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A green and highly efficient method has been developed for the one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-
component condensation of aldehydes, 1,3-cyclic diketones, and malononitrile under MW irradiation without using any
catalyst and solvent. This transformation presumably occurs by a sequential Knoevenagel condensation, Michael addition, and
intramolecular cyclization. Operational simplicity, solvent and catalyst-free conditions, the compatibility with various functional
groups, nonchromatographic purification technique, and high yields are the notable advantages of this procedure.

1. Introduction

Development of environmentally benign and clean synthetic
procedures has become the goal of organic synthesis in recent
times [1–5]. The multicomponent reactions (MCRs) are one
of the most powerful and efficient tools in organic synthesis
for the invention of biologically important scaffolds in the
viewpoint of green chemistry [6–9]. One-pot multicompo-
nent reactions (MCRs) have attracted considerable attention
from the viewpoint of ideal synthesis by virtue of their
efficiency, facile implementation, and generally high yield of
the products [10–13]. Indeed, the concept of environmental
factor (E-factor) and atom economy have gradually become
included into conventional organic synthesis in both industry
and academia. Solvents are the main reason for an insuffi-
cient E-factor, especially in synthesis of fine chemicals and
pharmaceutical industries [14, 15]. As a result, it has become
imperative both in academia and industry to design catalyst-
and solvent-freeMCRs, as these processes are rendered green
with reduction of waste, time, manpower, and cost [16–21].

Recently MW-assisted chemistry has become a useful
technique for a variety of applications in organic synthesis
and transformations [22–25]. Microwave (MW)-promoted
MCRs have been attracting research interest from chemists

because these reactions exhibit some particular or unex-
pected reactivities and also because of their significant use-
fulness in green chemistry [5, 26]. In continuation of our
research, we have reported few MW-promoted multicompo-
nent coupling reactions in various chemical transformations
for the synthesis of useful heterocyclic compounds [27–
32]. Very recently, we have reported an efficient synthesis
of pyrano[3,2-c]coumarin derivatives via copper(II) triflate
catalyzed tandem reaction of 4-hydroxycoumarin with 𝛼, 𝛽-
unsaturated carbonyl compounds under solvent-free condi-
tions [33]. 4H-Benzo[b]pyrans are ubiquitous to a variety
of biologically active molecules and have been shown to
a wide range of pharmacological activities and biological
properties, for example, spasmolytic, diuretic, anticoagulant,
anticancer, and anti-anaphylactic activities [34–36]. In the
last decade numerous methods have been developed for
the synthesis of 4H-benzo[b]pyrans [37–67] by using a
broad variety of toxic nitrogen-containing bases [37–47],
electrolytic multicomponent transformation [48], hazardous
and volatile organic solvents [49, 50], different types of
metal catalysts particularly, MgO [50, 51], nano-MgO in
[bmIm]BF

4
[54], SiO

2
NPs [55], ZnONPs [56, 57], biocatalyst

[58], and mesoporous material [60]. Few solvent-free and
microwave assisted methodologies have also been reported

Hindawi Publishing Corporation
Organic Chemistry International
Volume 2014, Article ID 851924, 8 pages
http://dx.doi.org/10.1155/2014/851924



2 Organic Chemistry International

for the preparation of this moiety with limited substrates
scope [61–63]. Very recently meglumine [64], urea [65],
ZnFe
2
O
4
[66], andFe

3
O
4
NPs [67] have beenused for the syn-

thesis of these compounds. Regardless of their efficiency and
reliability, most of these methodologies are not satisfactory
in view of green chemistry bymeans of using large amount of
volatile solvents, toxic and uneasily available catalyst, longer
reaction times, and lower yields. To avoid these limitations,
there is a need for a simple, efficient, and cost-effective “green
protocol” for the synthesis of 4H-benzo[b]pyran derivatives
under environmentally friendly conditions.

2. Materials and Methods

Reactions carried out under scientific microwave reactor
(Biotage, Initiator EXP EU 355301). Melting points were
determined on a glass disk with an electric hot plate and are
uncorrected. 1H NMR (400MHz) and 13C NMR (100MHz)
spectra were run in DMSO-𝑑

6
and CDCl

3
solutions. IR spec-

trawere taken asKBr plates in a Shimazdu 8400S FTIR. Com-
mercially available substrates were freshly distilled before the
reaction. Solvents, reagents, and chemicals were purchased
from Aldrich, Fluka, Merck, SRL, Spectrochem and Process
Chemicals.

