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RSA system is based on the hardness of the integer factorization problem (IFP). Given an RSA modulus 𝑁 = 𝑝𝑞, it is difficult to
determine the prime factors 𝑝 and 𝑞 efficiently. One of the most famous short exponent attacks on RSA is the Wiener attack. In
1997, Verheul and van Tilborg use an exhaustive search to extend the boundary of theWiener attack.Their result shows that the cost
of exhaustive search is 2𝑟 + 8 bits when extending the Weiner’s boundary r bits. In this paper, we first reduce the cost of exhaustive
search from 2𝑟 + 8 bits to 2𝑟 + 2 bits. Then, we propose a method named EPF. With EPF, the cost of exhaustive search is further
reduced to 2𝑟 − 6 bits when we extend Weiner’s boundary 𝑟 bits. It means that our result is 214 times faster than Verheul and van
Tilborg’s result. Besides, the security boundary is extended 7 bits.

1. Introduction

During the past 30 years, RSA [1] has been one of the most
popular public-key cryptosystems worldwide. It has been
widely used in several applications [2–4].The security of RSA
is often based on the hardness of the integer factorization
problem (IFP), which remains a well-studied problem [5,
6]. Current RSA standards suggest that an RSA modulus
𝑁 should be at least 1024 bits long. Using the best-known
factoring algorithms, the expected workload of factoring
a 1024 bit modulus is 280, which is currently believed to
be infeasible. However, although the use of a large RSA
modulus achieves a high security level, the encryption and
decryption procedures involve heavy exponential modular
multiplications, whichmakeRSA inefficient.Therefore,many
approaches have been investigated for speeding-up the RSA
encryption (or signature-verification) and RSA decryption
(or signature-signing) [7–12]. Furthermore, since the signing

task is often executed by lightweight devices, such as smart
cards, mobile phones, or PDAs, the research on speeding-up
signature-signing is more practical and important.

The most popular method for reducing the signing time
is to apply a small private exponent 𝑑 since the complexity of
signing depends on the bit-length of 𝑑. In order to achieve
this goal, the order of choosing 𝑒 and 𝑑 is exchanged. 𝑑 is
first chosen in the RSA-key generation algorithm, and the
corresponding public exponent 𝑒 satisfying 𝑒𝑑 ≡ 1(mod
𝜑(𝑁)) is then calculated. These RSA variants are called RSA-
Small-𝑑. Nevertheless, the variants of RSA-Small-𝑑 have the
security flaws [13–18]. In fact, instances of RSA with 𝑑 <

𝑁
1/4 can be efficiently broken byWiener attack [16]. Besides,

Boneh and Durfee’s lattice-based attack [19] indicated that
an instance of RSA-Small-𝑑 with 𝑑 < 𝑁

0.292 should be
considered to be an unsafe system.

In 1997, Verheul and van Tilborg [20] used an exhaustive
search to further extend the boundary of the Wiener attack.
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Suppose 𝑟 = log
2
𝑑 − log

2
𝑁
1/4; their result shows that an

exhaustive search for 2𝑟 + 8 bits is required to extend the
Wiener’s boundary 𝑟 bits. Assume that an exhaustive search
for 64 bits is feasible in terms of current computational
abilities; solving 𝑟 for the equation “2𝑟+8 = 64” yields 𝑟 = 28,
which implies that the boundary of the Wiener attack should
be raised up to𝑁1/4228.

In this paper, we attempt to reduce the cost of exhaustive
search of Verheul and van Tilborg’s result. We propose an
approach to reduce the cost of exhaustive search when we
desire to extend Wiener’s boundary. This approach includes
two steps.

Step 1. We investigate a method for searching as many MSBs
(most significant bits) of 𝑝+𝑞 as possible, which is equivalent
to estimating 𝑝 + 𝑞 as accurately as possible. In this step,
to extend Wiener’s boundary 𝑟 bits, an exhaustive search
requires 2𝑟 + 2 bits. It means that our result is better than
Verheul and van Tilborg’s cost, which requires an exhaustive
search for 2𝑟 + 8 bits.

Step 2. We develop an approach, called “Estimated Prime
Factor (EPF),” to estimate 𝑝 + 𝑞, and then we derive two
integers 𝑝

𝐸
and 𝑞

𝐸
, which are the estimations of 𝑝 and 𝑞,

respectively. Using EPF, the first 8 MSBs of 𝑝 + 𝑞 can be
determined. This result is more accurate than the traditional
estimation, which estimates 𝑝+𝑞 by 2√𝑁. Applying EPF can
further reduce the cost of exhaustive search.More specifically,
to extend Wiener’s boundary 𝑟 bits, an exhaustive search
requires 2𝑟−6 bits. As compared to Verheul and van Tilborg’s
result, which requires an exhaustive search for 2𝑟 + 8 bits, the
security boundary is extended 7 bits.

1.1. Our Contribution. The contributions of this paper are
summarized as follows.

(1) We first reduce the cost of exhaustive search from 2𝑟+

8 (Verheul and van Tilborg’s result) bits to 2𝑟 + 2 bits
when we extend Wiener’s boundary 𝑟 bits. It means
that exhaustive search is 26 times faster in Step 1.
Besides, the security boundary is extended 3 bits.

