82)

where a fundamental system of neighborhoods of 0 ∈

R[(R𝑑)
𝑛

][[ℏ]] is given by the decreasing family of subalgebras

R [(R
𝑑

)

𝑛

] [[ℏ]] ⊇ ℏR [(R
𝑑

)

𝑛

] [[ℏ]]

⊇ ⋅ ⋅ ⋅ ⊇ ℏ
𝑛

R [(R
𝑑

)

𝑛

] [[ℏ]] ⊇ ⋅ ⋅ ⋅ .

(83)

Recall from Introduction that the elementary multisym-
metric functions 𝑒

𝑘
, for 𝑘 ∈ N𝑑 with |𝑘| ≤ 𝑛, are defined by

the identity

𝑛

∏

𝑖=1

(1 + 𝑥
𝑖1

𝑡
1

+ ⋅ ⋅ ⋅ + 𝑥
𝑖𝑑

𝑡
𝑑
) = ∑

𝑘∈N𝑑 , |𝑘|≤𝑛

𝑒
𝑘
𝑡
𝑘

. (84)
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Similarly, the homogeneous multisymmetric functions
ℎ
𝑘
, for 𝑘 = (𝑘

1
, . . . , 𝑘

𝑑
) ∈ N𝑑, are defined by the identity

𝑛

∏

𝑖=1

1

1 − 𝑥
𝑖1

𝑡
1

− ⋅ ⋅ ⋅ − 𝑥
𝑖𝑑

𝑡
𝑑

= ∑

𝑘∈N𝑑

ℎ
𝑘
𝑡
𝑘

. (85)

Let M
𝑑
be the set of (nontrivial) monomials in the

variables 𝑦
1
, . . . , 𝑦

𝑑
. The power sum symmetric function

𝑒
1
(𝑚) is given, for 𝑚 ∈ M

𝑑
, by

𝑒
1

(𝑚) = 𝑚 (1) + ⋅ ⋅ ⋅ + 𝑚 (𝑑) . (86)

Theorem 21. The elementary multisymmetric functions 𝑒
𝑘
for

|𝑘| ≤ 𝑛, the homogeneous multisymmetric functions ℎ
𝑘
for

|𝑘| ≤ 𝑛, and the power sum multisymmetric functions 𝑒
1
(𝑚)

with 𝑚 ∈ M
𝑑
a monomial of degree less than or equal to 𝑛,

together with ℏ generate, respectively, the topological algebra
(R[(R𝑑)

𝑛

][[ℏ]], ⋆)
𝑆
𝑛 .

Proof. It is known [1, 3, 4, 11, 12] that each of the aforemen-
tioned sets of multisymmetric functions generate the algebra
of classical multisymmetric functionsR[(R𝑑)

𝑛

]
𝑆
𝑛 .

To go the quantum case the same argument is applied
in each case, so we only consider the elementary symmetric
functions. Take 𝑓 ∈ (R[(R𝑑)

𝑛

][[ℏ]], ⋆)
𝑆
𝑛 and expand it as

formal power series

𝑓 =

∞

∑

𝑘=0

𝑓
𝑘
ℏ
𝑘 with 𝑓

𝑘
∈ R [(R

𝑑

)

𝑛

]

𝑆
𝑛

. (87)

We can write 𝑓
0
as a linear combination of a product of

elementary symmetric functions. For simplicity assume that
𝑓
0

= 𝑒
𝑘
1

⋅ ⋅ ⋅ 𝑒
𝑘
𝑚

, then

𝑓 − 𝑒
𝑘
1

⋆ ⋅ ⋅ ⋅ ⋆ 𝑒
𝑘
𝑚

∈ 𝑂 (ℏ) . (88)

Assumenext that (𝑓−𝑒
𝑘
1

⋆⋅ ⋅ ⋅⋆𝑒
𝑘
𝑚

)
1
can bewritten as 𝑒

𝑙
1

⋅ ⋅ ⋅ 𝑒
𝑙
𝑟

,
then

𝑓 − 𝑒
𝑘
1

⋆ ⋅ ⋅ ⋅ ⋆ 𝑒
𝑘
𝑚

− 𝑒
𝑙
1

⋆ ⋅ ⋅ ⋅ ⋆ 𝑒
𝑙
𝑟

ℏ ∈ 𝑂 (ℏ
2

) . (89)

Proceeding by induction we see that 𝑓 can be written as a
formal power series in ℏ with coefficients equal to the sum of
the ⋆-product of elementary multisymmetric functions.