2.1. General Procedure for Tetrahydrobenzo[b]pyran (4). A
equimolar mixture of aldehyde (1mmol), malononitrile
(1mmol) and 1,3-cyclic diketone (1mmol) was taken in a
microwave vessel. The reaction mixture was irradiated under
scientific microwave (Biotage, Initiator EXP EU 355301) at
80∘C for a certain period of time to complete the reaction.
The reaction mixture was then washed with ethanol (10mL)
to afford the crude product as solid, which was recrystallized
from EtOH to get the analytically pure product.

2.1.1. 2-Amino-7,7-dimethyl-5-oxo-4-phenyl-5,6,7,8-tetrahy-
dro-4H-chromene-3-carbonitrile (4aa). White solid (88%),
m.p.: 230-231∘C ([53] 230∘C); 1H NMR (400MHz, DMSO-
𝑑
6
): 𝛿 = 7.23–7.19 (m, 2H, H-Ar), 7.12–7.06 (m, 3H, H-Ar), 6.93

(brs, 2H,NH
2
), 4.10 (s, 1H,H-4), 2.45-2.44 (m, 2H, CH

2
), 2.18

(d, J = 16.4Hz, 1H, H-6󸀠), 2.02 (d, J = 16Hz, 1H, H-6), 0.96
(s, 3H, CH

3
), 0.88 (s, 3H, CH

3
) ppm; 13C NMR (100MHz,

DMSO-𝑑
6
): 𝛿 = 195.8, 162.6, 158.5, 144.8, 128.4, 127.2, 126.6,

119.8, 112.8, 58.3, 50.0, 35.6, 31.8, 28.4, 26.8 ppm; IR (KBr):
3435, 3318, 2913, 2198, 1672 cm−1.

2.1.2. 2-Amino-7,7-dimethyl-5-oxo-4-p-tolyl-5,6,7,8-tetrahy-
dro-4H-chromene-3-carbonitrile (4ba). White solid (88%),
m.p.: 216-217∘C ([53] 218∘C); 1H NMR (400MHz, CDCl

3
): 𝛿

= 7.12–7.07 (m, 4H, H-Ar), 4.56 (brs, 2H, NH
2
), 4.35 (s, 1H,

H-4), 2.43 (s, 2H, CH
2
), 2.25 (s, 3H, CH

3
), 2.21 (d, J = 5.6Hz,

2H, CH
2
), 1.10 (s, 3H, CH

3
), 1.03 (s, 3H, CH

3
) ppm; 13CNMR

(100MHz, CDCl
3
): 𝛿 = 195.8, 161.3, 157.3, 140.2, 136.6, 129.2,

127.3, 118.7, 114.1, 50.6, 40.6, 35.1, 32.1, 28.8, 27.7, 21.0 ppm; IR
(KBr): 3413, 3324, 2956, 2191, 1664 cm−1.

2.1.3. 2-Amino-4-(4-chlorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile (4ca). White solid

(84%), m.p.: 208-209∘C ([53] 206∘C); 1H NMR (400MHz,
DMSO-𝑑

6
): 𝛿 = 7.27 (d, J = 8.4Hz, 2H, H-Ar), 7.19 (d, J =

8.4Hz, 2H, H-Ar), 4.59 (br, 2H, NH
2
), 4.40 (s, 1H, H-4), 2.46

(s, 2H, CH
2
), 2.23 (d, J = 7.6Hz, 2H, CH

2
), 1.13 (s, 3H, CH

3
),

1.04 (s, 3H, CH
3
) ppm; 13C NMR (100MHz, DMSO-𝑑

6
): 𝛿

= 195.6, 162.6, 158.5, 143.7, 131.1, 129.1, 128.2, 119.5, 112.3, 57.7,
49.9, 35.1, 31.7, 28.3, 26.8 ppm; IR (KBr): 3390, 3321, 3253,
3211, 2962, 2190, 1739, 1681, 1654, 1604, 1213, 1039, 844 cm−1.

