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Comb filters are a class of low-complexity filters especially useful for multistage decimation processes. However, the magnitude
response of comb filters presents a droop in the passband region and low stopband attenuation, which is undesirable in many
applications. In this work, it is shown that, for stringent magnitude specifications, sharpening compensated comb filters requires
a lower-degree sharpening polynomial compared to sharpening comb filters without compensation, resulting in a solution with
lower computational complexity. Using a simple three-addition compensator and an optimization-based derivation of sharpening
polynomials, we introduce an effective low-complexity filtering scheme. Design examples are presented in order to show the
performance improvement in terms of passband distortion and selectivity compared to other methods based on the traditional
Kaiser-Hamming sharpening and the Chebyshev sharpening techniques recently introduced in the literature.

1. Introduction

Efficient decimation filtering for oversampled discrete-time
signals is key in the development of low-power hardware
platforms for reconfigurable communication transceivers [1–
26]. From a practical point of view, decimation is usually
accomplished using a cascade of two (or more) stages. The
filter in the first stage is a comb filter of order 𝐾 decimating
by a factor 𝑀, with 𝑧-transfer function and zero-phase
frequency response, respectively, given as
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Comb filters are used in the first stage of the decimation
chain because their system function is simple and it does not

require any multiplier. However, their magnitude response
exhibits a considerable passband droop in the passband Ω

𝑝
,

Ω
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] , 𝜔
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, (3)

where 𝐷 = 𝑀𝜐 is the total decimation factor and 𝜐 is the
residual decimation factor of the remaining stages in the
multistage architecture. Furthermore, comb filters have low
attenuation in the folding bandsΩ

𝑘
defined as
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] , 𝑘 = 1, 2, . . . , ⌊
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2
⌋ , (4)

where ⌊𝑥⌋ stands for the integer part of 𝑥.
Owing to their reduced computational complexity,

research on comb filters to date has been focused on (1)
improving the magnitude characteristic, (2) preserving lin-
earity of phase, and (3) having the least possible increase of
computational complexity [2–24]. With this background, let
us review the literature in these three categories.
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From the representative sample of works improving the
magnitude characteristics of comb filters, we observe that
the rotated-comb-based schemes [2–7] have the disadvantage
of being susceptible to imperfect pole-zero cancelation. An
effective way to prevent this problem consists in designing
nonrecursive filters [3, 4, 7] with filtering implemented in
polyphase form for ensuring power savings. However, this
may result in higher demand for chip area. Other approaches
improve the passband with low-order compensators and
stopband attenuation by either increasing the order of the
comb filter [8–14] or exploiting additional filtering at high
rate [15–17]. These approaches provide low-complexity solu-
tions, but the passband improvement cannot be completely
controlled.Therefore, thesemethods are convenientwhen the
desired magnitude characteristics are not too stringent, and
when the bandwidth of interest is narrow.

On the other hand, the techniques relying on sharpening
of comb-based filters in [18–24] are effective because they
can take advantage of the structure proposed in [18], which
harnesses the recursive form of comb filters resulting in
Cascaded Integrator Comb- (CIC-) like architectures that
move part of the filtering at lower rate. Additionally, this
structure has all the sharpening coefficients at lower rate and,
when integer coefficients scaled by a power of two are used, an
effective overall structure is obtained, which does not suffer
from finite-precision effects as rotated-comb-basedmethods.

Moreover, two-stage comb-based decimation schemes
have gained great popularity because the comb decimation
filter in the first stage, designed in nonrecursive form, can
be implemented at lower rate by polyphase decomposition,
thus resulting in lower power consumption. The second-
stage filtering operates at lower rate as well, but it can
take advantage of CIC-like architectures for area reduction.
By doing so, the overall comb-based decimation scheme
achieves power and area savings. This approach has been
applied to traditional comb filters [25, 26] and to magnitude-
improved comb filters [5, 15, 17, 20, 21, 24].

2. Problem Motivation, Contributions,
and Paper Organization

The reasons at the very basis of this work stem from the
following observations.

(a) Sharpened compensated comb filters [23, 24] based
on the simplest polynomial of the traditional Kaiser-
Hamming sharpening from [27] provide a good pass-
band improvement over conventional comb filters.
However, in methods [23, 24] the filter designer does
not have control on the exact passband deviation and
stopband attenuation achieved by the designed filter.

(b) In two-stage comb-based decimation schemes, mag-
nitude response improvements over the passband and
the first folding band can be achieved by improving
only the second-stage comb filter. However, in these
cases, the filter in the first stage introduces a passband
droop that cannot be corrected neither by resorting to
traditional Kaiser-Hamming sharpening [27] nor by
using the recent Chebyshev sharpening [22] applied

to the comb filter placed in the second stage. Thus, a
different sharpening approach has to be pursued.