Choose a variable 𝑡
𝑚

for each 𝑚 ∈ M
𝑑
, the set of

monomials in the variables 𝑦
1
, . . . , 𝑦

𝑑
, and set

∑

|𝛼|≤𝑛

𝑒
𝛼
𝑡
𝛼

=

𝑛

∏

𝑖=1

(1 + ∑

𝑚∈M
𝑑

𝑚 (𝑖) 𝑡
𝑚

) , (90)

where 𝛼 : M
𝑑

→ N of finite support and 𝑡
𝛼

= ∏
𝑚∈M

𝑑

𝑡
𝛼(𝑚)

𝑚
.

Theorem 22. The set {𝑒
𝛼
ℏ
𝑘

| |𝛼| ≤ 𝑛, 𝑘 ≥ 0} is a topological
basis for the topological algebra (R[(R𝑑)

𝑛

][[ℏ]], ⋆)
𝑆
𝑛 . The

product of basic elements is given by Lemma 6 andTheorem 19.

Proof. It is well known that the symmetrization ofmonomials
yields a basis for R[(R𝑑)

𝑛

]
𝑆
𝑛 ; thus from Lemma 5 we see that

the set {𝑒
𝛼

| |𝛼| ≤ 𝑛} is a basis for R[(R𝑑)
𝑛

]
𝑆
𝑛 as well. Thus

forming the products 𝑒
𝛼
ℏ
𝑘 we obtain a topological basis for

(R[(R𝑑)
𝑛

][[ℏ]], ⋆)
𝑆
𝑛 .

Next result describes the product of multisymmetric
functions using the Kontsevich’s ⋆-product. In this case one
can give a more precise formula for the computation of
the quantum higher corrections, that is, the coefficients that
accompany the higher order powers in ℏ.

Theorem23. Let (R𝑑, { , }) be a regular Poissonmanifold and
let (R[(R𝑑)

𝑛

][[ℏ]], ⋆)
𝑆
𝑛 be the algebra of quantum symmetric

functions on (R𝑑)
𝑛 with the Kontsevich ⋆-product. Fix 𝑎, 𝑏, 𝑛 ∈

N+, 𝑝 ∈ 𝑅[𝑦
1
, . . . , 𝑦

𝑑
]
𝑎, and 𝑞 ∈ 𝑅[𝑦

1
, . . . , 𝑦

𝑑
]
𝑏. Let 𝛼 ∈ N𝑎

and 𝛽 ∈ N𝑏 be such that |𝛼|, |𝛽| ≤ 𝑛. The ⋆-product of 𝑒
𝛼
(𝑝)

and 𝑒
𝛽
(𝑞) is given by

𝑒
𝛼

(𝑝) ⋆ 𝑒
𝛽

(𝑞)

=

∞

∑

𝑚=0

( ∑

𝛾∈𝐾(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝐵 (𝑝, 𝑞))) ℏ
𝑚

, 𝑤ℎ𝑒𝑟𝑒

(91)

(i) 𝐵(𝑝, 𝑞) = (𝑝, 𝑞, . . . , (𝜔
Γ
/Γ!)𝐵

Γ
(𝑝, 𝑞), . . .) and

𝐵
Γ

(𝑝, 𝑞) = (𝐵
Γ

(𝑝
1
, 𝑞
1
) , . . . , 𝐵

Γ
(𝑝
1
, 𝑞
𝑏
) , . . . ,

𝐵
Γ

(𝑝
𝑎
, 𝑞
1
) , . . . , 𝐵

Γ
(𝑝
𝑎
, 𝑞
𝑏
)) ,

(92)

the polynomial 𝐵
Γ
(𝑝
𝑖
, 𝑞
𝑗
) results of applying Kontse-

vich’s bidifferential operator 𝐵
Γ
to the pair (𝑝

𝑖
, 𝑞
𝑗
);

