
Research Article
Redundant VoD Streaming Service in a Private Cloud:
Availability Modeling and Sensitivity Analysis

Rosangela Maria De Melo,1,2 Maria Clara Bezerra,1 Jamilson Dantas,1

Rubens Matos,1 Ivanildo José De Melo Filho,1,2 and Paulo Maciel1

1 Informatics Center, Federal University of Pernambuco (UFPE), 50740-560 Recife, PE, Brazil
2 Federal Institute of Education, Science, and Technology of Pernambuco (IFPE), Belo Jardim Campus,
55155-730 Belo Jardim, PE, Brazil

Correspondence should be addressed to Rosangela Maria De Melo; rmm3@cin.ufpe.br

Received 25 April 2014; Revised 31 July 2014; Accepted 31 July 2014; Published 30 September 2014

Academic Editor: Oluwole Daniel Makinde

Copyright © 2014 Rosangela Maria De Melo et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

For several years cloud computing has been generating considerable debate and interest within IT corporations. Since cloud
computing environments provide storage and processing systems that are adaptable, efficient, and straightforward, thereby enabling
rapid infrastructure modifications to be made according to constantly varying workloads, organizations of every size and type are
migrating to web-based cloud supported solutions. Due to the advantages of the pay-per-use model and scalability factors, current
video on demand (VoD) streaming services rely heavily on cloud infrastructures to offer a large variety of multimedia content.
Recent well documented failure events in commercial VoD services have demonstrated the fundamental importance ofmaintaining
high availability in cloud computing infrastructures, and hierarchical modeling has proved to be a useful tool for evaluating the
availability of complex systems and services. This paper presents an availability model for a video streaming service deployed in
a private cloud environment which includes redundancy mechanisms in the infrastructure. Differential sensitivity analysis was
applied to identify and rank the critical components of the system with respect to service availability. The results demonstrate that
such a modeling strategy combined with differential sensitivity analysis can be an attractive methodology for identifying which
components should be supported with redundancy in order to consciously increase system dependability.

1. Introduction

Cloud computing environments provide adjustable storage
capacity and processing power, as well as other computational
resources, which enable the fast provision of varying work-
loads [1]. Most popular online services use cloud computing
to ensure availability and proper service delivery to users
[2]. And current video on demand (VoD) streaming services
rely on such cloud computing benefits as the pay-per-use
model and scalability [1]. Cloud infrastructures, however, are
not failure free; recent outages at Amazon [3] disrupted the
service provision of several key companies, including one of
the major players in the VoD market. The design of video
streaming services based on private clouds must therefore
consider the deployment of high availability techniques

such as redundancy [4] in an attempt to avoid the service
interruptions that result from component failure.

This paper proposes an analytical availability model to
support the evaluation of a VoD streaming service run-
ning in a Eucalyptus private cloud. The modeling strategy
considers reliability block diagrams (RBDs) and continuous
time Markov chains (CTMCs), as well as a parametric
sensitivity analysis of the proposed model which can identify
the bottlenecks in system availability and thereby guide the
implementation of system improvements.

The remainder of the paper is organized as follows:
Section 2 presents related works on system availability and
sensitivity analysis; Section 3 discusses basic concepts of
cloud computing technologies, video streaming, depend-
ability model analysis, and sensitivity analysis; Section 4

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 764010, 14 pages
http://dx.doi.org/10.1155/2014/764010

2 Mathematical Problems in Engineering

describes the system architectures analyzed here; Section 5
presents the availability models designed for the architec-
tures; Section 6 is a case study which proves the applicability
of the proposed model; and finally Section 7 offers conclu-
sions and also suggests the direction that future work will
take.

2. Related Works

Analytical modeling techniques predict certain behaviors of
systems. Such information can assist the decision making
process concerning the design of system infrastructure and
the achievement of required availability levels. Since several
recently published works have employed hierarchical model-
ing to represent cloud computing architectures, comparisons
of the various solutions and appraisals of dependability
metrics can be made [5, 6]. Dantas et al. [6] investigated
the benefits of a warm standby redundancy mechanism in
a Eucalyptus cloud computing environment. A hierarchical
modeling approach was employed to represent a redun-
dant architecture and compare its availability to that of
a nonredundant architecture. Chuob et al. [5] proposed a
private cloud solution, selected from among the suitable
cloud environments, for an e-government data center, basing
the cloud model on the Ubuntu Enterprise Cloud (UEC)
architecture. The availability of each component of the cloud
was represented by a Markov chain. Matos et al. [7] inves-
tigated the availability of data networks including redun-
dancymechanisms. Several scenarios were evaluated through
analytic-numeric solution of Markov chains. Furthermore,
the impact of different component parameters on the overall
system availability was evaluated with differential sensitivity
analysis.

In another study, Bezerra et al. [8] investigated hier-
archical modeling techniques to evaluate a nonredundant
VoD service. The authors employed sensitivity analysis to
identify bottlenecks in the model and by this means pro-
pose improvements. Meanwhile, Longo et al. [9] established
stochastic analytic models that can be used for cloud service
availability analysis. They developed a one-level monolithic
model despite the fact that such models tend to become
unmanageable when cloud size increases beyond a certain
point. In fact, the results demonstrated that errors introduced
by model decomposition are negligible. The authors devel-
oped closed-form solutions for the submodels and showed
that the current approach is capable of being scaled up for
large size clouds.

In [10], Bruneo et al. described GridVideo, a Grid-
based multimedia application for the distributed tailoring
and streaming of media files. The goal of this paper was
to demonstrate through a real experience how Grid tech-
nologies can be used for the development of nonscientific
applications. Relevant performance aspects were analyzed for
responsiveness and system efficiency. Different multimedia
data dissemination strategies were analyzed and an innova-
tive technique based on the Fibonacci series was proposed.
Alternatively, Ghosh et al. presented in [11] a scalable,
stochastic model-driven approach to quantify availability in
a large-scale IaaS cloud, where failures were normally treated

through migration to physical machines divided into three
redundancy pools: hot (fully running), warm (turned on, but
not fully running), and cold (turned off). The researchers
showed how scalability issues for a monolithic model can be
solved by submodel interaction or simulation.

Virtualization refers to the technique of instantiating
one or several virtual machines (VMs) on top of a single
physicalmachine, administered by a virtualmachinemonitor
(VMM) [12]. In [12], Bruneo et al. proposed a technique to
model the VMM aging process and investigate the optimal
rejuvenation policy for maximizing VMM availability under
variable workload conditions. The authors started out with
dynamic reliability theory and by adopting symbolic alge-
braic techniques investigated and compared existing time-
based VMM rejuvenation policies. The paper proposed a
policy that adapted the rejuvenation timer to theVMMwork-
load condition, thereby improving system availability. From
a different perspective, in Matos et al. [13], the authors used
hierarchical modeling and differential sensitivity analysis
techniques to determine which parameters cause the greatest
impact on mobile cloud availability. The results proved that
aside of specific exceptions, distinct approaches can deliver
similar results in terms of sensitivity rankings.

In this paper, the authors analyze an analytical availability
model to support the evaluation of a VoD streaming service
running in a private cloud. A parametric sensitivity analysis
of the proposed model is also presented, enabling the iden-
tification of availability bottlenecks and providing guidelines
for the implementation of system improvements.

3. Fundamental Concepts

Certain concepts, related to cloud computing technologies,
video streaming, dependability modeling, and sensitivity
analysis, are fundamental to this paper and need to be
understood.

3.1. Cloud Computing and the Eucalyptus Platform. A cloud
computing system is a bundle of resources comprising
hardware, software, development platforms, and services that
are readily usable and accessible through the Internet [1].
Cloud computing providers supply these services at different
levels, including infrastructure as a service (IaaS), platform
as a service (PaaS), and software as a service (SaaS). In
these environments virtual resources can be dynamically
allocated and resized to handle varying workloads, thereby
optimizing the physical resources. Services are typically
accessed through a pay-per-use model [14] whilst the degree
of provision is determined and guaranteed through service
level agreements.