In the light of the previous observations, the contribu-
tions of this work are the following.

(a) We show that, for similar magnitude characteristics,
sharpened compensated comb filters guarantee lower
complexity than sharpened comb filters without com-
pensation, especially when stringent specifications
must be met.

(b) We introduce a low-complexity structure inwhich the
simple multiplierless compensator can be embedded
into the cascaded chain of comb filters working at
lower rate.

(c) We detail the optimization framework to design
sharpened comb-based filters to attain given speci-
fications on the acceptable maximum passband dis-
tortion and selectivity. The optimized sharpening
coefficients are finite-precision values resulting in
multiplierless structures, which are important for
low-power applications. The optimization problem
can be straightforwardly solved with a simple routine
of the MATLAB Optimization Toolbox (available
online at [28]).

The rest of this paper is organized as follows. Section 3
presents a summary of the generalized perspective of sharp-
ening comb-based filters for decimation. The proposed fil-
tering structure and the corresponding guidelines to decide
when to use sharpened compensated filters instead of sharp-
ened comb filters without compensation are introduced in
Section 4. The optimization framework to design sharpened
compensated comb filters along with the key design steps is
provided in Section 5. Section 6 highlights the characteristics
to be considered for the sharpening of the second-stage filter
in a two-stage comb-based architecture. Design examples
are presented in Section 7 where the goal is to contrast the
magnitude responses of the proposedmethod against existing
techniques, namely, the ones based on traditional Kaiser
and Hamming sharpening and the Chebyshev sharpening
methods recently proposed in the literature. Comparisons in
terms of computational complexity quantified in Additions
Per Output Sample (APOS) are also included in that section.
Finally, concluding remarks are presented in Section 8.

3. Generalized Perspective of Sharpening
Comb-Based Filters for Decimation

Let 𝐹(𝑧) and 𝐹(𝜔) be, respectively, the transfer function and
the zero-phase frequency response of an arbitrary comb-
based filter to be sharpened (referred to hereafter as subfilter).
Any arbitrary𝑁th degree sharpening polynomial,

𝑃 (𝑥) =

𝑁

∑

𝑘=0

𝑝
𝑘
𝑥
𝑘
, (5)

allows mapping the amplitude values 𝑥 = 𝐹(𝜔) to new
amplitude values 𝑦 = 𝑃(𝑥). The new values 𝑦 = 𝑃(𝑥)
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must approximate the desired values 𝑑 = 𝐷(𝑥) for 𝑥 ∈

𝑋
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∪ 𝑋
𝑠
, where 𝑋
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𝑝
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𝑋
𝑝
) and 𝛿

𝑠
(for the approximation over the region 𝑋

𝑠
). In

this way, the zero-phase frequency response of the sharpened
filter achieves the desired values with a maximum absolute
passband deviation 𝛿

𝑝
over the range of 𝜔 where 𝐹(𝜔) ∈

𝑋
𝑝
and a maximum absolute stopband deviation 𝛿

𝑠
over the

range of 𝜔 where 𝐹(𝜔) ∈ 𝑋
𝑠
. Usually, 𝐷(𝑥) = 1 for 𝑥 ∈ 𝑋

𝑝

and 𝐷(𝑥) = 0 for 𝑥 ∈ 𝑋
𝑠
. Thus, the sharpening polynomial

must meet the following simultaneous conditions:
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(6)

For the comb-based decimation filter, the range limits for
𝑋
𝑝
and𝑋

𝑠
are

𝑥
𝑝,𝑙

= min {𝐹(𝜔)}|𝜔∈Ω𝑝 ,

𝑥
𝑝,𝑢

= max {𝐹(𝜔)}|𝜔∈Ω𝑝 ,

𝑥
𝑠,𝑙
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𝑥
𝑠,𝑢

= max {𝐹(𝜔)}|Ω1 ,

(7)

whereΩ
𝑝
andΩ

1
are, respectively, given in (3) and (4).

4. Proposed Sharpened Compensated
Comb Filters

Let us consider as subfilter the simplest compensated comb
filter, which has the following transfer function [11]:

𝐹 (𝑧) = 𝐻
𝐾
(𝑧) ⋅ {−2

−(𝑏+2)
[1 − (2

𝑏+2
+ 2) 𝑧

−𝑀
+ 𝑧
−2𝑀

]} .