(ii) 𝐾(𝛼, 𝛽, 𝑛, 𝑚) is the subset ofMap([0, 𝑎] × [0, 𝑏] × 𝐺,N)

consisting of maps

𝛾 : [0, 𝑎] × [0, 𝑏] × 𝐺 󳨀→ N 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (93)

(a) 𝛾
00Γ

= 0; if either 𝑙 = 0 or 𝑟 = 0, then 𝛾
𝑙𝑟Γ

= 0 for
Γ ≥ 1;

(b) |𝛾| = ∑
𝑎

𝑙=0
∑
𝑏

𝑟=0
∑
Γ∈𝐺

𝛾
𝑙𝑟Γ

≤ 𝑛, and
∑
𝑎

𝑙=0
∑
𝑏

𝑟=0
∑
Γ∈𝐺

Γ𝛾
𝑙𝑟Γ

= 𝑚,
(c) ∑

𝑏

𝑟=0
∑
Γ∈𝐺

𝛾
𝑙𝑟Γ

= 𝛼
𝑙
for 𝑙 ∈ [𝑎], and

∑
𝑎

𝑙=0
∑
Γ∈𝐺

𝛾
𝑙𝑟Γ

= 𝛽
𝑟
for 𝑗 ∈ [𝑏].

Proof. We have

∑

|𝛼|, |𝛽|≤𝑛

∞

∑

𝑚=0

𝐵
𝑚

(𝑒
𝛼

(𝑝) , 𝑒
𝛽

(𝑞)) 𝑡
𝛼

𝑠
𝛽

ℏ
𝑚

= ∑

|𝛼|, |𝛽|≤𝑛

(𝑒
𝛼

(𝑝) ⋆ 𝑒
𝛽

(𝑞)) 𝑡
𝛼

𝑠
𝛽

= ( ∑

|𝛼|≤𝑛

𝑒
𝛼

(𝑝) 𝑡
𝛼

) ⋆ ( ∑

|𝛽|≤𝑛

𝑒
𝛽

(𝑞) 𝑠
𝛽

)
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=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
) ⋆ (1 +

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

𝑝
𝑙
(𝑖) ⋆ 𝑞

𝑟
(𝑖) 𝑡

𝑙
𝑠
𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑡

𝑙
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑠

𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

∑

Γ∈𝐺

𝜔
Γ

Γ!

𝐵
Γ

(𝑝
𝑙
(𝑖) , 𝑞

𝑟
(𝑖)) 𝑡

𝑙
𝑠
𝑟
ℏ
Γ

)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑝
𝑙
(𝑖) 𝑤

𝑙00
+

𝑏

∑

𝑟=1

𝑞
𝑟
(𝑖) 𝑤

0𝑟0

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

∑

Γ∈𝐺

𝜔
Γ

Γ!

𝐵
Γ

(𝑝
𝑙
(𝑖) , 𝑞

𝑟
(𝑖)) 𝑤

𝑟𝑘Γ
)

= ∑

𝛾∈𝐾(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝐵 (𝑝, 𝑞)) 𝑤
𝛾

, where:

𝑤
𝛾

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∏

Γ∈𝐺

𝑤
𝛾
𝑙𝑟Γ

𝑙𝑟Γ
=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∞

∏

Γ∈𝐺

𝑡
𝛾
𝑙𝑟𝑘

𝑙
𝑠
𝛾
𝑙𝑟𝑘

𝑟
ℏ
Γ𝛾
𝑙𝑟Γ

,

(94)

and by convention 0 stands for the unique graph in𝐺with no
edges (representing the classical product), and

𝑡
0

= 𝑠
0

= 1, 𝑤
𝑟𝑢Γ

= 𝑡
𝑟
𝑠
𝑢
ℏ
Γ for 𝑟, 𝑢 ≥ 0, Γ ∈ G. (95)