2.1.4. 2-Amino-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile (4da). Yellow solid
(82%),m.p.: 178–180∘C ([47] 180–182∘C); 1HNMR(400MHz,
DMSO-𝑑

6
): 𝛿 = 8.10 (d, J = 8.8Hz, 2H, H-Ar), 7.37 (d, J =

8.8Hz, 2H, H-Ar), 7.12 (brs, 2H, NH
2
), 4.29 (s, 1H, H-4),

2.47–2.44 (m, 2H, CH
2
), 2.20 (d, J = 16Hz, 1H, H-6󸀠), 2.04

(d, J = 16Hz, 1H, H-6), 0.97 (s, 3H, CH
3
), 0.89 (s, 3H, CH

3
)

ppm; 13CNMR (100MHz, DMSO-𝑑
6
): 𝛿 = 195.8, 158.6, 152.3,

146.3, 128.7, 125.6, 123.7, 119.4, 111.7, 57.0, 49.9, 35.7, 31.9, 28.3,
27.0 ppm; IR (KBr): 3436, 3324, 2196, 1668 cm−1.

2.1.5. 2-Amino-4-(4-methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile (4ea). Yellow solid
(83%), m.p.: 201–203∘C ([53] 203∘C); 1H NMR (400MHz,
DMSO-𝑑

6
): 𝛿 = 7.05 (d, J = 8.8Hz, 2H, H-Ar), 6.95 (br, 2H,

NH
2
), 6.84 (d, J = 8.8Hz, 2H, H-Ar), 4.12 (s, 1H, H-4), 3.71 (s,

3H, OCH
3
), 2.50-2.49 (m, 2H, CH

2
), 2.22-2.21 (m, 2H, CH

2
),

1.03 (s, 3H,CH
3
), 0.94 (s, 3H,CH

3
) ppm; 13CNMR(100MHz,

DMSO-𝑑
6
): 𝛿 = 195.6, 162.1, 158.4, 157.9, 136.8, 128.2, 119.8,

113.6, 113.0, 58.5, 55.0, 50.1, 34.7, 31.7, 28.4, 26.7 ppm; IR (KBr):
3376, 3316, 2955, 2194, 1683, 1140, 1035, 842 cm−1.

2.1.6. (E)-2-Amino-7,7-dimethyl-5-oxo-4-styryl-5,6,7,8-tetra-
hydro-4H-chromene-3-carbonitrile (4fa). White solid (74%),
m.p.: 187-188∘C ([47] 183–185∘C); 1H NMR (400MHz,
DMSO-𝑑

6
): 𝛿=7.30 (d, J =7.2Hz, 2H,H-Ar), 7.21 (t, J =7.6Hz,

2H, H-Ar), 7.16–7.14 (m, 1H, H-Ar), 7.01 (brs, 2H, NH
2
), 6.30

(d, J = 16Hz, 1H, CH), 6.03–5.98 (m, 1H, CH), 3.75 (d, J =
7.2Hz, 1H, H-4), 2.36-2.35 (m, 2H, CH

2
), 2.17 (d, J = 13.2Hz,

2H, CH
2
), 0.96 (s, 3H, CH

3
), 0.93 (s, 3H, CH

3
) ppm; 13C

NMR (100MHz, DMSO-𝑑
6
): 𝛿 = 196.3, 162.8, 159.6, 136.8,

131.5, 129.6, 129.0, 127.8, 126.6, 120.3, 112.2, 55.5, 50.5, 33.2, 32.2,
28.6, 27.3 ppm; IR (KBr): 3436, 3321, 2933, 2193, 1673 cm−1.

2.1.7. 2-Amino-4-(3-hydroxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile (4ga). White solid
(76%), m.p.: 228-229∘C ([53] 225∘C); 1H NMR (400MHz,
DMSO-𝑑

6
): 𝛿 = 9.29 (s, 1H, OH), 7.01–6.92 (m, 3H, H-Ar),

6.51–6.47 (m, 3H, H-Ar, NH
2
), 3.99 (s, 1H, H-4), 2.44-2.43

(m, 2H, CH
2
), 2.19 (d, J = 16Hz, 1H, H-6󸀠), 2.03 (d, J =

16Hz, 1H, H-6), 0.96 (s, 3H, CH
3
), 0.89 (s, 3H, CH

3
) ppm;

13C NMR (100MHz, DMSO-𝑑
6
): 𝛿 = 196.1, 162.8, 158.9, 157.7,

146.5, 129.6, 120.2, 118.1, 114.4, 113.9, 113.2, 58.7, 50.3, 35.8, 32.2,
28.8, 27.1 ppm; IR (KBr): 3431, 3335, 2915, 1668 cm−1.