(2) We propose a novel approach, named EPF, for esti-
mating the prime factors of 𝑁. With EPF, the cost
of the exhaustive search for 2𝑟 + 2 bits (mentioned
in contribution (1)) is further reduced to 2𝑟 − 6

bits. Compared with Verheul and van Tilborg’s result,
exhaustive search is 214 times faster. Besides, the
security boundary is extended 7 bits.

1.2. Organization. The remainder of this paper is organized
as follows. Section 2 presents the preliminaries of this paper.
Section 3 describes Step 1 of our approach. In Section 4, we
propose the EPF to estimate the prime factors of an RSA
modulus. Next, Step 2 of our approach which is applying EPF
is proposed in Section 5. Finally, we present our conclusions
and future works in Section 6.

2. Preliminary

In this section, we introduce the preliminaries of this paper
which include RSA and its variants and the Wiener attack.

2.1. RSA and Its Variants. The RSA cryptosystem [1] consists
of three parts, RSA-key generation, encryption, and decryp-
tion which are described as follows.

2.1.1. RSA-Key Generation, Encryption, and Decryption. The
RSA-key generation outputs the RSA key: (𝑁, 𝑒, 𝑑). First,
randomly choose two large prime numbers 𝑝 and 𝑞 and
compute𝑁 = 𝑝𝑞, where𝑁 is called RSA modulus. Secondly,
let 𝑒, called public exponent, be a randomly chosen integer
such that gcd (𝑒, 𝜑(𝑁)) = 1, where 𝜑(⋅) is Euler’s phi function.
Then, let 𝑑, called private exponent, be the multiplicative
inverse modulo 𝜑(𝑁) (i.e., 𝑒𝑑 ≡ 1 (mod𝜑(𝑁))). The pair
(𝑒,𝑁) is the public key and the pair (𝑑,𝑁) is the private key.

From the key relation 𝑒𝑑 ≡ 1 (mod 𝜑(𝑁)), there exists a
unique positive integer 𝑘 satisfying

𝑒𝑑 = 1 + 𝑘 ⋅ 𝜑 (𝑁) . (1)

We call (1) as the RSA-key equation. To encrypt a plaintext
message 𝑀 ∈ Z

𝑁
, compute 𝐶 ≡ 𝑀

𝑒
(mod𝑁). The result 𝐶

is called the ciphertext of 𝑀. To execute RSA decryption, a
ciphertext 𝐶 ∈ Z

𝑁
is decrypted by raising it to the 𝑑th power

modulo𝑁. From Lagrange’s theorem, it follows that

𝐶
𝑑
(mod𝑁) = 𝑀𝑒𝑑 (mod𝑁) ≡ 𝑀(mod𝑁) = 𝑀. (2)

Usually, one often selects 𝑒 as small as possible due to the
reason of efficient encryption (or signature-verification).The
smallest 𝑒 is suggested to be 232 + 1 rather than 216 + 1 while
a known affine relation between two messages exists [21]. We
call the RSA system with small public exponent 𝑒 as “RSA-
Small-𝑒.” On the other hand, since the cost of decryption
(or signature-signing) can be significantly reduced when the
private exponent 𝑑 is much smaller than 𝜑(𝑁), in order to
simply reduce the decryption (or signature-signing) time,
one can select a small private exponent 𝑑 first in RSA-key
generation. Such variant is called RSA-Small-𝑑, which is
shown in the following.

2.1.2. RSA-Small-𝑑. Generating instances of RSAwith a small
private exponent is easy with the observation that the RSA-
key equation (1) is symmetric with respect to the public and
private exponents. We simply follow the same key generation
of original RSAbut exchange the choosing order of public and
private exponents.

One of the drawbacks of RSA-Small-𝑑 is its inefficient
encryption. Since the public exponent 𝑒 in RSA-Small-𝑑 is
always computed as the inverse of 𝑑 modulo 𝜑(𝑁), it is
expected with high probability that 𝑒 will be almost the
same size as 𝜑(𝑁). In conclusion, RSA-Small-𝑑 saves the
decryption (or signature) cost while the encryption cost
remains large.
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2.2. The Wiener Attack. One of the most famous short expo-
nent attacks on RSA is the Wiener attack. Boneh and Durfee
[22] showed in 1990 that RSA-Small-𝑑 should be considered
insecure when 𝑑 < 𝑁1/4. He achieved the attack through the
technique of continued fractions. In the following paragraph,
we briefly introduce the continued fractions and the Weiner
attack. The details can be referenced in [16].