Eucalyptus is a Linux-based software architecture that
facilitates the implementation of private and hybrid IaaS
clouds. Clients can utilize their own system resources
together with cloud services through a self-service interface
according to their needs at any particular time. The Eucalyp-
tus software framework is modular [15] and consists of five
high level components, each with its own web service. These
are the cloud controller (CLC), cluster controller (CC), node
controller (NC), storage controller (SC), and Walrus [15].

Mathematical Problems in Engineering 3

S3 toolsEC2 tools

WalrusCLC

Users
keys-pairs
volumes

Cluster A Cluster B

CC SC CCSC

NC NC

Figure 1: Eucalyptus platform architecture [15].

Figure 1 illustrates an example on Eucalyptus cloud comput-
ing environment comprising two clusters (A and B). Each
cluster has a single CC and SC and various NCs.

The CLC is the frontend of the cloud infrastructure. It
employs web service interfaces to receive client tool requests
on one side and interact with the remaining Eucalyptus
components on the other side [6, 16].TheCCusually executes
on a cluster frontend machine or on any machine that has
network connectivity to both the nodes running NCs and to
themachine running the CLC [6].TheNC runs on each node
and controls the life cycle of instances running on the node
[6]. The NC interacts with the operating system and with the
hypervisor running on the node. The SC provides persistent
block storage for use by the virtual machine instances.
Walrus is a file-based data storage service which is interface
compatible with Amazon’s Simple Storage Service (S3) [6].

3.2. Video Streaming. Video streaming is a technology
employed in the instantaneous transmission of digital mul-
timedia over the Internet [17]. Streaming enables data to be
delivered and viewed without having to wait until it is fully
downloaded and stored on the client system.This solution to
multimedia access is fast whilst alleviating pressure on net-
work bandwidth and client storage space. As the multimedia
data downloads it is stored in a fast buffer for immediate
execution. The effectiveness of video streaming transmission
is heavily dependent on digital encoding, communication
protocols, and buffering mechanisms [18].

Video streaming services are implemented according to
the Real Time Streaming Protocol (RTSP) and designed to
manage the transfer of audio and video data in real time from
streaming servers [19]. The protocol establishes and controls
the various synchronized streams of data involved in a
multimedia transmission. Despite the bandwidth limitations,
delay, and packet loss that is inherent in real time streaming

applications, no quality of service (QoS) guarantee is offered
by the Internet for this service [19, 20].

Besides the RTSP protocol, several additional elements
comprise the VoD architectural environment. These include
video compression, application-layer QoS control, streaming
servers, media synchronization mechanisms, and further
protocols for actually transmitting the data [20]. Initially,
a compression algorithm condenses the data before being
saved in a storage device. Upon request the streaming server
retrieves the compressed data from storage and packages the
compressed bit fluxes, before sending them off to the Internet
to be viewed by the user [20].

From a commercial viewpoint VoD technology is closely
associated with cloud computing. The commercial interest
allows clients to access the hosted media files and distributes
them when requested. This type of service is relatively of low
cost; the user pays a fixed fee for uninterrupted service and
gains freedom and flexibility in terms of what they watch and
when they watch it [18].

3.3. Dependability Analysis Models. Dependability is closely
related to the disciplines of fault tolerance and reliability.
The concept of dependable computing in fact dates back
to the 1820s when Charles Babbage undertook the mission
to conceive and construct a mechanical calculating engine
that would eliminate the risk of human errors [21–23]. In
the early 1980s Laprie coined the term dependability for
encompassing a set of concepts that included reliability,
availability, safety, confidentiality, maintainability, security,
and integrity [21, 24]. Although the concepts of availability
and reliability are tightly linked there is a subtle distinction
between them. Whereas the reliability of a system at time 𝑡
is the probability that the system performs without failing up
to time 𝑡, availability is expressed as the ratio of the expected
system uptime to the expected total time (the sum of up and
downtime combined):

𝐴 =
𝐸 [Uptime]

(𝐸 [Uptime] + 𝐸 [Downtime])
. (1)

It may also be represented by

𝐴 =
MTTF

(MTTF +MTTR)
, (2)

where MTTF and MTTR are the mean time to failure and
recovery, respectively.

Several types ofmodels can be used for the analytical eval-
uation of dependability. Reliability block diagrams (RBDs),
fault trees, stochastic Petri nets (SPN), and continuous Time
Markov chains (CTMCs) have all been employed to model
fault-tolerant systems and evaluate various dependability
measures. These types of models differ from one another not
only in their suitability for a specific application but also
in terms of modeling power [23]. Therefore, an evaluation
which combines distinct model types may often provide the
best solution. In the current situation under consideration,
for example, the relationships [25] between independent
subsystems are best modeled with RBDs, whereas detailed or

4 Mathematical Problems in Engineering

more complexmechanisms, such as active redundancymech-
anisms [26] and resource constraints, are bettermodeledwith
SPNs or CTMCs. Such a combined approach allows for the
representation of the different types of dependency that exist
between components and avoids the common problem of
state explosion [27] which can occur when dealing with large
systems.

3.4. Sensitivity Analysis. In general the various components
that constitute a computer system do not necessarily con-
tribute equally to system performance. The identification of
the more essential elements is critical to the assessment of
system dependability. This must be taken into consideration
when designing a system so that resources may be allocated
according to the levels of importance of each component.
Since sensitivity analysis is a technique employed to deter-
mine factors that are most relevant regarding themeasures or
output of a model it can be of great assistance in establishing
the critical components in a system, by identifying them in
an analytical model [28].

Sensitivity analysis can be performed in several ways.
The simplest technique is to select a parameter to vary
while keeping the others fixed.The corresponding changes in
model output are recorded for each input parameter variation
and in this manner a sensitivity ranking is obtained. Further
techniques of sensitivity analysis are experimental factorial
design, correlation analysis, regression analysis, perturbation
analysis (PA), and differential analysis, also known as para-
metric sensitivity analysis or direct method [7, 28, 29].

Differential analysis was chosen for this work because it
can be efficiently performed in the type of analytical models
usually employed in availability and performance studies. It
is accomplished by calculating the partial derivatives for the
measures of interest of the respective parameters. For exam-
ple, considering a metric 𝑌 which depends on a parameter
(𝜆), the sensitivity of 𝑌 with respect to 𝜆 is computed with
(3) or (4) when adopting scaled sensitivity [25]. Consider the
following:

𝑆𝜆 (𝑌) =
𝜕𝑌

𝜕𝜆
, (3)

𝑆
∗

𝜆
(𝑌) =

𝜕𝑌

𝜕𝜆
(
𝜆

𝑌
) . (4)

Other scaling methods may be used, depending on the
nature of the parameters, the measure of interest, and the
requirement to remove the effects of units [29]. 𝑆𝜆(𝑌) and
𝑆
∗

𝜆
(𝑌) are also referred to as sensitivity coefficients [28],

whose ordered values produce the ranking used to compare
the degree of influence among all parameters.

The Mercury tool [30, 31] assisted in the analysis pre-
sented in this work by providing the sensitivity indices of
the CTMCs. These indices were employed in the sensitivity
functions of the top-level RBD models.

4. VoD Service Architecture

The proposed VoD service architecture is based on the
Eucalyptus platform. As shown in Figure 2, it is divided into

VoD server-web/video
streaming

Client

Virtual machine (VM)
Volume

Node 1

Node 2

Request video

Video streaming
Frontend

Figure 2: Video streaming service architecture.