(8)

The zero-phase frequency response is

𝐹 (𝜔) = 𝐻
𝐾
(𝜔) ⋅ (1 + 2

−(𝑏+1)
− 2
−(𝑏+1) cos (𝑀𝜔)) . (9)

The work [23] has shown that sharpening the subfilter 𝐹(𝑧)
with the polynomial 𝑃(𝑥) = 2𝑥 − 𝑥

2 (a polynomial obtained
using method [27]) results in significant improvement of the
passband characteristic. In that method, the magnitude in
the stopband regions can be arbitrarily improved with the
order of the comb filter, 𝐾, and the parameter 𝑏 must be
adjusted accordingly. The polynomial 𝑃(𝑥) = 2𝑥 − 𝑥

2 has
been chosen in [23] because this is the simplest sharpening
polynomial from [27] that can improve the passband. Due to
that simplicity, it is inferred in [23] that the resulting sharp-
ened compensated comb filter will have a low computational
complexity.

In this paper, we propose to use the general sharpening
polynomial from (5), finding the coefficients through opti-
mization.The transfer function of the sharpened comb-based

filter and its zero-phase frequency response are, respectively,
given as

𝐻
𝑆𝐻 (𝑧) =

𝑁

∑

𝑘=0

𝑧
−(𝑁−𝑘)[𝐾(𝑀−1)/2+𝑀]

𝑝
𝑘
𝐹
𝑘
(𝑧) ,

𝐻
𝑆𝐻 (𝜔) =

𝑁

∑

𝑘=0

𝑝
𝑘
𝐹
𝑘
(𝜔) .

(10)

Figure 1 presents the proposed structure to efficiently imple-
ment a decimation filter in a CIC-like form. The structure is
straightforwardly derived from the combination of both the
structure from [18] and the structure introduced in [23] for
the special case 𝑃(𝑥) = 2𝑥 − 𝑥

2. Note that𝐾must be an even
value to avoid fractional delays.

The computational complexity of this structuremeasured
in Additions Per Output Sample (APOS) is given by

𝐴
𝑐
= 𝑁 [𝐾 (𝑀 + 1) + 3] + 𝑄 − 1 +

𝑄

∑

𝑙=1

𝑆 (𝑝
𝑘𝑙
) , (11)

where 𝑆(𝑝
𝑘𝑙
) indicates the number of adders required to

implement the sharpening coefficient 𝑝
𝑘𝑙

and 𝑄 is the
number of nonzero sharpening coefficients. For comparison
purposes, we present the computational complexity of a
sharpening structure for comb filters without compensation
(structure from [18]), which is given as

𝐴 = �̃�𝐾 (𝑀 + 1) + 𝑄 − 1 +

𝑄

∑

𝑙=1

𝑆 (𝑝
𝑘𝑙
) , (12)

with �̃� being the degree of the sharpening polynomial used
in that structure.

From (11) and (12), we can see that the highest impact
on the APOS complexity metric depends on the products
𝑁𝐾[(𝑀+1)+3] and �̃�𝐾(𝑀+1), respectively. Hence,𝐾 and
𝑁 (or �̃�) should be chosen as smaller values as possible for
any arbitrary decimation factor𝑀. Both𝐾 and𝑁 (or �̃�) have
the same impact on the APOS metric. However, 𝐾 can only
take even values, whereas 𝑁 (or �̃�) can also be odd. Since
decreasing 𝐾 is therefore more convenient, we can set 𝐾 = 2

in advance. This choice leads us to use 𝑏 = 1 in agreement
with [23].

Let us discard the computational complexity introduced
by the sharpening coefficients in both (11) and (12) and
assume 𝐾 = 2 for the reason discussed above. We will
compare the terms𝑁𝐾[(𝑀+1)+3] in (11) and �̃�𝐾(𝑀+1) in
(12), assuming that �̃� = 𝑁 + 𝑎, with 𝑎 being an integer. With
this setup, we have

𝐴
𝑐
≈ 𝐴
𝑐
= 𝑁 [𝐾 (𝑀 + 1) + 3]|𝐾=2 = 2𝑁 (𝑀 + 1) + 3𝑁,

𝐴≈𝐴= �̃�𝐾 (𝑀 + 1)
𝐾=2,�̃�=𝑁+𝑎

=2𝑁 (𝑀 + 1) + 2𝑎 (𝑀 + 1) .

(13)

Note that 𝐴
𝑐
and 𝐴 differ in the terms 3𝑁 versus 2𝑎(𝑀 + 1).