For 𝑡
𝛼

𝑠
𝛽

ℏ
𝑚

= 𝑤
𝛾 we must have

(

𝑎

∏

𝑙=0

𝑡
𝛼
𝑙

𝑙
) (

𝑏

∏

𝑟=0

𝑠
𝛽
𝑟

𝑟
) ℏ

𝑚

=

𝑎

∏

𝑙=0

𝑏

∏

𝑟=0

∏

Γ∈𝐺

𝑡
𝛾
𝑙𝑟𝑘

𝑙
𝑠
𝛾
𝑙𝑟𝑘

𝑟
ℏ
Γ𝛾
𝑙𝑟Γ

= (

𝑎

∏

𝑙=1

𝑡
∑
𝑏

𝑟=0
∑
Γ∈𝐺

𝛾
𝑙𝑟Γ

𝑙
) (

𝑏

∏

𝑟=1

𝑠
∑
𝑎

𝑙=0
∑
Γ∈𝐺

𝛾
𝑙𝑟Γ

𝑟
)

⋅ ℏ
∑
𝑎

𝑙=0
∑
𝑏

𝑟=0
∑
Γ∈𝐺

Γ𝛾
𝑙𝑟Γ

.

(96)

Thus we conclude that
𝑏

∑

𝑟=0

∑

Γ∈𝐺

𝛾
𝑙𝑟Γ

= 𝛼
𝑙

for 𝑙 ∈ [𝑎] ,

𝑎

∑

𝑙=0

∑

Γ∈𝐺

𝛾
𝑙𝑟Γ

= 𝛽
𝑟

for 𝑗 ∈ [𝑏] ,

𝑎

∑

𝑙=0

𝑏

∑

𝑟=0

∑

Γ∈𝐺

Γ𝛾
𝑙𝑟Γ

= 𝑚.

(97)

6. Symmetric Powers of the Weyl Algebras

In this section we study the case of two-dimensional canoni-
cal phase space, that is, the symplectic manifold R2 with the
canonical Poisson bracket given as follows:

{𝑓, 𝑔} =

𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦

−

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

. (98)

Definition 24. TheWeyl algebra is defined by generators and
relations by

𝑊 =

R ⟨𝑥, 𝑦⟩ [[ℏ]]

⟨𝑦𝑥 − 𝑥𝑦 − ℏ⟩

. (99)

The deformation quantization of (R2, { , }) is well known
to be given by the Moyal product [13]. Moreover, one has the
following result.

Theorem 25. The Weyl algebra is isomorphic to the defor-
mation quantization of polynomial functions on R2 with the
canonical Poisson structure.

Our goal in this section is to study the deformation
quantization of the space (R2)

𝑛

/𝑆
𝑛
, which can be identified

with the algebra of quantum symmetric functions

(R [𝑥
1
, . . . , 𝑥

𝑛
, 𝑦
1
, . . . , 𝑦

𝑛
] [[ℏ]] , ⋆)

𝑆
𝑛

, (100)

or, equivalently, with the symmetric powers of the Weyl
algebra

(𝑊
⊗𝑛

)

𝑆
𝑛

. (101)

One shows by induction [10] that the following identity
holds in the Weyl algebra:

(𝑥
𝑐

𝑦
𝑑

) ⋆ (𝑥
𝑓

𝑦
𝑔

) =

min
∑

𝑘=0

𝐵
𝑘

(𝑥
𝑐

𝑦
𝑑

, 𝑥
𝑓

𝑦
𝑔

) ℏ
𝑘

=

min
∑

𝑘=0

(

𝑑

𝑘

) (𝑓)
𝑘

𝑥
𝑐+𝑓−𝑘

𝑦
𝑑+𝑔−𝑘

ℏ
𝑘

, where

min = min (𝑑, 𝑓) , (𝑓)
𝑘

= 𝑓 (𝑓 − 1) (𝑓 − 2) (𝑓 − 𝑘 + 1) .

(102)

Theorem 26. Consider R2 with its canonical Poisson struc-
ture. Fix 𝑎, 𝑏 ∈ N+ and let

(𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

𝑦
𝑑
𝑎

) ∈ R [𝑥, 𝑦]
𝑎

,

(𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

) ∈ R [𝑥, 𝑦]
𝑏

.

