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The approaches to the system reliability evaluation with respect to the cases, where the components are independent or the
components have interactive relationships within the system, were proposed in this paper. Starting from the higher requirements
on system operational safety and economy, the reliability focused optimal models of multiobjective maintenance strategies were
built. For safety-critical systems, the pessimistic maintenance strategies are usually taken, and, in these cases, the system reliability
evaluation has also to be tackled pessimistically. For safety-uncritical systems, the optimistic maintenance strategies were usually
taken, and, in these circumstances, the system reliability evaluation had also to be tackled optimistically, respectively. Besides, the
reasonable maintenance strategies and their corresponding reliability evaluation can be obtained through the convex combination
of the above two cases. With a high-speed train system as the example background, the proposed method is verified by combining
the actual failure data with the maintenance data. Results demonstrate that the proposed study can provide a new system reliability
calculation method and solution to select and optimize the multiobjective operational strategies with the considerations of system
safety and economical requirements.The theoretical basis is also provided for scientifically estimating the reliability of a high-speed
train system and formulating reasonable maintenance strategies.

1. Introduction

With the rapid development of Chinese high-speed trains,
traditional maintenance strategies may not fit the train
organization pattern of “high density, high frequency, high
security” due to its disadvantages of short overhaul period,
high maintenance costs, and long parking time. The train
maintenance work will turn to the trend of “reliability-
centered maintenance.”

Numerous researches focused on this topic. Jin et al.
[1] proposed the optimization of reliability-centered non-
periodic preventive maintenance (PM) for multicomponent
equipment withminimal repair at failures.Three types of PM
actions includingmechanical service, repair, and replacement
were simultaneously considered. Eti et al. [2] summarized
the research process that the center of maintenance strategy
changed from the reactive repair-focused pattern to the
reliability-centered pattern. Faza et al. proposed a quanti-
tative approach to modeling the reliability of the advanced

power grid [3]. Zhou et al. [4] integrated the sequential
imperfect maintenance policy into condition-based predic-
tive maintenance, and a reliability-centered predictive main-
tenance policy was proposed for a continuously monitored
system subject to degradation due to the imperfect main-
tenance. He et al. [5] found out that operational reliability
evaluation theory reflected real-time reliability level of power
system, and the component failure rate varied with operating
conditions.

The results from above-mentioned studies contribute
significantly to the development and investigation of the
relationship betweenmaintenance strategy and reliability. But
theywere difficult to be applied in the area of high-speed train
systems. On the one hand, these studies mainly focused on
the relatively simple systems, whereas the high-speed train
system is a complex system. On the other hand, traditional
reliability evaluation methods, such as Fault Tree, Bayesian
Network, Markov, and Petri Nets, always assumed that the
components are independent. For example, a comprehensive
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Figure 1: Model of system reliability consisted of independent components.

software safety analysis involving a combination of Failure
Modes and Effects Analysis (FMEA) and Fault Tree Analysis
(FTA) is conducted on the software functions of the critical
system to identify potentially hazardous software faults [6].
Sarhan and El-Gohary [7] estimated the parameters of relia-
bility model by maximum likelihood and Bayesian methods.
A semi-Markov process with four states has been applied
for modeling two dissimilar unit cold standby systems [8].
Petri Nets have been applied to the field ofmechanical system
reliability analysis [9]. In fact, there were quite complicated
relationships among components in the system. That is why
the results obtained by traditional methods were always far
away from the actual situation.

The system reliability evaluation approaches for the cases,
where the components are independent or the components
have interactive relationships within the system, are proposed
in this paper. Starting from the higher requirements on
system operational safety and cost-effectiveness, the reliabil-
ity focused optimal models of multiobjective maintenance
strategies are built. System reliability evaluation is accom-
plished under different maintenance strategies. Finally, with
a high-speed train system as an example background, the
proposed method is verified by combining the actual failure
data with the maintenance data.

2. Reliability Modeling and Calculation for
the System with Independent Components

2.1. Reliability Network Modeling for the System with Indepen-
dent Components. The following hypotheses are made when
building reliability models on the system with independent
components.

Hypothesis 1. Components (nodes) are independent.

Hypothesis 2. There are only two states: normal and fault.

Hypothesis 3. Edges are independent, which means the fail-
ure of one single edge does not affect the others.

A two-tuple group ⟨𝑉, 𝐸⟩ was built, and, assuming 𝑉

is nonempty, 𝑉 = {V
1
, V
2
, . . . , V

𝑛
}, which can be called

components set.𝐸 is a subset which belongs to𝑉×𝑉, and𝐸 =

{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} is called edges set. The edge 𝑒

𝑖𝑗
in the directed

graph is an ordered pair that consists of two vertexes, and
the ordered pair is often represented by angle brackets; for
instance, ⟨V

𝑖
, V
𝑗
⟩ represents a directed edge, V

𝑖
is the starting

point of the directed edge, and V
𝑗
is the finishing point. ⟨V

𝑖
, V
𝑗
⟩

and ⟨V
𝑗
, V
𝑖
⟩ are two different directed edges, as shown in

Figure 1.