Clearly, the proposed structure can have a lower compu-
tational complexity (i.e., 𝐴

𝑐
< 𝐴) when 𝑎 > 0; that is,
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Figure 1: Proposed CIC-like structure for decimation filtering with sharpened compensated comb filters.

when �̃� > 𝑁. In that case, sharpened compensated comb
filters become convenient when

𝑀 > (
3𝑁

2𝑎
) − 1. (14)

At this point, it is important to mention that we can take
advantage of the frequency transformation approach [29] to
estimate the minimum degree of the sharpening polynomial
𝑃(𝑥) with any of the formulas from [30–32]. These formulas
are expressible as 𝑓(𝛿

𝑝
, 𝛿
𝑠
, 𝜑
𝑝
, 𝜑
𝑠
), where 𝛿

𝑝
and 𝛿

𝑠
are,

respectively, the desired maximum absolute passband and
stopband deviation of the sharpened filter, whereas 𝜑

𝑝
and

𝜑
𝑠
are given as [29]

𝜑
𝑝
= cos−1 (

2𝑥
𝑝,𝑙
− 𝑥
𝑝,𝑢

− 𝑥
𝑠,𝑙

𝑥
𝑝,𝑢

− 𝑥
𝑠,𝑙

) ,

𝜑
𝑠
= cos−1 (

2𝑥
𝑠,𝑢

− 𝑥
𝑝,𝑢

− 𝑥
𝑠,𝑙

𝑥
𝑝,𝑢

− 𝑥
𝑠,𝑙

) ,

(15)

with 𝑥
𝑝,𝑙
, 𝑥
𝑝,𝑢

, 𝑥
𝑠,𝑙
, and 𝑥

𝑠,𝑢
given in (7). Obviously, this is a

preliminary estimation that depends on the accuracy of the
formula being used. Substituting (7) in (15) and using the
Kaiser formula [31], we can estimate𝑁 (or �̃�) as

𝑁 ≈ 𝑓

𝛿
𝑝
, 𝛿
𝑠
, 𝜑
𝑝
, 𝜑
𝑠

2
=

[−20log
10
(√𝛿𝑝𝛿𝑠) − 13] 𝜋

14.6 (𝜑
𝑠
− 𝜑
𝑝
)

. (16)

Upon noticing that the shape of the magnitude response
of comb filters changes very little with 𝑀 [33], we set in
advance 𝑀 = 16 and we estimate the degrees 𝑁 and �̃�

using the Kaiser formula for some typical values of 𝜐, 𝛿
𝑝
, and

𝛿
𝑠
; namely, 𝜐 = 2, 4, 6, and 8; 𝛿

𝑝
= 0.001 (≈0.01 dB) and

𝛿
𝑠
= 0.001 (60 dB), 0.0001 (80 dB) and 0.00001 (100 dB) (to

estimate �̃�, the values𝑥
𝑝,𝑙
,𝑥
𝑝,𝑢

,𝑥
𝑠,𝑙
, and𝑥

𝑠,𝑢
must be obtained

from (7) but first replacing𝐻2(𝜔) from (2) instead of 𝐹(𝜔) in
these equations. To estimate𝑁, we use 𝐹(𝜔) from (9) in these
equations, first replacing𝐾 = 2 and 𝑏 = 1 in (9)). These cases
are shown in Figure 2. Note that, for these specifications,
sharpened compensated comb filters are convenient when
the residual decimation factor 𝜐 is equal to 2 or 4, that is,
for small values. However, generally speaking, sharpened
compensated comb filters become effective as the passband

and stopband specifications become more stringent. From
the previous analysis, we derive the following two important
observations.

(a) In sharpened compensated comb filters, a lower
computational complexity is obtained if 𝐾 = 2. This
is because both𝐾 and𝑁 have the same impact on the
APOS metric. However, 𝐾 can only take even values,
whereas 𝑁 can also be odd. Therefore, preserving
a simple sharpening polynomial and improving the
stopbands with the increase of 𝐾, as suggested in
[23], do not guarantee a result with low computational
complexity.

(b) Upon comparing the sharpened comb and sharpened
compensated comb filters using 𝐾 = 2, the former
requires a polynomial with higher degree. As a con-
sequence, its complexity is higher, despite the use
of compensators in the latter. The reason is that the
increased complexity in the sharpened compensated
comb structures amounts to only 3 extra additions per
polynomial degree (when the compensator from [11]
is used), and these additions work at lower rate.

5. The Optimization Framework to
Design Sharpened Comb Filters

Now, we introduce the optimization framework to obtain
the discrete coefficients of 𝑃(𝑥) for which the maximum
deviation of 𝑃(𝑥) with respect to 𝐷(𝑥), denoted by 𝛿, is
minimized. Note that this polynomial will attain the desired
passband and stopband deviations with a proper polynomial
degree. To find the sharpening polynomial coefficients, we
evaluate the conditions (6) over a dense grid of points 𝑥
covering the ranges𝑋

𝑝
and𝑋

𝑠
.

Let us consider the following notation in order to formal-
ize the optimization problem.

(i) 𝛿
𝑝
and 𝛿

𝑠
are the desired passband and stopband

deviations after sharpening.
(ii) 𝑚 = 10𝑁 is the number of points partitioning the

frequency sets𝑋
𝑝
and𝑋

𝑠
; that is, the overall number

of grid points in the region𝑋
𝑝
∪ 𝑋
𝑠
is 20𝑁.