(103)
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For 𝛼 ∈ N𝑎 and 𝛽 ∈ N𝑏 the following identity holds:

𝑒
𝛼

(𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

𝑦
𝑑
𝑎

) ⋆ 𝑒
𝛽

(𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

)

=

∞

∑

𝑚=0

( ∑

𝛾∈𝑄(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝐵 (𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

𝑦
𝑑
𝑎

,

𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

))) ℏ
𝑚

,

(104)

where
𝐵 (𝑥

𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

, 𝑦
𝑑
𝑎

, 𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

)

= (𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

, 𝑦
𝑑
𝑎

, 𝑥
𝑓
1

𝑦
𝑔
1

, . . . ,

𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

, . . . , (

𝑑
𝑟

𝑘

) (𝑓
𝑟
)
𝑘

𝑥
𝑐
𝑙
+𝑓
𝑟
−𝑘

𝑦
𝑑
𝑙
+𝑔
𝑟
−𝑘

, . . .) .

(105)

Proof. We have

∑

|𝛼|, |𝛽|≤𝑛

∞

∑

𝑚=0

𝐵
𝑚

(𝑒
𝛼

(𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

𝑦
𝑑
𝑎

) ,

𝑒
𝛽

(𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

)) 𝑡
𝛼

𝑠
𝛽

ℏ
𝑚

= ∑

|𝛼|, |𝛽|≤𝑛

(𝑒
𝛼

(𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

𝑦
𝑑
𝑎

)

⋆ 𝑒
𝛽

(𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

)) 𝑡
𝛼

𝑠
𝛽

= ( ∑

|𝛼|≤𝑛

𝑒
𝛼

(𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

𝑦
𝑑
𝑎

) 𝑡
𝛼

)

⋆ ( ∑

|𝛽|≤𝑛

𝑒
𝛽

(𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

) 𝑠
𝛽

)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑥
𝑐
𝑙

𝑖
𝑦
𝑑
𝑙

𝑖
𝑡
𝑙
) ⋆ (1 +

𝑏

∑

𝑟=1

𝑥
𝑓
𝑟

𝑖
𝑦
𝑔
𝑟

𝑖
𝑠
𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑥
𝑐
𝑙

𝑖
𝑦
𝑑
𝑙

𝑖
𝑡
𝑙
+

𝑏

∑

𝑟=1

𝑥
𝑓
𝑟

𝑖
𝑦
𝑔
𝑟

𝑖
𝑠
𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

𝑥
𝑐
𝑙

𝑖
𝑦
𝑑
𝑙

𝑖
⋆ 𝑥

𝑓
𝑟

𝑖
𝑦
𝑔
𝑟

𝑖
𝑡
𝑙
𝑠
𝑟
)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑥
𝑐
𝑙

𝑖
𝑦
𝑑
𝑙

𝑖
𝑡
𝑙
+

𝑏

∑

𝑟=1

𝑥
𝑓
𝑟

𝑖
𝑦
𝑔
𝑟

𝑖
𝑠
𝑟

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

min
∑

𝑘=0

(

𝑑
𝑟

𝑘

) (𝑓
𝑟
)
𝑘

𝑥
𝑐
𝑙
+𝑓
𝑟
−𝑘

𝑖

⋅ 𝑦
𝑑
𝑙
+𝑔
𝑟
−𝑘

𝑖
𝑡
𝑙
𝑠
𝑟
ℏ
𝑘

)

=

𝑛

∏

𝑖=1

(1 +

𝑎

∑

𝑙=1

𝑥
𝑐
𝑙

𝑖
𝑦
𝑑
𝑙

𝑖
𝑤
𝑙00

+

𝑏

∑

𝑟=1

𝑥
𝑓
𝑟

𝑖
𝑦
𝑔
𝑟

𝑖
𝑤
0𝑟0

+

𝑎

∑

𝑙=1

𝑏

∑

𝑟=1

min
∑

𝑘=0

(

𝑑
𝑟

𝑘

) (𝑓
𝑟
)
𝑘

𝑥
𝑐
𝑙
+𝑓
𝑟
−𝑘

𝑖

⋅ 𝑦
𝑑
𝑙
+𝑔
𝑟
−𝑘

𝑖
𝑤
𝑙𝑟𝑘

)

= ∑

𝛾∈𝑄(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝐵 (𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

, 𝑦
𝑑
𝑎

,

𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

)) 𝑤
𝛾

,

(106)

where min = min{𝑑
𝑙
, 𝑓
𝑟
} and 𝑤

𝑙𝑟𝑘
= 𝑡

𝑙
𝑠
𝑟
ℏ
𝑘.