2.2. Reliability Calculation for the System with
Independent Components

2.2.1. Series System. It is supposed that system 𝐺 consists of
𝑛 units components in a series way, which means the whole
system will be failed when any component of the system is
invalid, as shown in Figure 2. The lifetime of 𝑖 component
is 𝑇
𝑖
, the operational reliability is 𝑅

𝑖
(𝑡), and the lifetime

distribution function is 𝐹
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛; then the lifetime

of system 𝐺 is 𝑇 = min(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
> 𝑡).

Assuming𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
are independent, the reliability of

the series system is

𝑅
0

(𝑡) = 𝑃 {min {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
} > 𝑡}

= 𝑃 {𝑇
1

> 𝑡, 𝑇
2

> 𝑡, . . . , 𝑇
𝑛

> 𝑡} =

𝑛

∏
𝑖=1

𝑃 {𝑇
𝑖

> 𝑡}

=

𝑛

∏
𝑖=1

𝑅
𝑖
(𝑡) .

(1)

The mean life of the system is

MTTF = ∫
∞

0

𝑅
0

(𝑡) 𝑑𝑡. (2)

2.2.2. Parallel System. It is supposed that system 𝐺 consists of
𝑛 units components in a parallel way, which means that only
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Figure 2: Reliability network modeling on the system with dependent components.

when 𝑛 components are all failed will the whole system be
invalid.

The lifetime of 𝑖 component is 𝑇
𝑖
, the operational reli-

ability is 𝑅
𝑖
(𝑡), and the lifetime distribution function is

𝐹
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛; then the lifetime of system 𝐺 is

𝑇 = max(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
> 𝑡). Assuming 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛

are independent of each other, the reliability of the parallel
system is

𝑅
0

(𝑡) = 𝑃 {max {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
} > 𝑡}

= 1 − 𝑃 {𝑇
1

≤ 𝑡, 𝑇
2

≤ 𝑡, . . . , 𝑇
𝑛

≤ 𝑡}

= 1 −

𝑛

∏
𝑖=1

(1 − 𝑅
𝑖
(𝑡)) .

(3)

3. Reliability Modeling and Calculation for
the System with Dependent Components

3.1. Reliability Network Modeling for the System with Depen-
dent Components. The following hypotheses are assumed for
building reliability models of the system with dependent
components.

Hypothesis 1. The system topology structure is fixed.

Hypothesis 2. There are only two states in the components:
normal and fault.

Hypothesis 3. If the functional relationship of the parts of the
system is normal, the state of the subsystem is normal, or it is
in the failure state.

Hypothesis 4. In the system reliability models, the failure of
nodes is equivalent to the failure of the functional relationship
among the nodes.

There are two ways to express the functional relationship
among the parts, as shown in Table 1.

In the study of subsystem reliability, the system compo-
nents were set as nodes, while in the study of system relia-
bility, the subsystems were set as nodes, and the functional
relationship between nodes was edge. Directed two-layer
network models were built with characteristics of network
topology structure.

3.1.1. Network Models on Components Layer. In the study
of subsystem reliability, each subsystem consists of a series
of indivisible components. The study sets the components
as nodes, the operational reliability of components as the
nodes properties, and the functional relationship between
components as edges to build a directed network model with
characteristics of network topology structure, 𝐺

𝑖
= (V, 𝑒, 𝑟).

The specific explanations are given as follows:

V-collection of nodes, V(𝐺
𝑖
) = {V

𝑖1
, V
𝑖2

, . . . , V
𝑖𝑛

}, which
is the collection of components.

𝑒-collection of edges, 𝑒(𝐺
𝑖
) = {𝑒

𝑖1
, 𝑒
𝑖2

, . . . , 𝑒
𝑖𝑛

}, which
is the collection of functional relationships between
components.

𝑟-collection of the nodes properties, namely, the
operational reliability of components, and 𝑟

𝑖𝑗
(𝑡) (𝑖 =

1, 2, . . . , 𝜀; 𝑗 = 1, 2, . . . , 𝑠) represents the reliability of
the component 𝑗 in subsystem 𝐺

𝑖
at time 𝑡.
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Table 1: The way of connection between the components and its formalized expression.

Ways of connection Graphical representation Description
Unidirectional connection One-way functional relationship between two components
Bidirectional connection The interaction between two components

3.1.2. Network Models on Subsystems Layer. The study of
system reliability sets the system as nodes and the func-
tional relationship between subsystems as edges, building
the directed network models with characteristics of network
topology structure, 𝐺 = (𝑉, 𝐸, 𝑅). The specific explanations
are given as follows:

𝑉-collection of nodes, 𝑉(𝐺) = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑚
},

which is the collection of subsystems.