(iii) 𝑥
𝑖,𝑝

and 𝑥
𝑖,𝑠
are the 𝑖th points belonging to the sets𝑋

𝑝

and 𝑋
𝑠
, respectively. To find these points, we divide
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Figure 2: Estimated degree of the sharpening polynomial to sharpen comb filters (dashed line) and compensated comb filters (solid line),
with 𝛿

𝑝
= 0.001 and 𝛿

𝑠
= 0.001 (a), 𝛿

𝑠
= 0.0001 (b), and 𝛿

𝑠
= 0.00001 (c).

the range of frequencies Ω
𝑝
= [0, 𝜔

𝑝
] into 𝑚 equally

spaced points �̃�
𝑖,𝑝

and the range of frequencies Ω
1
=

[(2𝜋/𝑀) − 𝜔
𝑝
, (2𝜋/𝑀) + 𝜔

𝑝
] into 𝑚 equally spaced

points �̃�
𝑖,𝑠
, with 𝑖 = 1, 2, . . . , 𝑚. Then, we set 𝑥

𝑖,𝑝
=

𝐹(�̃�
𝑖,𝑝
) and 𝑥

𝑖,𝑠
= 𝐹(�̃�

𝑖,𝑠
).

(iv) 𝑑
𝑖,𝑝

and 𝑑
𝑖,𝑠

are the desired amplitudes of the poly-
nomial 𝑃(𝑥) at the points 𝑥 = 𝑥

𝑖,𝑝
and 𝑥 = 𝑥

𝑖,𝑠
,

respectively. Usually, 𝑑
𝑖,𝑝

= 1 and 𝑑
𝑖,𝑠
= 0 for all 𝑖.

(v) [M]
𝑖,𝑗
denotes the entry in the 𝑖th row and 𝑗th column

of the underlined matrixM.
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(vi) [k]
𝑖
denotes the 𝑖th element of the underlined vector

k.
(vii) 𝐵 is an arbitrary word-length for the fractional part in

a fixed-point representation of the sharpening coeffi-
cients. In other words, every sharpening coefficient is
an integer scaled by 2−𝐵:

𝑝
𝑘
= 2
−𝐵
𝑝
𝑘
, 𝑝
𝑘
∈ {integers} , 0 ≤ 𝑘 ≤ 𝑁. (17)

By this setup, the optimization problem proposed in this
paper can be written as

mins f𝑇s subject to As ≤ b,

[s]𝑖 ∈ {integers} , 2 ≤ 𝑖 ≤ 𝑁 + 2,

(18)

where f and s are vectors of size (𝑁 + 2) × 1, A is a matrix of
size 4𝑚× (𝑁+2) and b is a vector of size 4𝑚× 1. In addition,
we have

[s]𝑖 = {
𝛿; 𝑖 = 1,

𝑝
𝑖−2
; 𝑖 = 2, 3, . . . , 𝑁 + 2,

(19)

[f]𝑖 = {
1; 𝑖 = 1,

0; 𝑖 = 2, 3, . . . , 𝑁 + 2,
(20)

[A]𝑖,𝑗 =
{{{

{{{

{

−1; 1 ≤ 𝑖 ≤ 2𝑚, 𝑗 = 1,

−
𝛿
𝑠

𝛿
𝑝

; 2𝑚 < 𝑖 ≤ 4𝑚, 𝑗 = 1,

(21)

[A]𝑖,𝑗 =

{{{{{{

{{{{{{

{

2
−𝐵
(𝑥
𝑖,𝑝
)
𝑗−2

; 1 ≤ 𝑖 ≤ 𝑚, 2 ≤ 𝑗 ≤ 𝑁 + 2,

−2
−𝐵
(𝑥
𝑖−𝑚,𝑝

)
𝑗−2

; 𝑚 < 𝑖 ≤ 2𝑚, 2 ≤ 𝑗 ≤ 𝑁 + 2,

2
−𝐵
(𝑥
𝑖−2𝑚,𝑠

)
𝑗−2

; 2𝑚 < 𝑖 ≤ 3𝑚, 2 ≤ 𝑗 ≤ 𝑁 + 2,

−2
−𝐵
(𝑥
𝑖−3𝑚,𝑠

)
𝑗−2

; 3𝑚 < 𝑖 ≤ 4𝑚, 2 ≤ 𝑗 ≤ 𝑁 + 2,

(22)

[b]𝑖 =

{{{{{

{{{{{

{

𝑑
𝑖,𝑝
; 1 ≤ 𝑖 ≤ 𝑚,

−𝑑
𝑖−𝑚,𝑝

; 𝑚 < 𝑖 ≤ 2𝑚,

𝑑
𝑖−2𝑚,𝑠

; 2𝑚 < 𝑖 ≤ 3𝑚,

−𝑑
𝑖−3𝑚,𝑠

; 3𝑚 < 𝑖 ≤ 4𝑚.