Node 1

Frontend

(a) Nonredun-
dant

Node 1 Node 2

Frontend

(b) Redundant

Figure 3: Nonredundant and redundant architectures.

client and Eucalyptus infrastructures. The client connects to
the video streaming server via Internet with theVLC software
that is installed on their device. The volume component,
which stores the videos, is created by the physical resources of
the frontendmachine. A virtualmachine (VM) is instantiated
by the physical resources of the NC where the Apache and
VLC applications are installed. Apache is a web service which
allows visualization of videos over the Internet, and VLC’s
function in this context is to enable video streaming to the
client. The VLC application was chosen because it supports a
great variety of video formats.

This VoD service architecture was initially proposed by
[8]. Figure 3 illustrates both a nonredundant and a redundant
VoD service architecture. The nonredundant architecture, in

Mathematical Problems in Engineering 5

Frontend Node Volume Service

Begin End

Figure 4: Nonredundant architecture RBD.

HW

Begin End

SC WalrusOS CLC CC

Figure 5: Nonredundant frontend RBD.

Figure 3(a), comprises one frontend and oneNC, whereas the
redundant architecture, Figure 3(b), includes an additional
NC.

The configuration of the frontend machine consists of
an i3 Intel processor, 500GB Sata Hard Disk, 6GB RAM,
and Frontend version of the CentOS operating system. The
NC configuration is an i5 Intel processor, 500GB Sata Hard
Disk, 6GB RAM, and Node version of the CentOS operating
system.The system platform is based on the Eucalyptus cloud
framework (version 3.2.2) and employs the CentOS operating
system (version 6.4).

5. Availability Models

This section describes the availability models designed to
represent the redundant and nonredundant systems that are
the subject of this work. Quantification of availability for
complex IT systems can be achieved by the representation
of system states with the hierarchical modeling of RBDs and
Markov chains [32].

5.1. Nonredundant Architecture Model. The architecture sub-
systems in Figure 3 are represented with RBDs and CTMCs.
These models are then combined, which constitute a hier-
archical model. The nonredundant architecture, as depicted
in the top-level RBD of Figure 4, is divided into four parts;
frontend, node, volume, and service.

Within the nonredundant architecture, the frontend sub-
system is represented by the pure series RBD illustrated
in Figure 5. This subsystem consists of hardware (HW)
and operating system (OS) and the following Eucalyptus
components: CLC (cloud controller), CC (cluster controller),
SC (storage controller), and Walrus.

Figure 6 is the RBDmodel of the node subsystem. Besides
the hardware and operating system also present in the
frontend, each node requires a hypervisor and a Eucalyptus
node controller in order to be available in the cloud [6].
The volume subsystem for video storage is allocated to the
frontend.

The greater complexity of the service subsystem requires
further refinement with a CTMC (Figure 7). This allows for
the calculation of the availability values which will later be
considered in the top-level RBD. A CTMC is necessary due
to the interdependency between the subsystem components
and also means that a closed-form equation of steady-state
availability can be obtained, which is useful for sensitivity

HW OS KVM NC

Begin End

Figure 6: Node RDB.

Fap Up

FvlcFapvlc

Fall

𝜇ap

𝜇ap

𝜆ap

𝜆ap

𝜆vm

𝜆vm

𝜆vm

𝜆vm

𝜇vlc 𝜇vlc
𝜆vlc 𝜆vlc

𝜇in

Figure 7: Service module CTMC.

Table 1: Nomenclature of states.

State Description
Fap Apache failure, the service is unavailable

Fapvlc Apache and VLC failure, the service is
unavailable

Fall Failure of all components (VLC, Apache,
and VM)

UP Service available
Fvlc Failure of the VLC, the service is unavailable

analysis purposes and for computing the desired measures
without incurring a numerical solution.

The CTMC in Figure 7 is composed of the following
software components: Apache, VLC, andVM.TheCTMChas
five states: UP, Fap, Fapvlc, Fvlc, and Fall. The white circles
indicate down states (where the service is not available due
to failure), and the gray circle indicates the operational state.
Only the UP state represents service availability, where all
applications (Apache and VLC) are working. From UP the
following states can be reached: Apache application failure
(Fap), VLC application failure (Fvlc), or virtual machine
failure (Fall). At Fap, service is no longer provided, and from
this location the other three states can be achieved; VLC
application failure (Fvlc), Apache application repair (UP), or
virtual machine failure (Fall). The Apache and VLC failure
state (Fapvlc) also indicate that the service is unavailable.
From Fapvlc the other three states, Fap, Fall, and Fvlc, can
be reached. In Fvlc the service is unavailable due the failure
of the VLC application, and from this location it is similarly
possible to achieve the three other states. The Fall state
represents the failure of all components in the subsystem
(Apache, VLC, and virtual machine), making it possible for
a new VM instantiation to occur, including all necessary
applications, which returns the system to the UP state. The
nomenclature of all states is compiled in Table 1.

The rates 𝜆ap, 𝜆vlc, and 𝜆vm denote the failure rate of the
Apache, VLC, and VM, respectively. The failure and repair

6 Mathematical Problems in Engineering

rates are defined as MTTF𝑖 = 1/𝜆𝑖 and MTTR𝑖 = 1/𝜇𝑖 if 𝜆𝑖
and 𝜇𝑖 are constants.The repair rates for Apache and VLC are
𝜇ap and 𝜇vlc. The value 𝜇in is the instantiation rate of a new
VM, that is, the reciprocal of the mean time to ativate a VM
after being requested. The closed-form equation (5) which
is obtained from the CTMC computes the availability of the
service block (Figure 4):

𝐴 𝑠 = (𝜇in (𝜆ap𝜆vm (𝛽) + 𝜆ap (𝛽1) 𝜇vlc

+ (𝛽1) (𝛽2) (𝛽 + 𝜇vlc)))

× ((𝜆ap + 𝛽1) (𝜆vm + 𝜇in)

× (𝛽) (𝜆ap + 𝛽 + 𝜇vlc))
−1

,

(5)

where

𝛽 = 𝜆vlc + 𝜆vm + 𝜇ap,

𝛽1 = 𝜆vm + 𝜇ap, 𝛽2 = 𝜆vm + 𝜇vlc.
(6)

The result is then inserted into (7), with which the
availability of the entire system (𝐴) can be computed. In
this equation, (𝐴𝑓), (𝐴𝑛), (𝐴V), and (𝐴 𝑠) correspond to
the availability of the frontend, node, volume, and service,
respectively. Equation (8) uses a notation that is similar to (7),
although here 𝐴𝑓, 𝐴𝑛, and 𝐴V are expressed as mean failure
(𝜆𝑖) and repair (𝜇𝑖) rates of the respective subsystems derived
from the RBD models. Consider the following:

𝐴 = 𝐴𝑓 × 𝐴𝑛 × 𝐴V × 𝐴 𝑠, (7)

𝐴 = (∏

𝑖∈{𝑓,𝑛,V}

𝜇𝑖

𝜇𝑖 + 𝜆𝑖

) × 𝐴 𝑠. (8)

5.2. Redundant Architecture Model. The warm standby
redundant design employs a primary and secondary node.
Both have the same hardware and software specifications,
but only the primary node is active and receiving workload.
The secondary node is switched on but is not receiving or
processing any workload. Since this secondary node is in an
idle state, it is considered less likely to fail than the active one.
When failure occurs in the primary node, the secondary one
takes over the servicewith little or no perceptible interruption
to the user.

Figure 8 is the RBD model of the redundant system. In
the top-level model the service as well as the node subsystem
infrastructure is represented by the service RBD block.
However the availability of such a subsystem (service + node
subsystem infrastructure) cannot be properly represented
by an RBD since the node subsystem implements an active
redundant mechanism.

Therefore, the Service RBD block is refined by the CTMC
depicted in Figure 9, which represents the service availability
of the node subsystem infrastructure. The CTMC comprises
the shaded states UUW, UDU, UUD, and UWU (service

Frontend Volume Service

EndBegin

Figure 8: Redundant system top-level RBD.

available) and the white states DDW, DUW, DDD, DWU,
DDU, DWD, and DUD (service unavailable).