𝐸-collection of edges, which is the collection of
functional relationships between subsystems.

𝑅-collection of the nodes properties, which is the
collection of reliability of subsystems, 𝑅(𝑡) =

{𝑅
1
(𝑡), 𝑅
2
(𝑡), . . . , 𝑅

𝑚
(𝑡)}, 𝑅

𝑖
(𝑡) representing the relia-

bility of subsystem 𝐺
𝑖
at time 𝑡.

3.2. Reliability Calculation for the System with Dependent
Components Based on Copula Function. In order to cal-
culate the reliability of systems which consisted of depen-
dent components, Schweizer and Sklar [10] put forward
the Copula Function. The Copula Function describes the
correlation between variables. Copula is a function that
combines the distribution functionswith their corresponding
edge distribution functions together.This paper calculates the
reliability of the system with dependent components from
two aspects (series system and parallel system) based on
Copula Function.

3.2.1. Reliability of Series System Based on Copula. It is
assumed that system 𝐺 consists of 𝑛 units components in a
series way, the lifetime of the 𝑖 component is 𝑇

𝑖
, the opera-

tional reliability is𝑅
𝑖
(𝑡), and the lifetime distribution function

is 𝐹
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛; then the lifetime of the system 𝐺 is

𝑇 = min(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
> 𝑡).The joint distribution function is

𝐻(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝑃{𝑇

1
≤ 𝑡
1
, 𝑇
2

≤ 𝑡
2
, . . . , 𝑇

𝑛
≤ 𝑡
𝑛
}. According

to the Sklar lemma, there is an 𝑛-dimensional Copula
𝐶 making 𝐻(𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝐶(𝐹

1
(𝑡
1
), 𝐹
2
(𝑡
2
), . . . , 𝐹

𝑛
(𝑡
𝑛
));

𝐶(𝐹
1
(𝑡
1
), 𝐹
2
(𝑡
2
), . . . , 𝐹

𝑛
(𝑡
𝑛
)) is unique, because 𝐹

𝑖
(𝑡) is contin-

uous. The degree of the reliability of system 𝐺 is shown as
follows:

𝑅
𝑐

(𝑡) = 𝑃 {min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) > 𝑡} = 𝑃 (𝑇

1
> 𝑡, 𝑇
2

> 𝑡, . . . , 𝑇
𝑛

> 𝑡) = 1 −

𝑛

∑
𝑖=1

𝑃 (𝑇
𝑖

≤ 𝑡) + ∑
1≤𝑖≤𝑗≤𝑛

𝑃 (𝑇
𝑖

≤ 𝑡, 𝑇
𝑗

≤ 𝑡) + ⋅ ⋅ ⋅ + (−1)
𝑘

∑
1<𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

𝑃 (𝑇
𝑖
1

≤ 𝑡, 𝑇
𝑖
2

≤ 𝑡, . . . , 𝑇
𝑖
𝑘

≤ 𝑡) + ⋅ ⋅ ⋅ + (−1)
𝑛

𝑃 (𝑇
𝑖
1

≤ 𝑡, 𝑇
𝑖
2

≤ 𝑡, . . . ,

𝑇
𝑖
𝑘

≤ 𝑡) = 1 −

𝑛

∑
𝑖=1

𝐹
𝑖
(𝑡) + (−1)

𝑘
∑

1<𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

𝐶 (𝐹
𝑖
1

(𝑡) ,

𝐹
𝑖
2

(𝑡) , . . . , 𝐹
𝑖
𝑘

(𝑡)) = 1 −

𝑛

∑
𝑖=1

𝐹
𝑖
(𝑡) + (−1)

𝑘

⋅ ∑
1<𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

𝐶 (𝐹
𝑖
1

(𝑡) , 𝐹
𝑖
2

(𝑡) , . . . , 𝐹
𝑖
𝑘

(𝑡) ,

1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
rest 𝑛−𝑘

) (2 ≤ 𝑘 ≤ 𝑛) .

(4)

3.2.2. The Reliability of Parallel System Based on Copula. It
is assumed that system 𝐺 consists of 𝑛 units components in
a parallel way, the lifetime of 𝑖 component is 𝑇

𝑖
, the oper-

ational reliability is 𝑅
𝑖
(𝑡), the lifetime distribution function

is 𝐹
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, and the lifetime of system 𝐺 is

𝑇 = max(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
). The joint distribution function is

𝐻(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝑃{𝑇

1
≤ 𝑡
1
, 𝑇
2

≤ 𝑡
2
, . . . , 𝑇

𝑛
≤ 𝑡
𝑛
}. According

to the Sklar lemma [10], there is an 𝑛-dimensional Copula
𝐶 making 𝐻(𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝐶

𝑛
(𝐹
1
(𝑡
1
), 𝐹
2
(𝑡
2
), . . . , 𝐹

𝑛
(𝑡
𝑛
));

𝐶
𝑛
(𝐹
1
(𝑡
1
), 𝐹
2
(𝑡
2
), . . . , 𝐹

𝑛
(𝑡
𝑛
)) is unique because𝐹

𝑖
(𝑡) is contin-

uous.The degree of the reliability of the system 𝐺 is shown as
follows:

𝑅
𝑐

(𝑡) = 𝑃 {max (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
)}

= 1 − 𝑃 {max (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) ≤ 𝑡}

= 1 − 𝐶𝐹
1

(𝑡) , 𝐹
2

(𝑡) , . . . , 𝐹
𝑛

(𝑡)

= 1 − 𝐶 (1 − 𝑅
1

(𝑡) , 1 − 𝑅
2

(𝑡) , . . . , 1 − 𝑅
𝑛

(𝑡)) .

(5)

4. System Reliability Analysis Based on
Different Connecting Types

Considering the fact that this study calculates the system
reliability based on the connectivity of the system inside
components, the system reliability may be affected by the
connecting type of system components.

The calculating methods of system reliability are dis-
cussed in different connecting types in this paper. General
system connecting types mainly include three ways: single
input and single output, single input and multiple outputs,
andmultiple inputs andmultiple outputs (multiple inputs and
single output connecting type is the same as single input and
multiple outputs connecting type).

4.1. Single Input and Single Output. As shown in Figure 3, it
describes how to calculate the reliability of subsystem 𝐺

1
in
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Figure 3: Model of single input and single output.

the situation of single input node and single output node.
According to the network models, supposing that system 𝐺

consists of 𝑚 subsystems, 𝐺 = {𝐺
1
, 𝐺
2
, . . . 𝐺

𝑚
}, subsystem

𝐺
𝑞
inputs node V

𝑞𝑠
and outputs node V

𝑞𝑙
; the reliability

calculation of subsystem𝐺
𝑞
can be converted into the analysis

of probability of node V
𝑞𝑠
to node V

𝑞𝑙
; that is,

𝑅
𝑞𝑠𝑙

= 𝑃 {V
𝑞𝑠
can reach V

𝑞𝑠𝑙
} . (6)

All the shortest paths should be figured out among the
subsystems to analyze the reliability of subsystem based on
the minimal path set. It is supposed that 𝑑

1
, 𝑑
2

. . . , 𝑑
𝑛𝑑

are all
shortest paths from node V

𝑞𝑠
to node V

𝑞𝑙
, and 𝑛𝑑 represents

the quantity of minimal paths:

(1) 𝑛𝑑 = 1; all nodes on the minimal path are in one
series. For the subsystem, it will be in a normal state
when all nodes on the minimal path are normal.
Therefore the reliability of the minimal path is the
reliability of subsystem.

(2) 𝑛𝑑 > 1; it is supposed that 𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑛𝑑,

represents any minimal path; the reliability of the
minimal path 𝑑

𝑖
is the same as that of all nodes on

path 𝑑
𝑖
work well. For the subsystem, it will work

properly only if one of the minimal paths was in
normal state, which means the highest reliability of
the minimal path can be viewed as the reliability of
the subsystem.

In conclusion, no matter how many minimal paths are
there in the subsystem, the highest reliability of 𝑛𝑑 minimal
path (𝑛𝑑 = 1, only need to solve the unique minimal path)
can be considered as the reliability of the subsystem:

𝑅 (𝑡) = max (𝑅 (𝑑
𝑖
)) , 𝑖 = 1, 2, . . . , 𝑛𝑑. (7)

(1) System reliability is calculated with independent
components.

The reliability of every minimal path based on (1) can be
illustrated as follows:

𝑅
0

(𝑑
𝑖
) =

𝑛

∏
𝑗=1

𝑅
𝑗

(𝑡) =

𝑛

∏
𝑗=1

(1 − 𝐹
𝑗

(𝑡)) . (8)

𝑅
0
(𝑑
𝑖
) is the connecting reliability value of the minimal

path 𝑑
𝑖
, and 𝐹

𝑗
(𝑡) is the lifetime distribution function of

component 𝑗 constituting the minimal path 𝑑
𝑖
.

G3

G1

G2

G5

G4

Figure 4: Single input and multiple outputs.

The reliability of subsystem is

𝑅
0

(𝐺
𝑞
) = max𝑅

0
(𝑑
𝑖
) , (9)

𝑖 = 1, 2, . . . , 𝑛𝑑; 𝑅
0
(𝐺
𝑞
) is the reliability of the subsystem.

(2) System reliability is calculated with dependent com-
ponents.