Definition 1 (continued fractions). For any positive real
number 𝛼, define 𝛼 = 𝜉

0
, 𝑎
𝑖
= ⌊𝜉
𝑖
⌋, 𝜉
𝑖+1

= 1/(𝜉
𝑖
− 𝑎
𝑖
) for

𝑖 = 0, 1, 2, . . .. Then 𝛼 can be expanded into the following
form:

𝛼
𝑖
= 𝑎
0
+ 1/ (𝑎

1
+ 1/ (𝑎

2
+ 1/ (𝑎

3
+ 1/ ⋅ ⋅ ⋅ ))) . (3)

The form of (3) is called the continued fraction expression
of 𝛼. For simplicity, we write (3) to be 𝛼 = (𝑎

0
, 𝑎
1
, 𝑎
2
, . . .). In

addition, denote 𝛼
𝑖
= (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑖
) as the 𝑖th convergent of

the continued fraction expansion of 𝛼, which means

𝛼
𝑖
= 𝑎
0
+ 1/ (𝑎

1
+ 1/ (𝑎

2
+ 1/ (⋅ ⋅ ⋅ + 1/𝑎

𝑖
))) . (4)

If 𝛼 is a rational number, then the process of computing its
continued fraction expression, see (3), will cease in some
index 𝑘. That is, 𝛼 = 𝛼

𝑘
. If 𝛼 is irrational, then the process

will go on unceasingly.

Theorem 2. Denote ℎ
𝑖
/𝑘
𝑖
as the fraction form of (4); that is,

ℎ
𝑖
/𝑘
𝑖
= 𝛼
𝑖
, where ℎ

𝑖
and 𝑘

𝑖
are positive integers. Then, ℎ

𝑖
and

𝑘
𝑖
can be calculated by defining ℎ

−2
= 0, 𝑘

−2
= 1, ℎ

−1
= 1, and

𝑘
−1
= 0. And ℎ

𝑖
= 𝑎
𝑖
ℎ
𝑖−1
+ℎ
𝑖−2

and 𝑘
𝑖
= 𝑎
𝑖
𝑘
𝑖−1
+𝑘
𝑖−2

, for 𝑖 ≥ 0.

Following the notations in Theorem 2, we have
Corollary 3.

Corollary 3. For any 𝑖 ≥ 1,


𝛼 −
ℎ
𝑖+1

𝑘
𝑖+1



<



𝛼 −
ℎ
𝑖

𝑘
𝑖



. (5)

Furthermore, if 𝛼 is an irrational number, then lim
𝑖→∞

ℎ
𝑖
/𝑘
𝑖
=

𝛼.

Theorem 4. If a real number 𝛼 and a reduced fraction 𝑎/𝑏
satisfy


𝛼 −

𝑎

𝑏


<

1

2𝑏2
, (6)

then 𝑎/𝑏 equals to one of the convergents of the continued
fraction expression of 𝛼.

2.2.1. The Wiener Attack. TheWiener attack [16] is based on
approximations using continued fractions to find the private
exponent of RSA-Small-𝑑 in polynomial time if 𝑑 < 𝑁

1/4,
where 𝑝 and 𝑞 are of the same bit-length. Note that the RSA-
key equation, 𝑒𝑑 = 1 + 𝑘 ⋅ 𝜑(𝑁), can be rewritten as



𝑒

𝜑 (𝑁)
−
𝑘

𝑑



=



1

𝑑𝜑 (𝑁)



, (7)

which is similar to the form of the left-hand side of (6). In
order to apply Theorem 4, we replace 𝑒/𝜑(𝑁) of (7) by 𝑒/𝑁,
which is known for everyone, and set the difference between
𝑒/𝑁 and 𝑘/𝑑 to be smaller than 1/2𝑑2; that is,



𝑒

𝑁
−
𝑘

𝑑



<
1

2𝑑2
. (8)

Therefore, according to Theorem 4, 𝑘/𝑑 can be found by
computing one of the convergents of the continued fraction
expression of 𝑒/𝑁.

The security boundary of the Wiener attack is deduced
from the sufficient condition for (8). Since 𝑝 ≈ 𝑞 ≈ √𝑁 and
𝑘 ≈ 𝑑, the left-hand side of (8) is simplified to



𝑒

𝑁
−
𝑘

𝑑



=
𝑘 (𝑝 + 𝑞 − 1) − 1

𝑁𝑑
≈
2√𝑁

𝑁
=

2

√𝑁

. (9)

Hence, (8) is transformed to

2

√𝑁

<
1

2𝑑2
, (10)

which gives the security boundary of theWiener attack (after
ignoring the constant term):

𝑑 < 𝑁
1/4
. (11)

2.3. Verheul and van Tilborg’s Extension. The Wiener attack
works very well and efficiently when the private exponent 𝑑 <
𝑁
1/4. However, what about if the bit-length of 𝑑 is slightly

larger than the bit-length of 𝑁1/4? In 1997, Verheul and van
Tilborg [20] proposed a technique to solve this problem by
performing an exhaustive search for 2𝑟 + 8 bits, where 𝑟 =
log
2
𝑑− log

2
𝑁
1/4 means that the bit-length of 𝑑 is longer than

the bit-length of𝑁1/4 by 𝑟 bits.
Verheul and van Tilborg observed that 𝑘/𝑑 in (8) can be

represented as follows:

𝑘

𝑑
=
𝑝𝑗+1

𝑈 + (𝑈Δ + 𝑉)
𝑝𝑗

𝑞𝑗+1
𝑈 + (𝑈Δ + 𝑉)

𝑞𝑗

, (12)

where 𝑝
𝑖
/𝑞
𝑖
is the 𝑖th convergent of the continued fraction

expression of 𝑒/𝑁, Δ = 1 or 2, and𝑈 and𝑉 are two unknown
integers with upper bounds as follows:

log
2
𝑈 ≤ 𝑟 + 4, log

2
𝑉 ≤ 𝑟 + 4. (13)

Since Δ is a small integer, we can omit its uncertainty. The
unknown parts of (12) are about 2𝑟 + 8 bits, which give
the result of Verheul and van Tilborg’s extension: extending
Wiener’s boundary by 𝑟 bits requires an exhaustive search for
about 2𝑟 + 8 bits.