The notation for the states is based on the current
condition of each component. The three letters represent ini-
tialisms of the operating condition of the three components,
respectively, the service, the first node, and the second node.
The service may be up (U) or down (D). The NCs work by
being alternately in warm standby mode, and only one of
them should be up (U) at any one time, whilst the other either
is in warm standby (W) or is down (D). In this model the
initial service is represented by UWU, where the service is
available, the first node is in warm standby, and the second
node is running. From this state it is possible tomove toDWU
(service failure), DWD (second node failure), or UDU (first
node failure). From the DWU state (service down, first node
in warm standby, and second node up), UWU (representing
service repair), DWD (second node failure), or DDU (first
node failure) may be reached.

From state DWD three outcomes are possible; either the
failure of all system components (DDD), the initialization
of the first node (DUD), or the repair of the second node
(DWU). From stateUDU (service and secondnode running),
the possible outcomes are DDD (failure of all components),
DDU, orUWU.The stateUDUcan lead to either the failure of
all system components (DDD), the repair to waiting state of
the first node (DWU), or the instantiation of a new virtual
machine with all system applications, making the service
available again (UDU).

In state DDD all system components are down; the
service is unavailable and the two nodes are unavailable.
From this state it is possible to reach two other states; the
repair of the first node (DUD) and the repair of the second
node (DDU). State DUD represents service unavailability,
where service and second node are down, but the first node
is up. From this state, three other states can be achieved;
failure of all components of the system (DDD), repair of
the service (UUD), or repair of the warm standby mode of
the second node (DUW). Conversely, state UUD indicates
system availability, where the service and the first node are up,
but the second node is faulty. From here, the following three
states can be reached; DUD (service failure), UUW (repair
of the node to warm standby mode), and DDD (since failure
of the only functional mode will automatically cause service
failure too).

In state DUW the system is unavailable due to service
application failure, although the first node is up and the
second node is in warm standby mode. From DUW the
following states can be reached; DUD (failure of the warm
standby node), DDW (first node failure), or UUW (ser-
vice repair). With service and first node being operational,
and the second node being in warm standby, UUW indi-
cates system availability. From this position in the model,

Mathematical Problems in Engineering 7

UWU

DWU

DDU

DWD

UDU

DUD

DDD

DDW

UUD

DUW UUW

𝜆N

𝜆N

𝜆N

𝜆N

𝜆N

𝜆N

𝜆N

𝜆N

𝜇WN

𝜇WN

𝜇WN

𝜇WN

𝜇VoD

𝜇VoD

𝜇VoD

𝜆VoD

𝜆VoD

𝜆VoD

𝜆VoD

𝜇N

𝜇N

𝜇N

𝜇N

𝜇N𝜇N
𝜇N 𝜆WN

𝜆WN

𝜆WN
𝜆WN

𝜆WN

𝜆WN

Figure 9: Redundant system CTMC with two nodes.

Table 2: Nomenclature of states.

State Description
UUD Service is up, N1 is up, and N2 is down
DDW Service is down, N1 is down, and N2 is waiting
DUW Service is down, N1 is up, and N2 is waiting
UDU Service is up, N1 is down, and N2 is running
UUW Service is up, N1 is up, and N2 is waiting
DDD Service is down, N1 is down, and N2 is down
UWU Service is up, N1 is waiting, and N2 is up
DWU Service is down, N1 is waiting, and N2 is up
DDU Service is down, N1 is down, and N2 is up
DWD Service is down, N1 is waiting, and N2 is down
DUD Service is down, N1 is up, and N2 is down

the possibilities are warm standby failure (UUD), service
failure (DUW), or first node failure, which would cause
the service to become unavailable (DDW). The state DDW
indicates system unavailability, with service and first node
down and second node in warm standby. From DDW, it
is possible to reach three other states: failure of all the
components of the system (DDD), initialization of the second
node (DDU), or repair of the first node (DUW).

The nomenclature for the all states is compiled in Table 2,
and the notation of states represents the initial letter of the
current condition of each component. The first character
denotes the state of the servicemodule, either up (U) or down
(D). The second character represents the status of the first
node (N1): up (U), down (D), or waiting (W). This waiting
condition signifies that the component is in warm standby.
The third character refers to the status of the second node
(N2): up (U), down (D), or waiting (W).

System failure is an event that occurs when the provided
service deviates from the intended service [30, 31].The failure
rates of the two nodes are represented by 𝜆N, whilst 𝜇N
represents the rate of node repair. A node in warm standby
has the failure rate of 𝜆WN, and the repair rate to return
it to standby is 𝜇N. A warm standby node is transformed
to available mode at the rate of 𝜇WN. The failure rate of

the service application is 𝜆VoD, while the repair rate is 𝜇VoD.
The 𝜆VoD was obtained from the inverse of the time to failure
of the service module. To calculate this result, we used the
CTMC model of Figure 7 and the Mercury tool [30, 31]. The
repair rate of the service is considered as the instantiation of a
new virtual machine, including all the applications necessary
to its operation (Apache and VLC).

Through the CTMC of Figure 9 it is possible to obtain
the closed-form equation for calculating the availability of the
redundantmodel (𝐴VoD) as shown below in (9).The equation
for calculating the availability of the whole infrastructure of
the service (𝐴VoD) can also be obtained from its correspond-
ing RBD model [6]. Consider the following:

𝐴VoD =

𝛼 (2𝛽
2
𝛼1 + 𝛽𝛼2𝛽1 + 𝛼3) 𝛽

2

1
+ 𝛼4𝛽

3

1

𝛼5 (𝛽
2
𝛼1 (𝜆N + 2𝜇N) + 𝛽𝜑𝛽1 + 𝜑1𝛽

2

1
+ 𝛽7𝛽

3
)
, (9)

where

𝛽 = 𝜆WN,

𝛽1 = 𝜇WN,

𝛼 = 𝜇N𝜇VoD,

𝛼1 = (𝜆N + 𝛽 + 𝜇N) 2 (𝜆N + 𝛽 + 𝜇N) ,

𝛼2 = 4𝜆N2 + 17𝜆N𝛽 + 13𝛽 + 5𝜆𝜇N + 12𝛽𝜇N + 2𝜇N2 ,

𝛼3 = (8𝛽 (2𝛽 + 𝜇N) + 𝜆N (11𝛽 + 𝜇N)) ,

𝛼4 = (7𝛽 + 2𝜇N) (𝜇WN3) ,

𝛼5 = 𝜆N + 𝜆VoD + 𝜇VoD,

𝛼6 = 2𝜆N (𝜆N + 𝛽) (𝜆N + 3𝛽) ,

𝛽2 = (8𝜆N2 + 24𝜆N𝜆WN + 13𝛽
2
) 𝜇N,

𝛽3 = (7𝜆N + 12𝛽) 𝜇N2 + 2𝜇N3𝛽1,

𝛽4 = 2𝜆N𝛽 (2𝜆N + 3𝛽) ,

8 Mathematical Problems in Engineering

𝛽5 = (𝜆N + 𝛽) (𝜆N + 16𝛽) 𝜇N,

𝛽6 = (𝜆N + 8𝛽) 𝜇N2 ,

𝛽7 = (𝜆N (𝛽 + 2𝜇N) + 𝜇N (7𝛽 + 2𝜇N)) ,

𝜑 = 𝛼6 + 𝛽2 + 𝛽3,

𝜑1 = 𝛽4 + 𝛽5 + 𝛽6.