The reliability of every minimal path based on (4) can be
illustrated as follows:

𝑅
𝑐

(𝑑
𝑖
) = 1 −

𝑛

∑
𝑗=1

𝐹
𝑗

(𝑡) + (−1)
𝑘

⋅ ∑
1<𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑘
≤𝑛

𝐶
𝑛

(𝐹
𝑗
1

(𝑡) , 𝐹
𝑗
2

(𝑡) , . . . , 𝐹
𝑗
𝑘

(𝑡) ,

1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
rest 𝑛−𝑘

) .

(10)

𝑅
𝑐
(𝑑
𝑖
) is the connecting reliability value of the minimal

path 𝑑
𝑖
and 𝐹

𝑗
(𝑡) is the lifetime distribution function of

component 𝑗 constituting the minimal path 𝑑
𝑖
. The reliability

of the subsystem 𝐺
𝑞
is

𝑅
𝑐

(𝐺
𝑞
) = max𝑅

𝑐
(𝑑
𝑖
) , (11)

𝑖 = 1, 2, . . . , 𝑛𝑑; 𝑅
𝑐
(𝐺
𝑞
) is the reliability of subsystem 𝐺

𝑞
.

4.2. Single Input andMultiple Outputs. As shown in Figure 4,
the shortest path was analyzed from input node V

0
to

output nodes (supposing 𝑛 nodes) in subsystem 𝐺
1
based

on Dijkstra’s algorithm, 𝑑
1
, 𝑑
2

. . . , 𝑑
𝑛
. The reliability of every

minimal path is calculated according to (8) and (10).
For subsystems, the reliability of 𝑅

0
(𝐺
𝑞
) and 𝑅

𝑐
(𝐺
𝑞
) can

be calculated, respectively, according to (9) and (11) in the
situations of independent and dependent components.

This calculation method can also calculate the reliability
of subsystem with multiple input nodes and single output
node; the details will not be described here.

4.3. Multiple Inputs and Multiple Outputs. As shown in
Figure 5, it is supposed that the subsystem consists of 𝑖

input nodes, 𝑗 output nodes, and 𝐶
1

𝑖
𝐶
1

𝑗
node pairs (one

input node and one output node). It is required to calculate
the shortest path in all these node pairs. 𝑑

1
, 𝑑
2

. . . , 𝑑
𝐶
1

𝑖
𝐶
1

𝑗

is
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G3 G4

G6
G7

G1

G2

G5

Figure 5: Multiple inputs and multiple outputs.

the shortest path in all these pairs based on Floyd’s algo-
rithm. The reliability of every shortest path in situations of
independent and dependent components can be calculated,
respectively, according to (8) and (10).

For subsystems, the reliability of 𝑅
0
(𝐺
𝑞
) and 𝑅

𝑐
(𝐺
𝑞
) can

be calculated, respectively, according to (9) and (11).

4.4. Summary. As can be seen from the above-mentioned
calculation based on three connecting types, nomatter which
connecting type is, the reliability of subsystems, 𝑅

0
(𝐺
𝑞
) and

𝑅
𝑐
(𝐺
𝑞
), can be calculated according to (9) and (11) under

the situations of independent and dependent components.
Therefore, it is unnecessary to take the connecting type of
system components into consideration when calculating the
system reliability using (9) and (11) directly.

5. System Reliability Estimation

5.1. Comparison of SystemReliability Estimation between Inde-
pendent Components and Dependent Components. Accord-
ing to comprehensive comparison and analysis on the system
reliability estimation methods above, supposing that the
system reliability of dependent components is greater than
that of independent components and trying to verify it by
using the method of Mathematical Induction, the proofs are
as follows:

(1) 𝑛 = 2, which means the two nodes on the minimal
path in series.

When components are dependent, the system reliability
is

𝑅
0

(𝑑
𝑖
)
2

= 1 − 𝑃 {𝑇
1

> 𝑡, 𝑇
2

> 𝑡}

= 1 − 𝑃 {𝑇
1

≤ 𝑡} − 𝑃 {𝑇
2

≤ 𝑡}

+ 𝑃 {𝑇
1

≤ 𝑡, 𝑇
2

≤ 𝑡}

= 1 − 𝑃 {𝑇
1

≤ 𝑡} − 𝑃 {𝑇
2

≤ 𝑡}

+ ∏ (𝐹
1

(𝑡) , 𝐹
2

(𝑡)) .

(12)

When components are independent, the system reliability
is

𝑅
𝑐

(𝑑
𝑖
)
2

= 𝑃 {𝑇
1

> 𝑡, 𝑇
2

> 𝑡}

= 1 − 𝑃 {𝑇
1

≤ 𝑡} − 𝑃 {𝑇
2

≤ 𝑡}

+ 𝑃 {𝑇
1

≤ 𝑡, 𝑇
2

≤ 𝑡}

= 1 − 𝑃 {𝑇
1

≤ 𝑡} − 𝑃 {𝑇
2

≤ 𝑡}

+ 𝐶 (𝐹
1

(𝑡) , 𝐹
2

(𝑡)) .