(23)

The optimization problem in (18) is a constrained mixed
integer linear programming (MILP) problem whose solution
can be obtained with generic MILP solvers. As Coleman
pointed out in [22], these optimization resources could be
inaccessible to many designers. However, the size of this
problem is generally small and the simple MATLAB code
available online [28] can be used straightforwardly. Such
routine is based on the linprog function belonging to the
MATLAB Optimization Toolbox. Once the vector s has been
obtained, the sharpening coefficients can be found as follows:

𝑝
𝑘
= 2
−𝐵
[s]𝑘+2, 0 ≤ 𝑘 ≤ 𝑁. (24)

We notice in passing that a somewhat similar optimiza-
tion approach was derived by Candan and made available

online at [34], along with an extensive MATLAB code that,
in general terms, finds the infinite-precision coefficients
using the linprog function. However, the work [34] does not
provide any method to find optimal discrete coefficients and
simple rounding has been applied to the infinite precision
solution, making pointless the infinite-precision optimiza-
tion. Moreover, method [34] is focused on sharpening tra-
ditional comb filters without compensation.

5.1. Design Steps of the Proposed Method. Given the desired
passband and stopband deviations 𝛿

𝑝
and 𝛿
𝑠
, the design steps

of the proposed method can be summarized as follows

(1) Find 𝑥
𝑝,𝑙
, 𝑥
𝑝,𝑢

, 𝑥
𝑠,𝑙
, and 𝑥

𝑠,𝑢
using (7). Then, find the

values 𝜑
𝑝
and 𝜑

𝑠
with (15) and estimate the degree𝑁

of the sharpening polynomial using (16).

(2) Obtain 𝑚 = 10𝑁 equally spaced points �̃�
𝑖,𝑝

and �̃�
𝑖,𝑠
,

for 𝑖 = 1, 2, . . . , 𝑚, over the regions Ω
𝑝

= [0, 𝜔
𝑝
]

and Ω
1
= [(2𝜋/𝑀) − 𝜔

𝑝
, (2𝜋/𝑀) + 𝜔

𝑝
], respectively,

assigning �̃�
1,𝑝

= 0, �̃�
𝑚,𝑝

= 𝜔
𝑝
, �̃�
1,𝑠

= (2𝜋/𝑀) − 𝜔
𝑝
,

and �̃�
𝑚,𝑠

= (2𝜋/𝑀) + 𝜔
𝑝
, with 𝜔

𝑝
given in (3). Then,

set 𝑥
𝑖,𝑝

= 𝐹(�̃�
𝑖,𝑝
) and 𝑥

𝑖,𝑠
= 𝐹(�̃�

𝑖,𝑠
), with 𝐹(𝜔) given

in (9).

(3) Choose the desired word-length 𝐵 and the desired
values 𝑑

𝑖,𝑝
and 𝑑

𝑖,𝑠
, for 𝑖 = 1, 2, . . . , 𝑚.

(4) Create f , A and b using (20)–(23). Then, solve the
problem (18) for s. A straightforward way is using the
MATLAB routine available online at [28].

(5) Obtain the sharpening coefficients 𝑝
𝑘
using (24).

6. Sharpening the Second-Stage Filter in
a Two-Stage Architecture

Earlier in this paper we pointed out that the two-stage
comb-based structure, which can be formed when the dec-
imation factor 𝑀 can be expressed as 𝑀 = 𝑀

1
𝑀
2
, is

effective to balance area and power consumptions.When this
structure is chosen, the second-stage comb filter must be
carefully designed since this is the filter where the worst-case
magnitude characteristic of the overall cascade does occur.
Moreover, the first-stage comb filter introduces a passband
droop that should be corrected as well. It is interesting to note
that, with the proposed sharpening approach, we can obtain
an overall magnitude response attaining desired passband
and stopband deviations by improving only the second-
stage filter. However, we must have monotonic magnitude
characteristic over the passband region of the filter to be
sharpened.