(10)

A closed-form equation for computing the availability of the
complete redundant service,𝐴 service𝑅, can also be obtained, as
demonstrated by (11). 𝐴𝑓 and 𝐴V can be computed from the
RBD of Figure 8, whilst 𝐴VoD is calculated from (9). In this
equation, 𝐴𝑓, 𝐴V, and 𝐴VoD correspond to the availability of
the frontend, volume, and service, respectively. Consider the
following:

𝐴 service𝑅 = 𝐴𝑓 × 𝐴V × 𝐴VoD. (11)

6. Case Study

The case study focused on the analysis of system availability
and the identification of components which most affect
the streaming service. Initially an availability analysis of a
nonredundant architecture (Figure 3(a)) was performed.This
was followed by a sensitivity analysis to establish a ranking
of the most important parameters of the architecture. This
methodology was then applied to a redundant architecture
that included an additional node and its service elements
(Figure 3(b)). Consequently the availability analysis of the
VoD service was undertaken again but this time was imple-
mented in a model of a redundant infrastructure. Finally,
a sensitivity analysis of this system was performed and the
critical parameters ranked accordingly.

6.1. Evaluation of the Nonredundant Architecture. Figure 3(a)
depicts the nonredundant architecture, which includes a
dedicated frontend machine and another machine for the
node. Table 3 compiles the MTTF and MTTR rates for the
frontend, node, and volume elements of this nonredundant
architecture. These values were obtained from [6, 8, 32].
The computation of dependability metrics for the frontend
module produced anMTTF of 180.72 hours and anMTTR of
0.96 hours.

Since the same values of MTTF and MTTR [6, 8]
are assumed for the HW and OS elements of the nodes
subsystem, Table 3 only includes the parameter values for
the KVM and NC blocks [32, 33]. Model analysis of this
subsystem produced anMTTF of 481.82 hours and anMTTR
of 0.91 hours.

Table 4 contains the parameters for the RBD block model
of Figure 4. The availability of the service subsystem is
calculated from the CTMC illustrated in Figure 7, and all the
values required to solve the CTMC are given in Table 5.

These figures are derived from the analyses done in [6,
32]. The instantiation rate, 𝜇in, is calculated as the sum of

Table 3: Nonredundant system RBD input parameters [6, 8, 32].

Module Component MTTF MTTR

Frontend

HW 8760 h 100min
OS 2895 h 1 h
CLC 788.4 h 1 h
CC 2788.4 h 1 h
SC 2788.4 h 1 h

Walrus 2788.4 h 1 h

Node KVM 2990 h 1 h
NC 788.4 h 1 h

Volume Volume 100000 h 1 h

Table 4: Nonredundant system RBD parameters.

Component MTTF MTTR
Frontend 180.72 h 0.96999 h
Node 481.83 h 0.91000 h
Volume 100000 h 1 h
Service 217.77 h 0.92633 h

the mean time for starting the VM (MTVM) and the mean
time for starting the service (MTSS):

𝜇in = MTVM +MTSS. (12)

Monitoring scripts were created for this experiment with
Linux utilities such as date and mpstat [34]. The scripts
monitor the service initialization. A hundred measurements
for MTSS were taken before a normality test was performed,
demonstrating with a 95% confidence level that the results do
not conflict with variance and standard deviation.

According to the selected parameters a value of 0.9885713
was obtained for the availability of the nonredundant stream-
ing system. This equates to about 100 hours of downtime a
year, a figure which highlights the importance of identifying
effective solutions to improve the system.

6.2. Sensitivity Analysis of Nonredundant Architecture. Poten-
tial bottlenecks in the system are identified by calculating
the relative importance of each component in the system
in terms of reliability. By this means it is be possible to
determine which components merit additional research and
development to improve system reliability [35]. One tech-
nique for achieving this was introduced by Birnbaum [36],
which measures the importance of the 𝑖th component at time
𝑡:

𝐼
𝑖

𝐵
(𝑡) =

𝜕ℎ (𝑝 (𝑡))

𝜕𝑝𝑖

, (13)

where 𝐼
𝑖

𝐵
(𝑡) is the index of reliability importance (or Birn-

baum Importance) of the component 𝑖; 𝑝𝑖 is the component
reliability of 𝑖; and ℎ(𝑝(𝑡)) is the reliability of the whole
system. Based on this definition, whilst observing that 0 <

𝑝𝑖 < 1, the reliability importance of a component 𝑖 may be
written as follows:

𝐼
𝑖

𝐵
(𝑡) = ℎ (1𝑖, 𝑝 (𝑡)) − ℎ (0𝑖, 𝑝 (𝑡)) , 𝑖 = 1, . . . , 𝑛, (14)

Mathematical Problems in Engineering 9

Table 5: Service module CTMC parameters.

Parameters Description Values (ℎ−1)
𝜆ap Apache failure rate 1/788.4

𝜆vlc VLC failure rate 1/336

𝜆vm VM failure rate 1/2880

𝜇ap Apache repair rate 1

𝜇vlc VLC repair rate 1

𝜇in Instantiation rate for a new VM 1/0.019166

Table 6: Reliability importance.

Component Importance value
Frontend 1
Service 0.01618897
Node 2.64336026 × 10

−7

Volume 3.11381368 × 10
−11

where 𝑝(𝑡) represents a vector of component reliability
with the removed component 𝑖th; 0𝑖 represents the failure
condition of component 𝑖; and 1𝑖 represents the component
in constant operating mode [37]. It follows that 𝐼𝑖

𝐵
(𝑡) equates

to the probability that component 𝑖 is critical at time 𝑡.
In systems with dependent components this observation
provides a generalization of the Birnbaum measure [36].

As shown in (14), instead of calculating the partial deriva-
tive given in the standard definition, the system reliability is
calculated when the component is working and calculated
again when the component is in a fail state. The importance
measure is then calculated by a simple subtraction.

Table 6 gives the reliability importance of all system
components calculated for a time period of 4380 hours
or 6 months. These results were calculated from the input
parameter values given in Table 4.

The elements with greatest reliability importance for the
system are the frontend and service subsystems. Accordingly,
a detailed parametric sensitivity analysis of the service sub-
system was performed using the proposed CTMC model
(Figure 7). The sensitivity indices, for 𝑆∗

𝜃
(𝐴), were obtained

with Mercury [30, 31], where (𝐴) is the steady-state availabil-
ity and (𝜃) is each system parameter (the MTTF and MTTR
of each component). The indices can also be computed with

𝑆𝜃 (𝐴) =

𝜕𝐴𝑓

𝜕𝜃
× 𝐴𝑛 × 𝐴V × 𝐴 𝑠

+ 𝐴𝑓 ×
𝜕𝐴𝑛

𝜕𝜃
× 𝐴V × 𝐴 𝑠

+ 𝐴𝑓 × 𝐴𝑛 ×
𝜕𝐴V

𝜕𝜃
× 𝐴 𝑠

+ 𝐴𝑓 × 𝐴𝑛 × 𝐴V ×
𝜕𝐴 𝑠

𝜕𝜃
.

(15)

The failure and repair rates of the frontend module are
represented by 𝜆𝑓 and 𝜇𝑓, respectively, and the correspond-
ing derivative expressions are given in (16). The derivative

expressions for 𝐴𝑛 and 𝐴V are similar to those of 𝐴𝑓 since
those modules are also represented with RBDs. Consider the
following:

𝜕𝐴𝑓

𝜕𝜆𝑓

= −

𝜇𝑓

(𝜇𝑓 + 𝜆𝑓)
2
,

𝜕𝐴𝑓

𝜕𝜇𝑓

= −

𝜇𝑓

(𝜆𝑓 + 𝜇𝑓)
2
+

1

𝜆𝑓 + 𝜇𝑓

.