2.1.8. 2-Amino-4-(4-hydroxy-3-methoxyphenyl)-7,7-dimethyl-
5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4ha).
White solid (82%), m.p.: 242–244∘C ([47] 240–242∘C); 1H
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NMR (400MHz, DMSO-𝑑
6
): 𝛿 = 8.86 (s, 1H, OH), 6.92

(s, 2H, NH
2
), 6.68–6.64 (m, 2H, Ar-H), 6.53–6.50 (m, 1H,

Ar-H), 4.07 (s, 1H, H-4), 3.71 (s, 3H, OCH
3
), 2.51–2.48 (m,

2H, CH
2
), 2.25 (d, J = 16Hz, 1H, H-6󸀠), 2.10 (d, J = 16Hz, 1H,

H-6), 1.03 (s, 3H, CH
3
), 0.97 (s, 3H, CH

3
) ppm; 13C NMR

(100MHz, DMSO-𝑑
6
): 𝛿 = 195.8, 162.2, 158.4, 147.3, 145.2,

135.8, 119.9, 119.4, 115.3, 113.0, 111.4, 58.8, 55.6, 50.0, 35.0, 31.8,
28.5, 26.6 ppm; IR (KBr): 3416, 3341, 2923, 2192, 1662 cm−1.

2.1.9. 2-Amino-4-(benzo[d][1,3]dioxol-5-yl)-7,7-dimethyl-5-oxo-
5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4ia). White
solid (88%), m.p.: 224-225∘C; 1H NMR (400MHz, DMSO-
𝑑
6
): 𝛿 = 6.97 (brs, 2H, NH

2
), 6.81 (d, J = 8Hz, 1H, H-Ar),

6.62–6.59 (m, 2H, H-Ar), 5.97 (s, 2H, CH
2
), 4.10 (s, 1H, H-

4), 2.50 (s, 2H, CH
2
), 2.24 (d, J = 16Hz, 1H, H-6󸀠), 2.12 (d, J

= 16Hz, 1H, H-6), 1.03 (s, 3H, CH
3
), 0.96 (s, 3H, CH

3
) ppm;

13CNMR (100MHz, DMSO-𝑑
6
): 𝛿 = 195.8, 162.4, 158.4, 147.2,

145.9, 138.9, 120.3, 112.7, 108.0, 107.5, 100.9, 58.5, 50.0, 35.2, 31.8,
28.3, 26.9 ppm; IR (KBr): 3435, 3318, 2923, 2198, 1670 cm−1;
Anal. Calcd. for C

19
H
18
N
2
O
4
: C, 67.44; H, 5.36; N, 8.28%;

Found: C, 67.36; H, 5.31; N, 8.22%.

2.1.10. 2-Amino-4-(4-bromophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile (4ja). White solid
(85%), m.p.: 210–212∘C ([53] 215∘C); 1H NMR (400MHz,
DMSO-𝑑

6
): 𝛿 = 7.48 (d, J = 8.4Hz, 2H, H-Ar), 7.10 (d, J =

8.4Hz, 2H, H-Ar), 7.06 (brs, 2H, NH
2
), 4.18 (s, 1H, H-4),

2.51-2.50 (m, 2H, CH
2
), 2.25 (d, J = 16Hz, 1H, H-6󸀠), 2.10

(d, J = 16Hz, 1H, H-6), 1.03 (s, 3H, CH
3
), 0.94 (s, 3H, CH

3
)

ppm; 13C NMR (100MHz, DMSO-𝑑
6
): 𝛿 = 196.1, 163.0, 158.8,

144.5, 131.6, 129.9, 120.0 (2C), 112.6, 58.0, 50.3, 35.6, 32.2, 28.7,
27.2 ppm.