Assume that an exhaustive search for 64 bits is feasible
in terms of the current computational capabilities. Solving 𝑟
for the equation “2𝑟 + 8 = 64” yields 𝑟 = 28, which implies
that Wiener’s boundary can be extended 28 bits over the bit-
length of𝑁1/4. Therefore, RSA-Small-𝑑with 𝑑 < 𝑁1/4228 can
be totally broken by continued fraction attack plus the cost of
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performing an exhaustive search for 64 bits. In Section 3, we
show that, in order to extend Wiener’s boundary by 𝑟 bits, it
requires only an exhaustive search for 2𝑟 + 2 bits, rather than
that fromVerheul and van Tilborg’s extension for cost, which
requires an exhaustive search for 2𝑟 + 8 bits.

3. Reducing the Cost of Exhaustive
Search to 2𝑟+2 Bits

Our approach contains two steps which are described in
Sections 3 and 5, respectively. In this section, we investigate
a method for searching as many MSBs (most significant bits)
of 𝑝+𝑞 as possible, which is equivalent to estimating 𝑝+𝑞 as
accurately as possible. With this method, we can reduce the
cost of exhaustive search from 2𝑟 + 8 bits (Verheul and van
Tilborg’s extension) to 2𝑟 + 2 bits when we extend Wiener’s
boundary 𝑟 bits.

Let 𝐴 be the estimation of 𝑝 + 𝑞. Throughout this paper,
we assume 𝐴 < 𝑝 + 𝑞. Thus 𝜑(𝑁) = (𝑁 + 1) − (𝑝 + 𝑞) is
estimated as (𝑁 + 1) − 𝐴, which implies

𝑒

𝜑 (𝑁)
≈

𝑒

(𝑁 + 1) − 𝐴
. (14)

Applying (14) to the Wiener attack, that is, replacing 𝑒/𝑁 of
(8) by 𝑒/((𝑁 + 1) − 𝐴), we have



𝑒

𝑁 + 1 − 𝐴
−
𝑘

𝑑



<
1

2𝑑2
. (15)

Note that if𝐴 = 𝑝+𝑞, then (15) always holds for any 𝑑 because


𝑒

𝑁 + 1 − (𝑝 + 𝑞)
−
𝑘

𝑑



=



𝑒𝑑 − 𝑘 (𝑁 + 1 − (𝑝 + 𝑞))

(𝑁 + 1 − (𝑝 + 𝑞)) 𝑑



=
1

𝜑 (𝑁) 𝑑
<

1

2𝑑2
.

(16)

Simplifying (15) yields


𝑒

𝑁 + 1 − 𝐴
−
𝑘

𝑑



=



𝑒𝑑 − 𝑘 (𝑁 + 1 − 𝐴)

(𝑁 + 1 − 𝐴) 𝑑



=
𝑘 [(𝑝 + 𝑞) − 𝐴] − 1

(𝑁 + 1 − 𝐴) 𝑑
<

1

2𝑑2
,

(17)

which is

2𝑑𝑘 [(𝑝 + 𝑞) − 𝐴] − 2𝑑 < 𝑁 + 1 − 𝐴. (18)

Solving 𝑑 in (18), we get the upper bound of the private
exponent:

𝑑 <
𝑁 + 1 − 𝐴

2𝑘 (𝑝 + 𝑞 − 𝐴) − 2
. (19)

According to the above inequality, we know that the
smaller the difference between 𝑝 + 𝑞 and 𝐴, the higher the
upper bound of 𝑑. Consequently, in order to extend the
security boundary of RSA-Small-𝑑, we attempt to estimate
𝐴 as precisely as possible such that 𝑝 + 𝑞 − 𝐴 becomes

small. Equation (19) also shows that the complexity of
further extending Wiener’s boundary can be reduced to the
complexity of estimating the MSBs of 𝑝 + 𝑞. The relation is
shown in the following.

Rearranging (18) we have

2𝑑𝑘 (𝑝 + 𝑞 − 1) − 2𝑑 < 𝑁 + (2𝑑𝑘 − 1) (𝐴 − 1) . (20)

Denote Λ as the difference between 𝑝 + 𝑞 and 𝐴. That is, Λ =

𝑝 + 𝑞 − 𝐴. Replacing 𝐴 in (20) by 𝑝 + 𝑞 − Λ conducts

2𝑑𝑘 (𝑝 + 𝑞 − 1) − 2𝑑 < 𝑁 + (2𝑑𝑘 − 1) ((𝑝 + 𝑞 − Λ) − 1)

= 2𝑑𝑘 (𝑝 + 𝑞 − 1)

+ 𝜑 (𝑁) − Λ (2𝑑𝑘 − 1) .