(16)

The corresponding derivative expressions for𝐴 𝑠 are given
in

𝜕𝐴 𝑠

𝜕𝜆vm

= − ((𝛽) (𝜆vm + 𝜇vlc (𝛽3) + (𝛽1) 𝜆ap𝜆vm

+𝜆ap (𝛽3) 𝜇vlc) 𝜇in)

× ((𝛽1)
2
(𝛽2) (𝛾) (𝜆ap + 𝛽))

−1

− (((𝛽 + 𝜆vlc) (𝛼) (𝛽3) + (𝛽1) 𝜆ap𝜆vm

+𝜆ap (𝛽3) 𝜇vlc) 𝜇in)

× ((𝛽1) (𝛽2) (𝛾)
2
(𝜆ap + 𝛽))

−1

− (((𝛽) (𝛼) (𝛽1) + (𝛽1) 𝜆ap𝜆vm

+ 𝜆ap (𝛽3) 𝜇vlc) 𝜇in)

× ((𝛽2) (𝛽2) (𝛼) (𝜆ap + 𝛽)
2

)

−1

+ (𝜇in (𝛽) (𝛽3) + (𝛽3)
2

+ (𝛽 (𝛽3) + (𝛽1) 𝜆ap + 𝜗))

× ((𝛽1) (𝛽2) (𝛾)(𝜆ap + 𝛽))
−1

− ((𝛽) (𝛼) (𝛽3)

+ (𝛽1𝜆ap𝜆vm + 𝜆ap (𝛽3) 𝜇vlc) 𝜇in)

× ((𝛽1) (𝛽2)
2
(𝛾) (𝜆ap + 𝛽))

−1

,

10 Mathematical Problems in Engineering

𝜕𝐴 𝑠

𝜕𝜆vlc

= − ((𝜆ap𝜇vlc (𝛽3)

+𝜆ap𝜆vm (𝛽1) + (𝛽) (𝛼) (𝛽3)) 𝜇in)

× ((𝛾)(𝛽1)
2
(𝜆ap + 𝛽) (𝛽2))

−1

+

(𝜆ap𝜆vm + (𝛼) (𝛽3)) 𝜇in

(𝛾) (𝛽1) (𝜆ap + 𝛽) (𝛽2)

− ((𝜆ap𝜇vlc (𝛽3) + 𝜆ap𝜆vm (𝛽1)

+ (𝛽) (𝛼) 𝛽3) 𝜇in)

× ((𝛼) (𝛽1) (𝜆ap + 𝛽)
2

(𝛽2))

−1

,

𝜕𝐴 𝑠

𝜕𝜆ap

= −

((𝛼) (𝛽) (𝛽3) + (𝛽1) 𝜆ap𝜆vm + 𝜆ap𝜇vlc (𝛽3)) 𝜇in

(𝛽1) (𝛾) (𝛽2)
2
(𝛽 + 𝜆ap)

−

((𝛼) (𝛽) (𝛽3) + (𝛽1) 𝜆ap𝜆vm + 𝜅 (𝛽3)) 𝜇in

(𝛽1) (𝛾) (𝛽2) (𝛽 + 𝜆ap)
2

+
(𝜇vlc (𝛽3) + (𝛽1) 𝜆vm) 𝜇in

(𝛽1) (𝛾) (𝛽2) (𝛽 + 𝜆ap)
,

𝜕𝐴 𝑠

𝜕𝜇vlc

= −

((𝛽3) 𝜆ap𝜇vlc + 𝜆vm (𝛽1) 𝜆ap + (𝛽3) (𝛽) (𝛼)) 𝜇in

(𝛾) (𝛽1) (𝛽1 + 𝜆ap + 𝜇vlc)
2

(𝛽2)

+

𝜇in ((𝛽3) (𝛼) + (𝛽3) (𝛽) + (𝛽3) 𝜆ap)

(𝛾) (𝛽1) (𝛽 + 𝜆ap) (𝛽2)
,

𝜕𝐴 𝑠

𝜕𝜇in

= −

𝜇in ((𝛽3) (𝛼) (𝛽) + (𝛽3) 𝜆ap𝜇vlc + (𝛽1) 𝜆ap𝜆vm)

(𝛽1) (𝛽1) (𝜆ap + 𝛽) (𝛾)
2

+

(𝛽3) (𝛽3) (𝛽) + (𝛽3) 𝜆ap𝜇vlc + (𝛽2) 𝜆ap𝜆vm

(𝛽1) (𝛽2) (𝛽 + 𝜆ap) (𝛾)
,

𝜕𝐴 𝑠

𝜕𝜇ap

= −

𝜇in ((𝛼) (𝛽3) + 𝜆vm𝜆ap + 𝜇vlc𝜆ap + (𝛼) (𝛽))

(𝛾) (𝛽2) (𝛽1) (𝛽 + 𝜆ap)

−

(𝜆vm (𝛽2) 𝜆ap + 𝜇vlc (𝛽3) 𝜆ap + (𝛼) (𝛽) (𝛽3)) 𝜇in

(𝛾) (𝛽2) (𝛽1)
2
(𝛽 + 𝜆ap)

−

(𝜆vm (𝛽1) 𝜆ap + 𝜇vlc (𝛽3) 𝜆ap + (𝛼) (𝛽) (𝛽3)) 𝜇in

(𝛾) (𝛽2) (𝛽1) (𝛽 + 𝜆ap)
2

−

(𝜆vm (𝛽1) 𝜆ap + 𝜇vlc (𝛽3) 𝜆ap + (𝛼) (𝛽) (𝛽3)) 𝜇in

(𝛾) (𝛽2)
2
(𝛽1) (𝛽 + 𝜆ap)

,

(17)

where

𝛽 = 𝜇ap + 𝜇vlc + 𝜆vm + 𝜆vlc;

𝛽1 = 𝜇ap + 𝜆vlc;

𝛽2 = 𝜇ap + 𝜆ap + 𝜆vm;

𝛽3 = 𝜇ap + 𝜆vm;

𝛼 = 𝜇vlc + 𝜆vm;

𝛾 = 𝜆vm + 𝜇in;

𝜅 = 𝜆ap + 𝜇vlc;

𝜗 = 𝜆ap𝜆vm + 𝜅.

(18)

The measures of interest were calculated from the values
given in Table 5. Table 7 shows the sensitivity ranking with
respect to the CTMC parameters.

The results are ranked according to the absolute values.
Negative values indicate that there is an inverse relationship
between the parameters and the system availability.This is the
case with MTTF values, where an increase in the parameter
value results in a decrease in the availability measure. The
table indicates that the VLC failure rate (𝜆vlc) is the most
critical availability parameter, whilst theVLC repair rate (𝜇vlc)
is the second most important, and the first related to system
recovery. Clearly it is the VLC component that should be
prioritized when considering improvements in the service
subsystem. To demonstrate this further, system availability
was computed for varying VLC failure rates whilst keeping
all other parameters fixed. Figure 10 plots the changes in
availability against the steadily increasing MTTF rates. As
expected, the availability improves as the time to failure
increases. MTTR is of course a critical factor for system
availability since it defines component downtime.

Figure 11 depicts system availability and downtime as a
function of the MTTR for the VLC application component.
As the MTTR increases the availability decreases. Over the
range indicated in the graph, there is a reduction in downtime
of 23.96 hours a year.

Figures 12 and 13 combine the subsystem results of
parameter variation forMTTF andMTTR, respectively. Note
the difference in scale between the graphs, where failure rates
are in hours whilst recovery rates are inminutes.The position
of the plot lines confirms the sensitivity ranking of Table 7.
The strong effect that changes in VLC andApache repair time

Mathematical Problems in Engineering 11

Table 7: Sensitivity ranking of availability.

Parameter SS (𝐴
𝑠
)

𝜆vlc −0.00296633

𝜇vlc 0.00296530

𝜆ap −0.00126634

𝜇ap 0.00126590

𝜇in 0.00005786

𝜆vm −0.00005639

0.9890

0.9895

0.9900

0.9905

0.9910

0.9915

1 2 3 4 5 6 7 8 9 10 11 12

Av
ai

la
bi

lit
y

MTTF of VLC application (months)

Figure 10: Effect of VLC MTTF changes on system availability.