2.1.11. 2-Amino-4-(furan-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tet-
rahydro-4H-chromene-3-carbonitrile (4ka). White solid
(72%), m.p.: 224–226∘C ([47] 220–222∘C); 1H NMR
(400MHz, DMSO-𝑑

6
): 𝛿 = 7.41-7.40 (m, 1H, CH), 7.01 (brs,

2H, NH
2
), 6.26-6.25 (m, 1H, CH), 5.99-5.98 (m, 1H, CH),

4.25 (s, 1H, H-4), 2.48–2.39 (m, 2H, CH
2
), 2.22 (d, J = 16Hz,

1H, H-6󸀠), 2.10 (d, J = 16Hz, 1H, H-6), 0.97 (s, 3H, CH
3
),

0.91 (s, 3H, CH
3
) ppm; 13C NMR (100MHz, DMSO-𝑑

6
): 𝛿 =

195.6, 163.4, 159.4, 155.8, 141.8, 119.6, 110.5, 110.4, 105.1, 55.4,
49.9, 31.9, 29.0, 28.5, 26.6 ppm; IR (KBr): 3441, 3314, 2923,
2182, 1665 cm−1.

2.1.12. Typical Procedure for the Synthesis of 2-Amino-4-
cyclohexyl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chrom-
ene-3-carbonitrile (4la). A mixture of cyclohexanecarbalde-
hyde (1mmol), malononitrile (1mmol), and dimedone
(1mmol) was taken in a microwave vessel. The reaction
mixture was irradiated under scientific microwave (Biotage,
Initiator EXP EU 355301) at 80∘C for 7min to complete the
reaction.The reaction mixture was then washed with ethanol
(10mL) to afford the crude product as solid, which was
recrystallized from EtOH to get the analytically pure product
as white solid (88%). M.p.: 203-204∘C; 1H NMR (400MHz,
CDCl

3
): 𝛿 = 4.65 (br, 2H, NH

2
), 3.31 (s, 1H, H-4), 2.38-2.37

(m, 2H, CH
2
), 2.29-2.28 (m, 2H, CH

2
), 1.75–1.63 (m, 4H,

CH
2
), 1.49–1.41 (m, 2H, CH

2
), 1.34–1.31 (m, 1H, CH

2
), 1.11–

1.09 (m, 9H,CH
2
andCH

3
), 0.95–0.92 (m, 1H,CH

2
) ppm; 13C

NMR (100MHz, CDCl
3
): 𝛿 = 196.5, 163.2, 159.9, 120.3, 114.1,

58.5, 50.8, 43.7, 40.6, 34.7, 32.0, 30.4, 29.2, 27.7, 27.3, 26.5, 26.2,
26.1 ppm. IR (KBr): 3409, 3326, 2923, 2192, 1662, 1373, 1255,
1213, 1033, 945 cm−1; Anal. Calcd. for C

18
H
24
N
2
O
2
: C, 71.97;

H, 8.05; N, 9.33%; Found: C, 71.91; H, 8.02; N, 9.27%.

2.1.13. 2-Amino-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chrom-
ene-3-carbonitrile (4ab). White solid (85%),m.p.: 234–236∘C
([48] 238–240∘C); 1HNMR (400MHz, DMSO-𝑑

6
): 𝛿 = 7.30–

7.26 (m, 2H, H-Ar), 7.20–7.14 (m, 3H, H-Ar), 6.99 (s, 2H,
NH
2
), 4.18 (s, 1H, H-4), 2.65–2.59 (m, 2H, CH

2
), 2.35–

2.22 (m, 2H, CH
2
), 1.99–1.90 (m, 2H, CH

2
) ppm; 13C NMR

(100MHz, DMSO-𝑑
6
): 𝛿 = 196.3, 164.9, 158.8, 145.1, 128.7,

127.5, 126.9, 120.2, 114.1, 58.6, 36.7, 35.8, 26.8, 20.2 ppm; IR
(KBr): 3446, 3324, 2903, 2184, 1665 cm−1.