(21)

In (21), eliminating 2𝑑𝑘(𝑝 + 𝑞 − 1) in both sides we get

Λ (2𝑑𝑘 − 1) − 2𝑑 < 𝜑 (𝑁) . (22)

Now we consider the bit-length of each side. Assume that the
bit-length of 𝑑 is 𝑛/4 + 𝑟 bits, which is longer than Wiener’s
boundary by 𝑟 bits. Due to the key generation of RSA-Small-
𝑑, the parameter 𝑘 is almost the same size as 𝑑 with a high
probability; that is, log

2
𝑘 ≈ log

2
𝑑. In addition, we perform

an exhaustive search for the first 𝑠 MSBs of 𝑝 + 𝑞. Thus the
difference between 𝑝+𝑞 and𝐴 can be reduced to (𝑛/2+1)−𝑠
bits; that is, log

2
Λ ≈ (𝑛/2 + 1) − 𝑠. Consequently, The term

Λ⋅2𝑑𝑘, which dominates the size in the left-hand side of (22),
is about ((𝑛/2 + 1) − 𝑠) + 1 + 2 × (𝑛/4 + 𝑟) bits long and the
sufficient condition of (22) is

((𝑛/2 + 1) − 𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for Λ
+ 1 + 2 × (𝑛/4 + 𝑟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 2𝑑𝑘
< 𝑛, (23)

which is simplified to

2𝑟 + 2 < 𝑠. (24)

Equation (24) gives the following conclusion. In order to
extend Wiener’s boundary by 𝑟 bits, we have to perform an
exhaustive search for the first 2𝑟+2MSBs of 𝑝+𝑞, where 𝑟 =
log
2
𝑑− log

2
𝑁
1/4.This result is better than that of Verheul and

van Tilborg’s cost [20], which requires an exhaustive search
for 2𝑟+8 bits.Therefore, assume that an exhaustive search for
64 bits is feasible in terms of current computational abilities.
Solving 𝑟 for

2𝑟 + 2 = 64 (25)

yields 𝑟 = 31, which means that RSA-Small-𝑑 is insecure
when 𝑑 < 𝑁1/4231.

4. Estimated Prime Factor (EPF)

In this section, a novel approach called Estimated Prime
Factor (EPF), which is used to estimate the prime factors of
an RSA modulus𝑁, is proposed.
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4.1. EPF. Without loss of generality, we assume that 𝑞 <

𝑝 < 2𝑞, where 𝑁 = 𝑝𝑞. Denote 𝐷
𝑝
and 𝐷

𝑞
as the distances

between√𝑁 & 𝑝 and 𝑞 &√𝑁, respectively. That is,

𝑝 = √𝑁 + 𝐷
𝑝
, 𝑞 = √𝑁 − 𝐷

𝑞
. (26)

Applying (26) to𝑁 = 𝑝𝑞 yields

𝑁 = 𝑝 ⋅ 𝑞 = (√𝑁 + 𝐷
𝑝
) ⋅ (√𝑁 − 𝐷

𝑞
) (27)

= 𝑁 + √𝑁 ⋅ (𝐷
𝑝
− 𝐷
𝑞
) − 𝐷
𝑝
⋅ 𝐷
𝑞
. (28)

Eliminating𝑁 in both sides of (27) we have

𝐷
𝑝
⋅ 𝐷
𝑞
= √𝑁 ⋅ (𝐷

𝑝
− 𝐷
𝑞
) , (29)

which leads to

1

√𝑁

=

𝐷
𝑝
− 𝐷
𝑞

𝐷
𝑝
𝐷
𝑞

. (30)

Equation (30) is quite interesting because the irrational
fraction 1/√𝑁 reveals partial information of 𝐷

𝑝
− 𝐷
𝑞
and

𝐷
𝑝
⋅ 𝐷
𝑞
. Note that with𝐷

𝑝
−𝐷
𝑞
and𝐷

𝑝
⋅ 𝐷
𝑞
we can compute

𝐷
𝑝
+ 𝐷
𝑞
by

(𝐷
𝑝
+ 𝐷
𝑞
)
2

= (𝐷
𝑝
− 𝐷
𝑞
)
2

+ 4𝐷
𝑝
𝐷
𝑞

(31)

and solve𝐷
𝑝
and𝐷

𝑞
as follows:

𝐷
𝑝
=

𝐷
𝑝
+ 𝐷
𝑞

2
+

𝐷
𝑝
− 𝐷
𝑞

2
,

𝐷
𝑞
=

𝐷
𝑝
+ 𝐷
𝑞

2
−

𝐷
𝑝
− 𝐷
𝑞

2
.

(32)

Now we use continued fractions to construct a rational
sequence to approximate 1/√𝑁. Suppose that the 𝑖th conver-
gent of the continued fraction expansion of 1/√𝑁 is ℎ

𝑖
/𝑘
𝑖
.