0.9870
0.9875
0.9880
0.9885
0.9890
0.9895
0.9900
0.9905
0.9910
0.9915

0.00

20.00

40.00

60.00

80.00

100.00

120.00

5 10 15 20 25 30 35 40 45 50 55 60

D
ow

nt
im

e (
ho

ur
s)

MTTR (min)

Downtime
Availability

Figure 11: Effect of VLC MTTR changes on system availability and
downtime.

have on availability should be noted from Figure 13, whereas
changes in the instantiation time of a new VM (ie., the repair
time from VM failure) have little impact.

Equation (12) is employed to calculate the sensitivity
of the system to the frontend and service modules, which
were previously identified by the Birnbaum method as the
most critical components of the video streaming system.
Table 8 compiles the consequent ranking and identifies that
frontend failure (𝜆𝑓) and repair (𝜇𝑓) rates assume the greatest
importance in system steady-state availability, since they have
the highest sensitivity values. Any change in these parameters
will have a major impact on system availability, although
in opposite directions. This confirms the results from the
calculation of importance indices for the system. Sensitivity
with respect to 𝜆𝑓 is negative, since availability increases as
its value decreases. In contrast 𝑆∗

𝜇
𝑓

(𝐴) is positive with respect
to 𝜇𝑓, since both values increase or decrease together.

0.9865

0.9870

0.9875

0.9880

0.9885

0.9890

0.9895

0.9900

0.9905

0.9910

0.9915

0.9920

7
3
0

14
6
0

21
9
0

29
20

3
6
5
0

4
3
80

5
11
0

5
84
0

6
5
7
0

7
3
00

80
3
0

87
6
0

Av
ai

la
bi

lit
y

MTTF (hours)

VLC
APACHE

VM

Figure 12: Effect of MTTF changes on system availability.

0.9865

0.9870

0.9875

0.9880

0.9885

0.9890

0.9895

0.9900

0.9905

0.9910

0.9915

5 10 15 20 25 30 35 40 45 50 55 60

Av
ai

la
bi

lit
y

MTTR (min)

APACHE
To instantiate VM

VM

Figure 13: Effect of MTTR changes on system availability.

Table 8: Sensitivity ranking of frontend and service module avail-
ability.

Parameter SS (𝐴)
𝜆𝑓 −0.0000158662

𝜇𝑓 0.0000158662

𝜆vlc −0.0000088157

𝜇vlc 0.0000088126

𝜆ap −0.0000037634

𝜇ap 0.0000037621

𝜇in 0.0000000197

𝜆vm −0.0000000154

Table 8 also shows that 𝜇in, which is the instantiation rate
of a newVM, hasminimal impact on system availability, with
only 𝜆vm having less influence.

12 Mathematical Problems in Engineering

Table 9: Redundant system RBD parameters [8, 32].

Parameter MTTF MTTR
Frontend 180.72 0.969999 h
Volume 100000 1 h
Service 149.98 0.037903 h

Table 10: Redundant system CTMC parameters.

Parameter Description Value (ℎ−1)
𝜆N Mean time to node failure 1/481.83
𝜆WN Mean time to standby node failure 1/578.196
𝜇N Mean time to node repair 1/0.91
𝜇WN Mean time to standby node repair 1/0.0333
𝜆VoD Mean time to service failure 1/217.779
𝜇VoD Mean time to service instantiate 1/0.0275

6.3. Evaluation of the Redundant Architecture. Analysis of the
nonredundant system suggested the addition of a redundant
node. Should the primary node fail, the streaming service
would continue to run on a VM in the secondary node, and
thus the resources of the cloud environment are expanded.
Figure 3(b) illustrates the proposed architecture. An avail-
ability analysis was performed on this system.

The input parameters are given in Tables 9 and 10 and
were obtained from [8, 32].

The parameter 𝜆VoD was obtained from the inverse of the
time to failure of the service module with the CTMC model
of Figure 7. Since the redundant node is in warm standby the
failure rate was assumed to be 20% less than the mean failure
rate of an active node [6]. The calculation of 𝜇VoD is achieved
with

𝜇VoD = 𝑇NODES + 𝜇in, (19)

where 𝑇NODES is the time it takes to activate the node from
warm standby. This time is derived from the configuration
files of the Hearbeat monitoring software [38]. Heartbeat
sends messages from one node to the other; when it detects
that host 1 is offline the service is initiated in host 2. All
resources and applications are activated in the redundant
machine and there is no perceptible interruption or delay to
the end user. Rate 𝜇in is derived from (12).

The availability of the redundant system was computed
with the parameters compiled in Table 10. Figure 14 is a
summary of steady-state availability and downtime for archi-
tecture A (nonredundant) and architecture B (redundant).
Availability increases from 0.9885713 for A to 0.994401 for
B. This clearly indicates that significant system improvement
was achieved after the implementation of warm standby
redundancy. When discussed in terms of downtime this
improvement is even more evident: downtime is 100.11 hours
for A and 49.04 hours for B, which equates to a decrease
of approximately 51.01%. Therefore it can be concluded
that the inclusion of redundancy successfully enhanced the
availability, resource level, and reliability of the system.

A B
0

20
40
60
80

120
100

140

0.98600
0.98700
0.98800
0.98900

0.99200
0.99100
0.99000

Availability
Downtime

Av
ai

la
bi

lit
y

D
ow

nt
im

e (
ho

ur
s)

Downtime versus availability for scenarios

Figure 14: Availability and downtime for nonredundant and redun-
dant architectures.

Table 11: Redundant architecture sensitivity analysis.

Parameter SS (𝐴)
𝜇𝑓 0.005348791537

𝜆𝑓 0.005348791537

𝜇VoD 0.000184041927

𝜆N 0.000128199816

𝜆VoD 0.000126991728

𝜇WN 0.000065313366

𝜇Vol −0.00001001878

𝜆Vol 0.000010018748

𝜇N −0.00000748384

𝜆WN 0.000001588841

6.4. Sensitivity Analysis of Redundant Architecture. In
Figure 3(b) there is one frontend and two nodes, representing
a redundant system employing a warm standby mechanism.
This system’s architecture is modeled in Figures 8 and 9.
Parametric sensitivity analysis was performed on these
models to identify the most critical components of this
VoD redundant architecture. The sensitivity indices were
computed with the following equation:

𝑆𝜃 (𝐴) =

𝜕𝐴𝑓

𝜕𝜃
× 𝐴V × 𝐴 𝑠

+ 𝐴𝑓 ×
𝜕𝐴V

𝜕𝜃
× 𝐴 𝑠

+ 𝐴𝑓 × 𝐴V ×
𝜕𝐴 𝑠

𝜕𝜃
.

(20)

The sensitivity ranking in Table 11 indicates that frontend
repair rate 𝜇𝑓 and failure rate 𝜆𝑓 are the two most critical
availability parameters, proving that this model is the most
critical point for improving system availability. The table
also shows that activation of the waiting node 𝜆WN has the
second lowest impact on system availability: only 𝜇N has less
impact. The sensitivity analysis therefore suggests applying
redundancy to the frontend.The graph of Figure 15 illustrates
the changing behavior of availability produced by varying
frontend failure rates. Figure 16 does the same for repair rates,
showing system availability as a function of varying repair
rates. This graph also includes the downtime rates, and over

Mathematical Problems in Engineering 13

0.99780

0.99800

0.99820

0.99840

0.99860

0.99880

0.99900

0.99920

0.99940

0.99960

0.99980

7
3
0

14
6
0

21
9
0

29
20

3
6
5
0

4
3
80

5
11
0

5
84
0

6
5
7
0

7
3
00

80
3
0

87
6
0

Av
ai

la
bi

lit
y

MTTF of frontend (hours)

Frontend

Figure 15: Effect of failure times on system availability.

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

0
5
10
15
20
25
30
35
40
45
50

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Downtime

MTTR of frontend (hours)

D
ow

nt
im

e

Availability

Figure 16: Effect of recovery times on system availability.

the range of the graph the decreasing MTTR rates cause a
reduction in downtime of 33.71 hours a year.