Corollary 27. With the assumptions of Theorem 26, the Pois-
son bracket of the multisymmetric functions 𝑒

𝛼
(𝑝) and 𝑒

𝛽
(𝑞) is

given by

{𝑒
𝛼

(𝑝) , 𝑒
𝛽

(𝑞)}

= 2 ∑

𝛾∈𝑄(𝛼,𝛽,𝑛,1)

𝑒
𝛾

(𝐵 (𝑥
𝑐
1

𝑦
𝑑
1

, . . . , 𝑥
𝑐
𝑎

, 𝑦
𝑑
𝑎

,

𝑥
𝑓
1

𝑦
𝑔
1

, . . . , 𝑥
𝑓
𝑏

𝑦
𝑔
𝑏

)) .

(107)

Example 28. Let 𝑝 = 𝑦, 𝑞 = 𝑥 ∈ R[𝑥, 𝑦]. We have

𝑒
𝛼

(𝑦) ⋆ 𝑒
𝛽

(𝑥) = ∑

𝑚≥0

∑

𝛾∈𝑄(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝑦, 𝑥, 𝑥𝑦, 1) ℏ
𝑚

, (108)

where the vectors 𝛾 = (𝛾
100

, 𝛾
010

, 𝛾
110

, 𝛾
111

) ∈ N4 is such that
|𝛾| ≤ 𝑛 and

𝛾
100

+ 𝛾
110

+ 𝛾
111

= 𝛼, 𝛾
010

+ 𝛾
110

+ 𝛾
111

= 𝛽,

𝛾
111

= 𝑚.

(109)

For example, for 𝑛 = 3, 𝛼 = 2, 𝛽 = 3, we have

𝑒
2

(𝑦) ⋆ 𝑒
3

(𝑥) = 𝑒
(1,2)

(𝑥, 𝑥𝑦) + 𝑒
(1,1,1)

(𝑥, 𝑥𝑦, 1) ℏ

+ 𝑒
(1,2)

(𝑥, 1) ℏ
2

(110)

since in this case 𝛾 = (𝛾
100

, 𝛾
010

, 𝛾
110

, 𝛾
111

) ∈ N4 is such that

𝛾
100

+ 𝛾
010

+ 𝛾
110

+ 𝛾
111

≤ 3, 𝛾
100

+ 𝛾
110

+ 𝛾
111

= 2,

𝛾
010

+ 𝛾
110

+ 𝛾
111

= 3, 𝛾
111

= 𝑚.

(111)

Solving this equation for 𝑚 = 0, 1, 2 we, respectively, obtain

𝛾 = (0, 1, 2, 0) , 𝛾 = (0, 1, 1, 1) , 𝛾 = (0, 1, 0, 2) ,

(112)

yielding the desired result.
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On the other hand, from Definition 1 we get

𝑒
2

(𝑦) = 𝑦
1
𝑦
2

+ 𝑦
1
𝑦
3

+ 𝑦
2
𝑦
3
, 𝑒

3
(𝑥) = 𝑥

1
𝑥
2
𝑥
3
, (113)

and thus

𝑒
2

(𝑦) ⋆ 𝑒
3

(𝑥)

= (𝑦
1
𝑦
2

+ 𝑦
1
𝑦
3

+ 𝑦
2
𝑦
3
) ⋆ (𝑥

1
𝑥
2
𝑥
3
)

= (𝑥
1
𝑥
2
𝑥
3
𝑦
1
𝑦
2

+ 𝑥
1
𝑥
2
𝑥
3
𝑦
1
𝑦
3

+ 𝑥
1
𝑥
2
𝑥
3
𝑦
2
𝑦
3
)

+ (𝑥
1
𝑥
3
𝑦
1

+ 𝑥
1
𝑥
2
𝑦
1

+ 𝑥
2
𝑥
3
𝑦
2

+ 𝑥
1
𝑥
2
𝑦
2

+ 𝑥
2
𝑥
3
𝑦
3

+ 𝑥
1
𝑥
3
𝑦
3
) ℏ + (𝑥

1
+ 𝑥

2
+ 𝑥

3
) ℏ

2

,

(114)

which indeed is equal to

𝑒
(1,2)

(𝑥, 𝑥𝑦) + 𝑒
(1,1,1)

(𝑥, 𝑥𝑦, 1) ℏ + 𝑒
(1,2)

(𝑥, 1) ℏ
2

. (115)

Note that {𝑒
2
(𝑦), 𝑒

3
(𝑥)} = 2𝑒

(1,1,1)
(𝑥, 𝑥𝑦, 1).