According toTheorem 2, we know that

ℎ
𝑖

𝑘
𝑖

→
1

√𝑁

, as 𝑖 → ∞. (33)

Since the sizes of ℎ
𝑖
and 𝑘

𝑖
grow with increase of the index 𝑖

(see Theorem 2), there exists an index 𝑡 such that

ℎ
𝑡
< 𝐷
𝑝
− 𝐷
𝑞
< ℎ
𝑡+1
. (34)

We use ℎ
𝑡
and 𝑘

𝑡
as the estimations of 𝐷

𝑝
− 𝐷
𝑞
and 𝐷

𝑝
𝐷
𝑞
,

respectively, instead of using the larger ones. That is,

ℎ
𝑡
≈ 𝐷
𝑝
− 𝐷
𝑞
, 𝑘

𝑡
≈ 𝐷
𝑝
𝐷
𝑞
. (35)

From (31),𝐷
𝑝
+ 𝐷
𝑞
is estimated as

𝐷
𝑝
+ 𝐷
𝑞
≈ √ℎ
2

𝑡
+ 4𝑘
𝑡
. (36)

And thus𝐷
𝑝
and𝐷

𝑞
are estimated as

𝐷
𝑝
≈

√ℎ
2

𝑡
+ 4𝑘
𝑡
+ ℎ
𝑡

2
, 𝐷

𝑞
≈

√ℎ
2

𝑡
+ 4𝑘
𝑡
− ℎ
𝑡

2
.

(37)

Finally, we define the estimated prime factors of𝑁 as

𝑝
𝐸
:= [
[
[
[

√𝑁 +

√ℎ
2

𝑡
+ 4𝑘
𝑡
+ ℎ
𝑡

2

]
]
]
]

,

𝑞
𝐸
:=

[
[
[

[

√𝑁 −

√ℎ
2

𝑡
+ 4𝑘
𝑡
− ℎ
𝑡

2

]
]
]

]

.

(38)

4.2. Theoretical Estimation and Experimental Result on
Searching the Index 𝑡. The process of computing the conver-
gent of the continued fraction expression of 1/√𝑁 should be
ceased at the index 𝑡 satisfying (34).Thus, we have to estimate
the size of 𝐷

𝑝
− 𝐷
𝑞
in order to determine the index 𝑡. Since

𝐷
𝑝
< 𝑝 and 𝐷

𝑞
< 𝑞, ℎ

𝑡
should not be set larger than 𝑛/2 bits

at least. Next, we investigate themethod to estimate the index
𝑡 theoretically and experimentally.

4.2.1. Theoretical Estimation. From the definitions of𝐷
𝑝
and

𝐷
𝑞
in (26), we have

𝐷
𝑝
− 𝐷
𝑞
= 𝑝 + 𝑞 − 2√𝑁 = (√𝑝 − √𝑞)

2

, (39)

which is equivalent to

log
2
(𝐷
𝑝
− 𝐷
𝑞
) = 2log

2
(√𝑝 − √𝑞) . (40)

Equation (40) shows that the bit-length of 𝐷
𝑝
− 𝐷
𝑞
is twice

the bit-length of√𝑝 − √𝑞. Consider the following problem.
Problem. Randomly select two prime numbers 𝑝 and 𝑞 of 𝑛/2
bits; what is the expected value of the number of MSBs of√𝑝
and√𝑞 that are identical?

From our theoretical estimation, the expected value is
about 2.6, and it is almost independent of the bit-length of
𝑁. This implies that, for any two randomly selected prime
numbers𝑝 and 𝑞 of 𝑛/2 bits each, the first 2.6MSBs of√𝑝 and
√𝑞 are identical on average. Consequently, according to (40),
the size of𝐷

𝑝
−𝐷
𝑞
is expected to be 2×(𝑛/4−2.6) = 𝑛/2−5.2

bits, which increases linearly with the bit-length of𝑁.

4.2.2. Experimental Results. Table 1 shows the experimental
results for the index 𝑡 in EPF. Suppose that 𝑝 and 𝑞 are two
randomly generated prime numbers of 𝑛/2 bits each; we then
compute log

2
(𝐷
𝑝
−𝐷
𝑞
), log
2
(ℎ
𝑡
), and log

2
(ℎ
𝑡+1
), which denote

the bit-lengths of 𝐷
𝑝
− 𝐷
𝑞
, ℎ
𝑡
, and ℎ

𝑡+1
, respectively. Each

block in the table is evaluated from the average value of 1000
experimental instances. As can be observed from the first
row, the bit-length of 𝐷

𝑝
− 𝐷
𝑞
is approximately equal to

(𝑛/2 − 7) bits long for all 𝑛 and is greater than that of ℎ
𝑡

by at least 1 bit on average. This result is slightly different
from the result in the previous version at ACNS’07 [23] due
to the reason of using different samples in the experiments.
Note that in this paper we implement EPF with uniformly
distributed samples which are more objective. Moreover, the
values of log

2
(𝐷
𝑝
−𝐷
𝑞
) in Table 1 are slightly smaller than the

theoretical estimation 𝑛/2 − 5.2 bits; the reason may be that
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Table 1: The improvement of EPF on 𝑝 + 𝑞, where 𝑝 and 𝑞 are
balanced.

𝑛 512 1024 2048

log
2
(𝐷
𝑝
− 𝐷
𝑞
) 248.476 504.626 1016.551

𝑡 (in average) 146.229 295.772 594.103

log
2
(ℎ
𝑡
) 247.161 503.04 1015.201

log
2
(ℎ
𝑡+1
) 250.12 506.21 1018.14

Table 2: The improvement of EPF on 𝑝 + 𝑞, where 𝑝 and 𝑞 are
balanced.