(13)

Because 𝐶(𝐹
1
(𝑡), 𝐹
2
(𝑡)) > ∏(𝐹

1
(𝑡), 𝐹
2
(𝑡)), we have

𝑅
𝑐
(𝑑
𝑖
)
2

> 𝑅
0
(𝑑
𝑖
)
2
.

(2) Suppose 𝑛 = 𝑘, and 𝑅
𝑐
(𝑑
𝑖
)
𝑘

> 𝑅
0
(𝑑
𝑖
)
𝑘
.

When 𝑛 = 𝑘 + 1, the system reliability with independent
components is obtained as

𝑅
0

(𝑑
𝑖
)
𝑘+1

= 𝑃 {min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) > 𝑡, 𝑇

𝑘+1
> 𝑡}

= 𝑃 (min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) > 𝑡)

− 𝑃 {min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) > 𝑡, 𝑇

𝑘+1
≤ 𝑡}

= 𝑅
0

(𝑑
𝑖
)
𝑘

− 𝑃 (𝑇
𝑘+1

≤ 𝑡)

+ 𝑃 (min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) ≤ 𝑡) 𝑃 (𝑇

𝑘+1
≤ 𝑡) .

(14)

The system reliability with dependent components is

𝑅
𝑐

(𝑑
𝑖
)
𝑘+1

= 𝑃 {min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) > 𝑡, 𝑇

𝑘+1
> 𝑡}

= 𝑃 (min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) > 𝑡)

− 𝑃 {
min (𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
) > 𝑡

𝑇
𝑘+1

≤ 𝑡
}

> 𝑅
𝑐

(𝑑
𝑖
)
𝑘

− 𝑃 (𝑇
𝑘+1

≤ 𝑡)

+ 𝑃 (min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) ≤ 𝑡, 𝑇

𝑘+1
≤ 𝑡)

> 𝑅
𝑐

(𝑑
𝑖
)
𝑘

− 𝑃 (𝑇
𝑘+1

≤ 𝑡)

+ 𝑃 (min (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) ≤ 𝑡) 𝑃 (𝑇

𝑘+1
≤ 𝑡)

= 𝑅
0

(𝑑
𝑖
)
𝑘+1

.

(15)

The hypotheses are supported, 𝑅
𝑐
(𝑑
𝑖
) > 𝑅

0
(𝑑
𝑖
), and the

system reliability of dependent components is surely greater
than that of independent components.

5.2. System Reliability Estimation Based on
Convex Combination Considering Operation and
Maintenance Strategy

5.2.1. Estimation Method. According to Section 5.1, the sys-
tem reliability of dependent components is greater than that
of independent components; namely, these two estimation
methods compose the upper limit𝑅

𝑐
(𝑡) and lower limit𝑅

0
(𝑡),

respectively.
Safety-critical systems should take the relatively con-

servative method to estimate the reliability of independent
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components, which requires using the lower limit 𝑅
0
(𝑡) for

the reliability estimation. Non-safety-critical systems should
take the relatively optimistic and rational method to estimate
the reliability of dependent components, setting that as the
upper limit 𝑅

𝑐
(𝑡). For most general systems, the actual relia-

bility is usually between the upper limit and lower limit. It will
increase unnecessary maintenance cost when the reliability
estimationmethod of independent components is used, while
the maintenance cost will be reduced by taking the reliability
estimation method of dependent components; however, the
whole safety of the system will decrease apparently.

From the relationship balance of operational safety and
economic efficiency, this paper introduces the accommoda-
tion coefficient of system operational strategy, 𝜆. The relia-
bility of general system in two extreme convex combinations
above forms estimations based on operational strategy which
is

𝑅 (𝑡) = 𝜆𝑅
0

(𝑡) + (1 − 𝜆) 𝑅
𝑐

(𝑡) . (16)

𝜆 is the accommodation coefficient of system operational
strategy, and it is determined by the system itself. It is closely
related to themaintenance resource, and different operational
strategy corresponds to different operational resource.

5.2.2. Physical Interpretation of 𝜆. The two extreme states of
𝜆 are explained, respectively. Also 𝜆 = 1; that is, the reliability
of system is 𝑅

0
(𝑡); using the reliability calculating method of

independent components suits safety-critical systems. 𝜆 =

0 with the reliability of system equal to 𝑅
𝑐
(𝑡); using the

reliability calculatingmethod of dependent components suits
non-safety-critical systems. For general system, the range
of value of 𝜆 is from 0 to 1. Each 𝜆 corresponds to an
operational strategy which contains both relatively cautious
and optimistic parts.