Example 29. Let 𝑝 = 𝑞 = 𝑥𝑦 ∈ R[𝑥, 𝑦], then we have

𝑒
𝛼

(𝑥𝑦) ⋆ 𝑒
𝛽

(𝑥𝑦)

= ∑

𝑚≥0

∑

𝛾∈𝑄𝐿(𝛼,𝛽,𝑛,𝑚)

𝑒
𝛾

(𝑥𝑦, 𝑥𝑦, 𝑥
2

𝑦
2

, 𝑥𝑦) ℏ
𝑚

,

(116)

where the vector 𝛾 = (𝛾
100

, 𝛾
010

, 𝛾
110

, 𝛾
111

) ∈ N4 is such that
|𝛾| ≤ 𝑛 and

𝛾
100

+ 𝛾
110

+ 𝛾
111

= 𝛼, 𝛾
010

+ 𝛾
110

+ 𝛾
111

= 𝛽,

𝛾
111

= 𝑚.

(117)

Thus for 𝑛 = 2, 𝛼 = 2, 𝛽 = 1, we get

𝑒
2

(𝑥𝑦) ⋆ 𝑒
1

(𝑥𝑦) = 𝑒
(1,1)

(𝑥𝑦, 𝑥
2

𝑦
2

) + 𝑒
(1,1)

(𝑥𝑦, 𝑥𝑦) ℏ (118)

since in this case 𝛾 = (𝛾
100

, 𝛾
010

, 𝛾
110

, 𝛾
111

) ∈ N4 is such that

𝛾
100

+ 𝛾
010

+ 𝛾
110

+ 𝛾
111

≤ 2, 𝛾
100

+ 𝛾
110

+ 𝛾
111

= 2,

𝛾
010

+ 𝛾
110

+ 𝛾
111

= 1, 𝛾
111

= 𝑚.

(119)

Solving this equation for 𝑚 = 0, 1 we, respectively, obtain

𝛾 = (1, 0, 1, 0) , 𝛾 = (1, 0, 0, 1) , (120)

yielding the desired result.

From Definition 1 we have 𝑒
2
(𝑥𝑦) = 𝑥

1
𝑦
1
𝑥
2
𝑦
2
, 𝑒

1
(𝑥𝑦) =

𝑥
1
𝑦
1

+ 𝑥
2
𝑦
2
, and thus

𝑒
2

(𝑥𝑦) ⋆ 𝑒
1

(𝑥𝑦) = (𝑥
1
𝑦
1
𝑥
2
𝑦
2
) ⋆ (𝑥

1
𝑦
1

+ 𝑥
2
𝑦
2
)

= (𝑥
2

1
𝑦
2

1
𝑥
2
𝑦
2

+ 𝑥
1
𝑦
1
𝑥
2

2
𝑦
2

2
)

+ 2 (𝑥
1
𝑦
1
𝑥
2
𝑦
2
) ℏ,

(121)

which indeed is equal to 𝑒
(1,1)

(𝑥𝑦, 𝑥
2

𝑦
2

) + 𝑒
(1,1)

(𝑥𝑦, 𝑥𝑦)ℏ.
Note that {𝑒

2
(𝑥𝑦), 𝑒

1
(𝑥𝑦)} = 2𝑒

(1,1)
(𝑥𝑦, 𝑥𝑦).