Balanced Modulus𝑁 = 𝑝𝑞 𝑛 = 512 𝑛 = 1024 𝑛 = 2048

log
2
((𝑝 + 𝑞) − 2√𝑁) 248.476 504.626 1016.551

log
2
((𝑝 + 𝑞) − (𝑝

𝐸
+ 𝑞
𝐸
)) 247.185 503.294 1015.248

we ignore the usage of prime-counting function 𝜋(⋅) in the
calculation. However, the values in Table 1 actually increase
linearly with the bit-length of𝑁.

In EPF, we simply estimate the value of 𝐷
𝑝
− 𝐷
𝑞
, which

is, however, smaller than the actual value. On the other hand,
up to now, there is no theory to justify the difference between
the bit-lengths of ℎ

𝑡
and 𝐷

𝑝
− 𝐷
𝑞
; in fact, this would be an

interesting subject of inquiry.

4.3. Accuracy and Further Improvement. We demonstrate the
accuracy of EPF in Table 2. Each entry in the table is the
data averaged over 1000 samples. The first row shows the
difference of the bit-length between𝑝+𝑞 and its estimation by
using 2√𝑁. The second row shows the difference of the bit-
length between 𝑝 + 𝑞 and its estimation by using EPF. As can
be seen in Table 2, using 𝑝

𝐸
+ 𝑞
𝐸
as the estimation is more

accurate than using 2√𝑁 at least one bit on average. This
result shows that EPF is better than the traditional estimation
method.

To further raise the accuracy rate of EPF, we may
employ the properties of continued fractions. According to
Theorem 2, we know that

ℎ
𝑡+1

= 𝑎
𝑡
ℎ
𝑡
+ ℎ
𝑡−1
, 𝑘

𝑡+1
= 𝑎
𝑡
𝑘
𝑡
+ 𝑘
𝑡−1
, (41)

where 𝑎
𝑡
is the 𝑡th component of the continued fraction

expression of 1/√𝑁 (see Definition in Section 2.2). Conse-
quently, for any real number 𝜆 ∈ [1, 𝑎

𝑡
], we have

ℎ
𝑡
< 𝜆ℎ
𝑡
+ ℎ
𝑡−1

< ℎ
𝑡+1
, 𝑘

𝑡
< 𝜆𝑘
𝑡
+ 𝑘
𝑡−1

< 𝑘
𝑡+1
. (42)

Since𝐷
𝑝
−𝐷
𝑞
and𝐷

𝑝
⋅𝐷
𝑞
are also in the intervals (ℎ

𝑡
, ℎ
𝑡+1
) and

(𝑘
𝑡
, 𝑘
𝑡+1
), respectively, 𝜆ℎ

𝑡
+ℎ
𝑡−1

and 𝜆𝑘
𝑡
+𝑘
𝑡−1

might be better
estimations of 𝐷

𝑝
− 𝐷
𝑞
and 𝐷

𝑝
⋅ 𝐷
𝑞
. Hence, an interesting

question would be how to find a suitable value of 𝜆 that yields
better estimations of 𝐷

𝑝
− 𝐷
𝑞
and 𝐷

𝑝
⋅ 𝐷
𝑞
. Note that, from

the properties of continued fractions, we have

ℎ
𝑡+1

𝑘
𝑡+1

>
1

√𝑁

>
ℎ
𝑡

𝑘
𝑡

if 𝑡 is old,

ℎ
𝑡+1

𝑘
𝑡+1

<
1

√𝑁

<
ℎ
𝑡

𝑘
𝑡

if 𝑡 is even.
(43)

Equation (43) implies that there exists an irrational number
𝜆
1
, such that

𝜆
1
ℎ
𝑡
+ ℎ
𝑡−1

𝜆
1
𝑘
𝑡
+ 𝑘
𝑡−1

=
1

√𝑁

. (44)

To find an appropriate number 𝜆, one method could be to
choose 𝜆, which is very close to 𝜆

1
, which might yield better

estimations of 𝐷
𝑝
− 𝐷
𝑞
and 𝐷

𝑝
⋅ 𝐷
𝑞
. However, we leave this

concept as the subject of future work on EPF.

5. Applying EPF to Reduce the Cost of
Exhaustive Search to 2𝑟−6 Bits

In this section, we apply EPF proposed in Section 4 to further
reduce the cost of exhaustive search.