In general, system operational strategy is a combination
of the above-mentioned two extreme strategies, and the
optimal 𝜆 can be determined by the given operational
resource and guaranteed optimum reliability.There should be
an optimal 𝜆 in case of giving a maintenance resource and an
operational strategy. The optimal estimation value of system
reliability can be obtained based on the operational strategy.
Compared with the traditional system reliability estimated
value without taking the operational strategy into consid-
eration, this estimate value considers the corresponding
relationship between the system reliability and maintenance,
and it can best balance the relationship between the higher
safety and economy of enterprises.

6. Application and Verification of
the High-Speed Train Bogie System

This paper takes the bogie subsystem which belongs to a
high-speed train system as a research example. As shown
in Figure 6, the bogie subsystem reliability conforms to the
situation of Section 4.The networkmodel of bogie subsystem
reliability is shown in Figure 7.

The components’ names of bogie subsystem and their
serial numbers are shown in Table 2. As can be seen from

Table 2: Components’ names and serial numbers of bogie subsys-
tem.

Node number Component Node number Component
𝑉
1

Coupling 𝑉
8

Air spring
𝑉
2

Gearbox 𝑉
9

Draft gear
𝑉
3

Axle 𝑉
10

Beam
𝑉
4

Wheel 𝑉
11

Primary suspension
𝑉
5

Brake disc 𝑉
12

Axle box body
𝑉
6

Brake lining 𝑉
13

Side beam
𝑉
7

Brake clamp 𝑉
14

Intensifier pump

Figure 6, the input node is intensifier pump (V
14
), and the

output node is gearbox (V
3
). According to the calculating

methodmentioned in Section 5.1, only oneminimal path can
be found in bogie subsystem using Matlab. Consider

𝑑 = V
14

→ V
8

→ V
13

→ V
12

→ V
3
. (17)

This paper analyzes the lifetime distribution of five
components (V

14
, V
8
, V
13

, V
12

, V
3
) on the shortest path 𝑑, based

on the failure data of bogie subsystem under field research
and taking running kilometer as lifetime data. The research
collects 50 × 5 groups of lifetime data and estimates the
parameters by the maximum likelihood estimator based on
checking the distribution types, which are obeyed by each
component according to Kolmogorov-Smirnov approach (K-
S). The lifetime of 5 components is observed as the Weibull
distributionwith a 0.02 significance level.Themaximum like-
lihood estimation results of Weibull distribution parameters
are shown in Table 3.

6.1. Bogie System Reliability Estimation When Components
Are Dependent. According to [11], Multiple Frank Copula
Function is chosen for the studies on the reliability of
bogie subsystem. Probability value can be obtained after
substituting 50 × 5 lifetime data of 5 components inWeibull’s
probability density function, and the Frank Copula param-
eter estimation of the minimal path, 𝛽 = 3.386478, can
be obtained by using Newton iteration after substituting
probability values in Frank Copula Function. Frank Copula
Function of the minimal path is

𝐶 (𝐹
1
, 𝐹
2
, 𝐹
3
, 𝐹
4
, 𝐹
5
; 𝛽)

= −
1

3.386478
ln(1 +

∏
5

𝑖=1
(𝑒
−3.386478𝐹

𝑖 − 1)

(𝑒−3.386478 − 1)
5−1

) .
(18)

Substituting 𝛽 andWeibull’s parameter estimation values
of each component in minimal path in (11), it can be found
that

𝑅
𝑐

(𝑡) = 1 −

5

∑
𝑗=1

𝐹
𝑗

(𝑡) + (−1)
𝑘

∑
1<𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑘
≤5

𝐶
1

(𝐹
𝑗
1

(𝑡) ,

𝐹
𝑗
2

(𝑡) , . . . , 𝐹
𝑗
𝑘

(𝑡) , 1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
rest 5−𝑘

) .

(19)
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Table 3: The maximum likelihood estimation of main components in bogie subsystem.

Component Number The parameters estimation value of Weibull distribution Distribution function
𝜂/km 𝑚

V
14

1 119246.3925 1.5436 𝐹
1
(𝑡) = 1 − 𝑒

−[𝑡/119246.3925]
1.5436

V
8

2 108742.4035 1.2458 𝐹
2
(𝑡) = 1 − 𝑒

−[𝑡/108742.4035]
1.2458

V
13

3 476891.2461 1.3325 𝐹
3
(𝑡) = 1 − 𝑒

−[𝑡/476891.2461]
1.3325

V
12

4 289653.1456 1.2457 𝐹
4
(𝑡) = 1 − 𝑒

−[𝑡/289653.1456]
1.2457

V
3

5 364851.2564 1.4688 𝐹
5
(𝑡) = 1 − 𝑒

−[𝑡/364851.2564]
1.4688

Beam

Side beamGearbox

Axle

Wheel

Axle box 
body

Brake disc
Brake lining

Brake clamp

Air spring

Primary 
suspension

Draft gear

Coupling

The bogie subsystem

Air compressor
 Dryer

Main air 
reservoir

The supply 
of brake air 

cylinder

Blast main

Electropneumatic 
converter

Relay valve

Safety 
valve

Weighing 
valve

Anti slide
valve

The brake 
subsystem

Pantograph

Main transformer

Converter

Traction motor

Traction transmission 
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Intensifier 
pump

Figure 6: Network reliability model of the case.
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Figure 7: Reliability network model of bogie subsystem.