2.1.14. 2-Amino-5-oxo-4-p-tolyl-5,6,7,8-tetrahydro-4H-chrom-
ene-3-carbonitrile (4bb). White solid (86%), m.p.: 227-228∘C
([48] 223–225∘C); 1HNMR (400MHz, DMSO-𝑑

6
): 𝛿 = 7.09–

7.02 (m, 4H, H-Ar), 6.96 (brs, 2H, NH
2
), 4.14 (s, 1H, H-4),

2.62–2.59 (m, 2H, CH
2
), 2.27–2.24 (m, 5H, CH

2
and CH

3
),

1.94–1.84 (m, 2H, CH
2
) ppm; 13C NMR (100MHz, DMSO-

𝑑
6
): 𝛿 = 196.3, 164.7, 158.8, 142.2, 136.0, 129.2, 127.4, 120.2, 114.3,

58.7, 36.7, 35.4, 26.8, 20.9, 20.2 ppm; IR (KBr): 3437, 3345,
2924, 1678 cm−1.

2.1.15. 2-Amino-4-(4-chlorophenyl)-5-oxo-5,6,7,8-tetrahydro-
4H-chromene-3-carbonitrile (4cb). White solid (88%), m.p.:
230–232∘C ([48] 226–228∘C); 1H NMR (400MHz, DMSO-
𝑑
6
): 𝛿 = 7.35–7.32 (m, 2H, H-Ar), 7.19–7.16 (m, 2H, H-Ar), 7.05

(brs, 2H, NH
2
), 4.20 (s, 1H, H-4), 2.62–2.58 (m, 2H, CH

2
),

2.31–2.24 (m, 2H, CH
2
), 1.97–1.87 (m, 2H, CH

2
) ppm; 13C

NMR (100MHz, DMSO-𝑑
6
): 𝛿 = 196.3, 165.0, 158.8, 144.1,

131.5, 129.5, 128.6, 120.0, 113.7, 58.1, 36.6, 35.4, 26.8, 20.1 ppm;
IR (KBr): 3451, 3314, 2913, 2197, 1682 cm−1.

2.1.16. 2-Amino-5-oxo-4-p-tolyl-4H,5H-pyrano[3,2-c]chrom-
ene-3-carbonitrile (4bc). White solid (86%), m.p.: 253–255∘C
([47] 257–259∘C); 1H NMR (400MHz, DMSO-𝑑

6
): 𝛿 = 7.91–

7.88 (m, 2H,H-Ar), 7.60–7.56 (m, 2H,H-Ar), 7.44–7.31 (m, 4H,
H-Ar), 7.02 (s, 2H, NH

2
), 4.40 (s, 1H, CH), 2.23 (s, 3H, CH

3
)

ppm; 13CNMR (100MHz, DMSO-𝑑
6
): 𝛿 = 164.9, 158.0, 153.3,

152.3, 140.4, 131.9, 129.1, 128.7, 126.6, 123.8, 118.1, 116.0, 113.0,
104.2, 58.2, 36.6, 35.7, 20.7 ppm; IR (KBr): 3451, 3310, 2935,
1685 cm−1.

2.1.17. 2-Amino-4-(4-chloro-phenyl)-5-oxo-4H,5H-pyrano
[3,2-c]chromene-3-carbonitrile (4cc). White solid (85%),
m.p.: 262–264∘C ([47] 265–267∘C); 1H NMR (400MHz,
DMSO-𝑑

6
): 𝛿 = 7.87–7.85 (m, 2H, H-Ar), 7.58–7.53 (m, 2H,

NH
2
), 7.32–7.28 (m, 4H, H-Ar), 7.13 (d, J = 8.4Hz, 2H, H-Ar),

4.48 (s, 1H, CH) ppm; 13C NMR (100MHz, DMSO-𝑑
6
): 𝛿 =

166.6, 158.0, 152.4, 142.4, 140.3, 131.6, 129.7, 128.7, 127.9, 124.1,
123.5, 118.8, 115.8, 103.6, 57.6, 36.5, 35.8 ppm; IR (KBr): 3456,
3306, 2934, 2191, 1686 cm−1.
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Scheme 1: Synthesis of 4H-benzo[b]pyran derivatives under MW
irradiation.