The transfer function of the proposed two-stage filter is

𝐻
𝑇𝑆 (𝑧) = 𝐻

𝐾1

1
(𝑧) ⋅ [

𝑁

∑

𝑘=0

𝑧
−𝑀1(𝑁−𝑘)𝑝

𝑘
𝐹
𝑘

2
(𝑧
𝑀1)] , (25)

where𝐻
1
(𝑧) = 𝐻(𝑧), with𝐻(𝑧) given in (1) but replacing𝑀

by𝑀
1
, and 𝐹

2
(𝑧) = 𝐹(𝑧), with 𝐹(𝑧) given in (8) but replacing
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𝑀 by 𝑀
2
, 𝐾 = 2, and 𝑏 = 1. The zero-phase frequency res-

ponse is

𝐻
𝑇 (𝜔) = 𝐻

𝐾1

1
(𝜔) ⋅

𝑁

∑

𝑘=0

𝑝
𝑘
𝐹
𝑘

2
(𝑀
1
𝜔) , (26)

where𝐻
1
(𝜔) = 𝐻(𝜔), with𝐻(𝜔) given in (2) but replacing𝑀

by𝑀
1
, and𝐹

2
(𝜔) = 𝐹(𝜔), with𝐹(𝜔) given in (9) but replacing

𝑀 by𝑀
2
, 𝐾 = 2, and 𝑏 = 1.

Let us identify

𝑃 (𝐹
2
(𝑀
1
𝜔)) =

𝑁

∑

𝑘=0

𝑝
𝑘
𝐹
𝑘

2
(𝑀
1
𝜔) . (27)

To correct the passband droop of the first-stage comb filter,
whose zero-phase frequency response is 𝐻𝐾1

1
(𝜔), the zero-

phase frequency response of the second-stage sharpened
filter, 𝑃(𝐹

2
(𝑀
1
𝜔)), must be designed to follow an amplitude

given by 1/𝐻𝐾1
1
(𝜔) over the frequency interval Ω

𝑝
= [0, 𝜔

𝑝
].

Therefore, the desired values 𝑑
𝑖,𝑝

with 𝑖 = 1, 2, . . . , 𝑚must be
chosen as

𝑑
𝑖,𝑝

=
1

𝐻
𝐾1

1
(�̃�
𝑖,𝑝
)

, (28)

where �̃�
𝑖,𝑝
is the 𝑖th point of the equally spaced partition ofΩ

𝑝

(see Section 5). Since𝐻
1
(𝜔) is monotonically decreasing over

Ω
𝑝
, all the desired values 𝑑

𝑖,𝑝
are different from each other.

Thus, 𝑃(𝑥
𝑖,𝑝
) can approximate every value 𝑑

𝑖,𝑝
, with 𝑥

𝑖,𝑝
=

𝐹
2
(𝑀
1
�̃�
𝑖,𝑝
), if 𝑥
𝑖,𝑝

̸= 𝑥
𝑗,𝑝

for all 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑚. To meet
this condition, 𝐹

2
(𝑀
1
𝜔)must be monotonic overΩ

𝑝
. Finally,

the entries [A]
𝑖,1

and [A]
𝑖+𝑚,1

in (21) must be multiplied by
𝑑
𝑖,𝑝
. Similarly, the entries [A]

𝑖+2𝑚,1
and [A]

𝑖+3𝑚,1
must be

multiplied by 1/𝐻
𝐾1

1
(�̃�
𝑖,𝑠
), where �̃�

𝑖,𝑠
is the 𝑖th point of the

equally spaced partition ofΩ
1
= [(2𝜋/𝑀)−𝜔

𝑝
, (2𝜋/𝑀)+𝜔

𝑝
]

(see Section 5). This is done in order to achieve an equiripple
passband deviation in the overall filter𝐻

𝑇𝑆
(𝑧).

7. Examples and Discussion of Results

The following examples are discussed to show the
improvement of magnitude characteristics of comb filters
achieved with the proposed method in comparison to
other sharpening-based schemes recently introduced in the
literature.

Example 1 (see the example in Section 4 of [22]). Consider
𝑀 = 16, 𝜐 = 4, and 𝜔

𝑝
= 0.907 𝜋/(𝑀𝜐). The goal is to attain

at least −100 dB gain in the folding bands, with an additional
passband improvement without any specific constraint.

Let us consider the following solutions.

(a) A 1st-order comb filter (𝐾 = 1), presharpened by the
polynomial 𝑃

1
(𝑥) = 2𝑥

2
− 𝑥
4 and then sharpened

with the 5th-order degree, first kind, Chebyshev
polynomial 𝑃(𝑥) = 5𝑥 − 20𝑥

3
+ 16𝑥

5 (solution using
the presharpening approach introduced in Section 6
(a) of [22]). This filter is identified by𝐻

𝑎
(𝑧).
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Figure 3: Magnitude responses of the filters 𝐻
𝑎
(𝑧) (method [22]),

𝐻
𝑏
(𝑧) (method [23]), and 𝐻

𝑐
(𝑧) (proposed method), presented in

Example 1 with𝑀 = 16, 𝜐 = 4, and 𝜔
𝑝
= 0.907 𝜋/(𝑀𝜐).

Table 1: Comparisons in terms of APOS for Examples 1 and 2.