Example 30. Let 𝑛 = 2, 𝛼 = 𝛽 = 2; then

𝑒
2

(𝑥
𝑎

𝑦) ⋆ 𝑒
2

(𝑥𝑦
𝑏

)

= 𝑒
2

(𝑥
𝑎+1

𝑦
𝑏+1

)

+ 𝑒
(1,1)

(𝑥
𝑎+1

𝑦
𝑏+1

, 𝑥
𝑎

𝑦
𝑏

) ℏ + 𝑒
2

(𝑥
𝑎

𝑦
𝑏

) ℏ
2

.

(122)

UsingTheorem 19 we have

𝑒
2

(𝑥
𝑎

𝑦) ⋆ 𝑒
2

(𝑥𝑦
𝑏

)

= ∑

𝛾∈𝑄𝐿(2,2,2,𝑚)

𝑒
𝛾

(𝑥
𝑎

𝑦, 𝑥𝑦
𝑏

, 𝑥
𝑎+1

𝑦
𝑏+1

, 𝑥
𝑎

𝑦
𝑏

) ℏ
𝑚

,

(123)

where 𝛾 = (𝛾
100

, 𝛾
010

, 𝛾
110

, 𝛾
111

) ∈ N4 is such that

𝛾
100

+ 𝛾
010

+ 𝛾
110

+ 𝛾
111

≤ 2, 𝛾
100

+ 𝛾
110

+ 𝛾
111

= 2,

𝛾
010

+ 𝛾
110

+ 𝛾
111

= 2, 𝛾
111

= 𝑚.

(124)

Solving this equation for 𝑚 = 0, 1, 2 we, respectively, obtain

𝛾 = (0, 0, 2, 0) , 𝛾 = (0, 0, 1, 1) , 𝛾 = (0, 0, 0, 2) .

(125)

Thus we get

𝑒
2

(𝑥
𝑎

𝑦) ⋆ 𝑒
2

(𝑥𝑦
𝑏

)

= 𝑒
2

(𝑥
𝑎+1

𝑦
𝑏+1

) + 𝑒
(1,1)

(𝑥
𝑎+1

𝑦
𝑏+1

, 𝑥
𝑎

𝑦
𝑏

) ℏ

+ 𝑒
2

(𝑥
𝑎

𝑦
𝑏

) ℏ
2

.

(126)

On the other hand, from Definition 1 we have

𝑒
2

(𝑥
𝑎

𝑦) = 𝑥
𝑎

1
𝑦
1
𝑥
𝑎

2
𝑦
2
, 𝑒

2
(𝑥𝑦

𝑏

) = 𝑥
1
𝑦
𝑏

1
𝑥
2
𝑦
𝑏

2
. (127)

Computing directly the ⋆-product we obtain

𝑒
2

(𝑥
𝑎

𝑦) ⋆ 𝑒
2

(𝑥𝑦
𝑏

)

= (𝑥
𝑎

1
𝑦
1
𝑥
𝑎

2
𝑦
2
) ⋆ (𝑥

1
𝑦
𝑏

1
𝑥
2
𝑦
𝑏

2
) = 𝑥

𝑎+1

1
𝑦
𝑏+1

1
𝑥
𝑎+1

2
𝑦
𝑏+1

2

+ (𝑥
𝑎

1
𝑦
𝑏

1
𝑥
𝑎+1

2
𝑦
𝑏+1

2
+ 𝑥

𝑎+1

1
𝑦
𝑏+1

1
𝑥
𝑎

2
𝑦
𝑏

2
) ℏ

+ 𝑥
𝑎

1
𝑦
𝑏

1
𝑥
𝑎

2
𝑦
𝑏

2
ℏ
2

= 𝑒
2

(𝑥
𝑎+1

𝑦
𝑏+1

) + 𝑒
(1,1)

(𝑥
𝑎+1

𝑦
𝑏+1

, 𝑥
𝑎

𝑦
𝑏

) ℏ

+ 𝑒
2

(𝑥
𝑎

𝑦
𝑏

) ℏ
2

.

(128)

Note that {𝑒
2
(𝑥
𝑎

𝑦), 𝑒
2
(𝑥𝑦

𝑏

)} = 2𝑒
(1,1)

(𝑥
𝑎+1

𝑦
𝑏+1

, 𝑥
𝑎

𝑦
𝑏

).

We close this work stating the main problem that our
research opens.

Problem 31. Describe the relations in the algebra of quantum
symmetric functions.
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