3. Results and Discussion

As a part of our ongoing research to provide greenermethod-
ologies under solvent and catalyst-free conditions [27, 29, 68–
71] we have found that the three-component condensation of
aldehyde, 1,3-cyclic diketone, and malononitrile under MW
irradiation without using any catalyst and solvent produced
4H-benzo[b]pyran derivatives in high yields within short
reaction times (Scheme 1). Indeed, to the best of our knowl-
edge, this is the first report of synthesis of 4H-benzo[b]pyran
under catalyst and solvent-free conditions.

Initially, we commenced our study taking benzaldehyde,
malononitrile, and dimedone as the model substrates at
80∘C (conventional heating) under catalyst and solvent-free
conditions for 3 hours; however, a mixture of products
was obtained. By increasing the temperature and time, the
progress of the reaction was not satisfactory. We, then,
turned our attention towards MW irradiation instead of
conventional heating. Gratifyingly, the desired product was
obtained in 88% in a microwave reactor (Biotage, Initiator
EXP EU 355301) after 7min at 80∘C. By increasing the time
and temperature the yield decreased. This may be due to the
decomposition of the product at higher temperature. Finally,
reaction conditions were optimized using benzaldehyde
(1mmol), malononitrile (1mmol), and dimedone (1mmol) at
80∘C under microwave irradiation for 7min. A wide range
of structurally varied aldehydes and 1,3-cyclic diketones were
subjected under optimized reaction conditions to provide the
corresponding 4H-benzo[b]pyran derivatives as summarized
in Scheme 3.

It can be seen that electron-rich and electron-deficient
aldehydes reacted efficiently to afford the desired products
with good yields. The chloro- and bromo-substituted ben-
zaldehydes gave the corresponding 4ca, 4ja, and 4cb in 84%,
85%, and 88% yields, respectively. Aldehyde containing elec-
tron donating –OMe groups on the aromatic ring were well-
tolerated (4ea and 4ha). 3-Hydroxybenzaldehyde afforded
the corresponding product (4ga) with good yield. In addi-
tion, aldehyde containing two electron donating functional
groups (–OH and –OMe) reacted very well (4ha). Heteroaryl
aldehydes such as furfural also participated in the multicom-
ponent reaction to produce the desired product in moderate
yield without affecting the heterocyclic moiety (4ka). We
are delighted to find that the 𝛼,𝛽-unsaturated aldehyde,
such as cinnamaldehyde, was tolerated under our present
reaction conditions (4fa). Acid-sensitive substrate, such as
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Scheme 2: Plausible reaction mechanism.

piperonal, produced the desired condensation product 4ia
in excellent yield. Notable advantage of this method is its
efficiency for the synthesis of 4H-benzo[b]pyrans derivative
from aliphatic aldehyde with high yields (4la). In addition, 4-
hydroxycoumarin also afforded the corresponding products
(4bc and 4cc). In general the reactions are clean and reaction
procedure is very simple. To provide the analytically pure
4H-benzo[b]pyran derivatives, only ethanol was employed
for recrystallization. Moreover, we have developed greener
reaction conditions bearing lower E-factor [14, 15, 72] of 0.21
and 0.25 in the cases of synthesizing4aa and4ba, respectively.

The plausible mechanism for the reaction is exposed in
Scheme 2. Based on the literature [61], we assume that Kno-
evenagel condensation,Michael addition, and intramolecular
cyclization are involved subsequently in the synthesis of 4H-
benzo[b]pyran derivatives. In the first step, the aldehyde
undergoes a Knoevenagel condensation reaction with mal-
ononitrile to afford cyano olefin [A] [61, 73], which endures a
Michael addition reaction with the tautomeric enolic form of
dimedone [B] to give the intermediate [C]. The intermediate
C on intramolecular cyclization produces the final product 4.

4. Conclusions

In summary, we have developed an environmentally benign
one-pot strategy for the synthesis of 4H-benzo[b]pyran
derivatives in high yields undermicrowave irradiation using a
mixture of aldehydes, malononitrile, and 1,3-cyclic diketones.
Operational simplicity, solvent and catalyst-free conditions,
compatibility with various functional groups, and nonchro-
matographic purification technique are notable advantages
of this procedure. Lower E-factor values make this proto-
col better and a more practical alternative to the existing
methodologies. The combination of solvent and catalyst-
free conditions under microwave irradiation makes this
procedure truly environmentally benign.
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