Method Example 1 Example 2
[22] APOS > 360 —
[23] APOS = 211 APOS = 223
Proposed APOS = 154 APOS = 164

(b) A compensated comb filter with 𝐾 = 6 and 𝑏 = −1,
sharpened with the polynomial 𝑃(𝑥) = 2𝑥 − 𝑥

2

(solution using the method of [23]). Let us call this
filter𝐻

𝑏
(𝑧).

(c) 𝐻
𝑐
(𝑧), a compensated comb filter with 𝐾 = 2 and

compensation parameter 𝑏 = 1, sharpened with the
polynomial𝑃(𝑥) = 2

−5
(−3𝑥
2
+131𝑥

3
−96𝑥
4
) (solution

using the scheme proposed in this work with 𝛿
𝑝
=

0.0006 and 𝛿
𝑠
= 0.000032).

Figure 3 shows the magnitude response of these filters,
along with detail in passband and the first folding band.
Notice that the three filters attain the −100 dB requirement
in the folding bands. In the passband, the behaviors of filters
proposed in [22, 23] are similar. The proposed filter, on the
other hand, achieves better passbanddroop correction, which
meets the 0.01 dB ripple (𝛿

𝑝
= 0.0006) specification.

When it comes to the complexities in terms of APOS,
the proposed solution achieves better results too. The filter
𝐻
𝑎
(𝑧), implemented with a CIC-like structure, requires 20

integrators working at high rate, due to its double-sharpening
scheme. Therefore, its APOS metric would be higher than
320 = 20 × 16. On the other hand, the APOS of 𝐻

𝑏
(𝑧) is

211 (see [23] for calculation of APOS in such structure). In
the proposed method, we substitute𝑀 = 16, 𝐾 = 2, 𝑁 = 4,
𝑄 = 3, 𝑆(𝑝

2
= 3) = 1, 𝑆(𝑝

3
= 131) = 2, and 𝑆(𝑝

4
= 96) = 1 in

(11) obtaining an APOS of 154. These results are summarized
in Table 1.

Example 2. Consider a two-stage decimation filter with𝑀
1
=

8, 𝑀
2
= 17, 𝜐 = 2, and 𝜔

𝑝
= 0.9 𝜋/(𝑀

1
𝑀
2
𝜐). The goal

is to attain an attenuation of 60 dB in the folding bands
with an additional passband improvement (without any given
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Figure 4: Magnitude responses of the filters 𝐻
𝑎
(𝑧) (method [23])

and 𝐻
𝑏
(𝑧) (proposed method), presented in Example 2 with 𝑀 =

𝑀
1
𝑀
2
= 8 ∗ 17 = 136, 𝜐 = 2, and 𝜔

𝑝
= 0.9 𝜋/(𝑀𝜐).

constraint). Assuming that the first-stage filter is a comb filter
with 𝐾

1
= 4, let us consider the following solutions for the

second-stage filter:

(a) 𝐻
𝑎
(𝑧), a compensated comb filter with𝐾 = 6 and 𝑏 =

−1, sharpened with the polynomial 𝑃(𝑥) = 2𝑥 − 𝑥
2

(solution using the method in [23]);

(b) 𝐻
𝑏
(𝑧), a compensated comb filter with 𝐾 = 2 and

compensation parameter 𝑏 = 1, sharpened with
the polynomial 𝑃(𝑥) = 2

−5
(−𝑥 + 5𝑥

2
+ 116𝑥

3
−

88𝑥
4
) (solution using the proposed scheme with 𝛿

𝑝
=

0.0006 and 𝛿
𝑠
= 0.001).

Figure 4 shows the magnitude response characteristics
of these filters along with passband and first folding band
details. Clearly, the filter designed with the proposed method
presents both improvements: (1) better magnitude charac-
teristic and (2) lower complexity, as summarized in Table 1.
For this example, the APOS in Table 1 corresponds to the
second-stage filter (the first-stage filtering is the same in both
solutions and therefore it is omitted).

8. Conclusion

This paper proposed an optimization framework to design
sharpening polynomials specifically suited to comb-based
decimation filtering. The goal of the optimization problem
was to minimize the min-max error over the frequency
bands of interest of the sharpened filter. The optimization
problem can be solved straightforwardly using the MAT-
LAB Optimization Toolbox. The sharpening coefficients are
guaranteed to be integers scaled by power-of-2 terms, thus
resulting in low-complexity structures. Moreover, it was
shown that the use of compensated comb filters, instead of
combs only as basic building blocks in the sharpened filter,
results in lower complexity structures (in terms of Additions
Per Output Sample) for the same magnitude characteristics.
Finally, it was shown that the proposed method provides
better magnitude characteristic than other sharpening-based
approaches for two-stage comb-based structures since it is

able to correct the passband droop introduced by the first-
stage comb filter.
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