7. Conclusion

This paper assessed the benefits of employing redundancy
in a cloud-based video streaming service. A hierarchical
analytical model strategy was developed with reliability
block diagrams (RBD) and continuous time Markov chains
(CTMCs) to calculate the availability of the system. Fur-
thermore, a parametric sensitivity analysis was proposed to
identify which system parameters had the most influence
on availability measures. By this means weaknesses were
revealed in the system and guidelines for system improve-
ments were developed. A significant increase in service
availability was observed from the inclusion of a redundant
node. The increase in availability from 0.988571 to 0.994401
equates to a reduced downtime of 51.01%.

The parametric sensitivity analysis performed for the
service subsystem identified the failure rate of the VLC
application as the most important system parameter when
availability is the measure of interest. Conversely, parametric
sensitivity analysis performed on the frontend and service
subsystems identified three important rates; frontend failure

and repair rates and VLC application failure. Analysis of the
complete redundant architecture placed frontend repair and
failure rates at the top of the sensitivity ranking, providing
further proof that this is a key component to be considered for
system improvements. The results of analyses were validated
by varying the rates of each parameter whilst keeping the
others fixed and producing graphs which illustrated the
corresponding change in the measure of interest.

Future work will consider the extension of sensitivity
analysis to all VoD service subsystems. Other study scenarios
will be conceived, such as the analysis of performability issues
relating to a video streaming service that runs in parallel on
a number of VMs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–
58, 2010.

[2] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud comput-
ing,” IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 59–69,
2011.

[3] Netflix, “Lessons netflix learned from the aws outage,” The
Netflix Tech Blog, 2014, http://techblog.netflix.com/2011/04/
lessonsnetflix-learned-from-aws-outage.html.

[4] R. Chen and F. B. Bastani, “Warm standby in hierarchically
structured process-control programs,” IEEE Transactions on
Software Engineering, vol. 20, no. 8, pp. 658–663, 1994.

[5] S. Chuob, M. Pokharel, and J. S. Park, “Modeling and analysis
of cloud computing availability based on eucalyptus platform
for e-government data center,” in Proceedings of the 5th Interna-
tional Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS ’11), pp. 289–296, 2011.

[6] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “An availability
model for eucalyptus platform: an analysis of warm-standy
replicationmechanism,” inProceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC ’), pp. 1664–
1669, 2012.

[7] R. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and K.
S. Trivedi, “Sensitivity analysis of server virtualized system
availability,” IEEE Transactions on Reliability, vol. 61, no. 4, pp.
994–1006, 2012.

[8] M. C. Bezerra, R.Melo, J. Dantas, P.Maciel, and F. Vieira, “Avail-
ability modeling and analysis of a vod service for eucalyptus
platform,” in Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics, 2014.

[9] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “A scalable
availability model for infrastructure-as-a-service cloud,” in
Proceedings of the IEEE/IFIP 41st International Conference on
Dependable Systems & Networks, pp. 335–346, 2011.

[10] D. Bruneo,G. Iellamo,G.Minutoli, andA. Puliafito, “Gridvideo:
a practical example of nonscientific application on the grid,”
IEEE Transactions on Knowledge and Data Engineering, vol. 21,
no. 5, pp. 666–680, 2009.

14 Mathematical Problems in Engineering

[11] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi,
“Scalable analytics for iaas cloud availability,” IEEE Transactions
on Cloud Computing, vol. 2, no. 1, pp. 57–70, 2014.

[12] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa,
“Workload-based software rejuvenation in cloud systems,” IEEE
Transactions on Computers, vol. 62, no. 6, pp. 1072–1085, 2013.

[13] R. Matos, J. Araujo, D. Oliveira, P. Maciel, and K. Trivedi,
“Sensitivity analysis of a hierarchical model of mobile cloud
computing,” Simulation Modelling Practice and Theory, 2014.

[14] F. C. Cardoso, “Concepts of virtual private network for secure
streaming video,” 2010.

[15] Version 2.0., “Eucalyptus cloud computing platform - adminis-
trator guide,” Tech. Rep., Eucalyptus Systems, 2010.

[16] Introduction to Cloud Computing Architecture, Sun Microsys-
tems, 2009.

[17] G. D. Delgado, V. C. Fŕıas, andM. A. Igartua, “Video-streaming
transmission with qos over cross-layered ad hoc networks,”
in International Conference on Software in Telecommunications
and Computer Networks (SoftCOM ’06), pp. 102–106, IEEE,
2006.

[18] D. Diaz-Sanchez, F. Almenarez, A. Maŕın, D. Proserpio, and
P. Arias Cabarcos, “Media cloud: an open cloud computing
middleware for content management,” IEEE Transactions on
Consumer Electronics, vol. 57, no. 2, pp. 970–978, 2011.

[19] A.M. A. Valeriana and R.Marcelo,Monitoramento do Protocolo
Rtsp (Real Time Streaming Protocol) Utilizando Ntop (Network
Top), Centro Brasileiro de Pesquisas Fı́sicas, 2008.

[20] D. Wu, Y. T. Hou, W. Zhu, Y. Q. Zhang, and J. M. Peha,
“Streaming video over the internet: approaches and directions,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 3, pp. 282–300, 2001.

[21] J. C. Laprie, Dependable Computing and Fault Tolerance: Con-
cepts Terminology, IEEE, 1995.

[22] S. Schaffer, Babbage’s Intelligence: Calculating Engines and the
Factory System, Critical Inquiry—The University of Chicago
Press, 1994.

[23] P. Maciel, K. S. Trivedi, R. Matias, and D. S. Kim, Dependability
Modeling, IGI Global, Hershey, Pa, USA, 2011.

[24] J. Laprie, Dependability: Basic Concepts and Terminology,
Springer, 1992.

[25] P.M. Frank, Introduction to System SensitivityTheory, Academic
Press, 1978.

[26] D. Johnson, K. Murari, M. Rju, R. B. Suseendran, and Y.
Andgirikumar, Eucalyptus Beginner’s Guide. Uec Edition for
Ubuntu Server 10.04—Lucid Lynx, V1.0, 2010.

[27] A. Valmari,The State Explosion Problem, Springer, 1998.
[28] D. M. Hamby, “A review of techniques for parameter sensitivity

analysis of environmental models,” Environmental Monitoring
and Assessment, vol. 32, no. 2, pp. 135–154, 1994.

[29] R. Matos Jr., An automated approach for systems performance
and dependability improvement through sensitivity analysis of
markov chains [Ph.D. dissertation], 2011.

[30] B. Silva, G. Callou, E. A. G. Tavares et al., “Astro: an integrated
environment for dependability and sustainability evaluation,”
Sustainable Computing: Informatics and Systems, vol. 2, pp. 1–31,
2012.

[31] Mercury tool developed by modcs group, https://sites.google
.com/site/mercurytooldownload/.

[32] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling
and analysis of a virtualized system,” in Proceedings of the

15th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC ’09), pp. 365–371, 2009.

[33] T. Hu, M. Guo, S. Guo et al., “Mttf of composite web services,”
in Proceedings of the International Symposium on Parallel and
Distributed Processing with Applications (ISPA ’10), pp. 130–137,
IEEE, 2010.

[34] R. Blum, Linux Command Line and Shell Scripting Bible, 2000.
[35] Z. Birnbaum, “On the importance of different components in a

multicomponent system,” inMultivariate Analysis—II, pp. 581–
592, 1968.

[36] A. B. Huseby, “Importance measures for multicomponent
binary systems,” Statistical Research Report, 2004.

[37] J. J. C. de Figueirêdo, Análise de dependabilidade de sistemas
data center baseada em indices de importância [Dissertações de
Mestrado], 2011.

[38] Heartbeat, linux-HA Project, 2014, http://www.linuxha.org/.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