6.2. Bogie System Reliability Estimation When Components
Are Independent. The subsystem reliability is 𝑅

0
(𝑡) when

supposing that nodes (components) on the minimal path are
independent. It can be found that

𝑅
0

(𝑡) =

5

∏
𝑖=1

(1 − 𝐹
𝑖
(𝑡)) = (1 − 𝐹

1
(𝑡)) (1 − 𝐹

2
(𝑡))

⋅ (1 − 𝐹
3

(𝑡)) (1 − 𝐹
4

(𝑡)) (1 − 𝐹
5

(𝑡)) .

(20)

Figure 8 shows the curves comparing the reliability distri-
bution of bogie subsystem in the above two situations. 𝑅

𝑐
(𝑡)

represents the system reliability curve when components are
dependent, and 𝑅

0
(𝑡) represents the system reliability curve

when components are independent.
The generalized expression of bogie subsystem reliability

estimation is

𝑅 (𝑡) = 𝜆𝑅
0

(𝑡) + (1 − 𝜆) 𝑅
𝑐

(𝑡) . (21)
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Figure 8: Curve graph comparing the reliability distribution of
bogie subsystem based on dependent and independent components.
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Figure 9: Curve graph about the bogie system reliability with
different 𝜆.

Combining with maintenance resource of the bogie
system, the generalized curve of the bogie system reliability
with different 𝜆 is shown in Figure 9.

For general system, the range of 𝜆 is from 0 to 1. Each
corresponds to an operational strategy which contains both
relatively cautious and optimistic parts. For example, taking
two extreme cases is shown in Figure 9. The bogie system
reliability is 𝑅

0
(𝑡) when 𝜆 = 1, and 𝑡 = 20000 km, and then

𝑅(20000) = 0.7793.The bogie system reliability is 𝑅
𝑐
(𝑡) when

𝜆 = 0, and 𝑡 = 20000 km, and then 𝑅(20000) = 0.9755.
It can be seen that 𝑅

0
(𝑡) < 𝑅

𝑐
(𝑡), which not only

verifies that the system reliability of dependent component
is greater than that of independent component but also
verifies this method taking the safety and economy into
consideration, and it also shows that choice and optimization
of multiobjective operational strategy are rational.

7. Discussion

The traditional reliability theory only studies the system reli-
ability when components are completely independent, which
is too conservative and unfavorable for achieving the system
potential. Considering the interaction relationship between
components not only can guarantee that the system works
well but also accurately reflects the reliability of whole system.
Therefore, the safety property of system to accomplish tasks
can be enhanced to the maximum extent.

Based on the system reliability calculation of dependent
components by applied Copula Function, the convex com-
bination considering operation and maintenance strategy
was introduced. For safety-critical systems, it is suitable
to estimate the system reliability based on the relatively
cautious operational strategy. For non-safety-critical systems,
it is suitable to estimate the system reliability based on the
relatively optimistic operational strategy. For most of general
system, it is better to estimate the system reliability based on
the combination of the above two extreme strategies. Com-
pared with the traditional system reliability estimate value
without taking the operational strategy into consideration,
this estimate value considers the corresponding relationship
between the system reliability and maintenance, and it can
meet the need for balance between the higher safety and
economy of enterprises and also can offer a theory for
scientifically estimating the system reliability of high-speed
trains and making rational maintenance strategy.

Besides, with the given operational resource and guar-
anteed optimum reliability, the system reliability optimal
estimate value can be obtained by optimizing 𝜆. If we did
related research along this thought, some bettermethodsmay
be obtained to solve the issue of system reliability modeling
and estimating on complex electromechanical integration.

8. Conclusion

This paper presents a newmethod to estimate the system reli-
ability based on convex combination considering operation
and maintenance strategy. The main conclusions include the
following:

(1) A new thought was put forward to calculate the
network system reliability of complex dependent
components based on convex combination consid-
ering operation and maintenance strategy, offering
a scientific and practical method to solve the issue
of system reliability modeling and estimating on
complex electromechanical integration.

(2) Taking the bogie system of high-speed train as the
engineering background, the method proposed in
this paper was applied and verified. It showed that this
method can not only take the safety and economy into
consideration but also obtain the rational operational
strategy and realize its reliability estimation.

(3) The convex combination equation of system reliability
considering operation and maintenance strategy was
established in this paper.The subsequent research can
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focus on the optimization of 𝜆 with the given opera-
tional resource and guaranteed optimum reliability.
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