From the results of Section 3, the security boundary of
RSA-Small-𝑑 depends on the known MSBs of 𝑝 + 𝑞. In EPF,
the experimental results show that the 1st to the 8th MSB of
𝑝+𝑞, denoted as MSB

1
∼
8
(𝑝+𝑞), can be correctly determined

with high probability (see Table 2). Consequently, setting𝑝
𝐸
+

𝑞
𝐸
= 2
(𝑛/2+1)−8

𝐴
1
+ 𝐴
2
, where 𝐴

2
< 2
𝑛/2−7, then

(𝐴
1
)
2
= MSB

1
∼
8
(𝑝 + 𝑞) , (45)

where (𝐴
1
)
2
denotes the binary representation of𝐴

1
. Setting

Λ = (𝑝+𝑞)− (𝑝
𝐸
+𝑞
𝐸
), (45) also shows thatΛ is about (𝑛/2+

1)−8 bits long. Hence, representing (22) according to the bit-
length of the items, Λ, 𝑑, 𝑘, and 𝜑(𝑁) yields

((
𝑛

2
+ 1) − 8) + 1 + 2 (

𝑛

4
+ 𝑟) < 𝑛. (46)

Moreover, by performing an exhaustive search for 𝑠 bits after
the 8th MSB of 𝑝+ 𝑞, that is, MSB

9
∼
8+𝑠
(𝑝 + 𝑞), we can further

reduce the size ofΛ to (𝑛/2+1)−(8+𝑠) bits.This implies that
the 1st to the (8+𝑠)thMSBof𝑝+𝑞 can be correctly determined
and the size of Λ is reduced to (𝑛/2 + 1) − (8 + 𝑠) bits. Hence,
(46) is revised to

(
𝑛

2
+ 1) − (8 + 𝑠) + 1 + 2 (

𝑛

4
+ 𝑟) < 𝑛, (47)

which is simplified to

2𝑟 − 6 < 𝑠. (48)

Equation (48) is the improved result when applying EPF
to the method presented in Section 3. As a conclusion,
extending Wiener’s boundary by 𝑟 bits requires only an
exhaustive search for 2𝑟 − 6 bits, which results in a lower
computational cost than that with Verheul and van Tilborg’s
extension. We summarize the improvements in each type of
attack in Table 3.

With the progress of technology, the ability of machines
to perform exhaustive searches will only increase. Figure 1
shows the relations between the security boundaries of
the extensions of the Wiener attack and machines with
different computational abilities. The symbol 𝑠 denotes the
required number of bits for an exhaustive search to extend
Wiener’s boundary, and the symbol |𝑑| denotes the upper
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Table 3: The improvement between each attack.

Attacks Boundary Complexity
Wiener Attack 𝑑 < 𝑁

1/4 Polynomial time

V-T Extension 𝑑 < 𝑁
1/4
2
𝑟 Exhaustive search for 𝑈 and 𝑉 of 2𝑟 + 8 bits

(see (13))
Proposed Improvement (Step 1) 𝑑 < 𝑁

1/4
2
𝑟

Exhaustive search for 2𝑟 + 2 bits (see (24))
Applying EPF (Step 2) 𝑑 < 𝑁

1/4
2
𝑟 Exhaustive search for 2𝑟 − 6 bits (see (48))

bound of the insecure private exponent. In terms of the
current computational capabilities, an exhaustive search for
64 bits is feasible. Hence, the lines L1, L2 and L3 yield the
improvements of 28 bits, 31 bits, and 35 bits, respectively, over
Wiener’s boundary. The boundaries of the extensions of the
Wiener attack (see V-T. Ext., Ext. W., and EPF in Figure 1)
can be raised to 284 bits, 287 bits, and 291 bits, respectively,
when the RSA modulus 𝑁 is 1024 bits long. Furthermore, if
an exhaustive search for 80 bits is feasible, the upper bound
of the extension of the Wiener attack through EPF is raised
to 𝑁1/4243, which is 299 bits when 𝑁 is 1024 bits long (see
L3: EPF). This result is comparable to the boundary of the
lattice attack proposed by Boneh and Durfee [19], which has
a best upper bound, but heuristic, at the present. Note that
there is no guaranty that a heuristic algorithm can output
the solution. One may concern whether the assumption that
an exhaustive search for 80 bits is feasible or not. In the
opinion of current development, it will not be a difficult task
to achieve such computational capability in the near future.
According to Moore’s Law, computers will double in speed
approximately every 18 months, which further supports our
assumption. Moreover, paralleling techniques and special-
purpose machines can help in speeding-up the computation.

6. Conclusion and Future Works

With the rapid growth of different network environments
such aswireless sensor networks [24–27], security is normally
themost concerned issue. In this paper, we propose amethod,
called EPF, to estimate the prime factors of an RSA modulus.
With EPF, the cost of exhaustive search can further reduce
to 2𝑟 − 6 bits. It means that the cost is 214 times faster than
Verheul and van Tilborg’s result and the security boundary
is extended 7 bits. It should be noted that their method for
an exhaustive search is heuristic since this method is based
on the results of distribution of small partial quotient in the
continued fraction expansions.

An interesting problem in EPF is whether there exists a
deterministic algorithm for finding an index 𝑡 satisfying ℎ

𝑡
<

𝐷
𝑝
−𝐷
𝑞
< ℎ
𝑡+1

. In this paper, we use the theoretical estimation
to determine the index 𝑡. The success rate is 85.1% according
to our experiments. Now, another question arises—how to
increase the success rate of the process of finding the index
𝑡 when the deterministic algorithm is not developed. In
addition, the other researchable question is how to improve
the accuracy rate of MSBs of 𝑝

𝐸
+ 𝑞
𝐸
, which brings a greater

contributive effort of EPF.

|d
|
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0 60 80 100 120

S

64 88 94 128

323

319
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291

287

284

W. attack

B-D. attack
(heuristic)

L3: s = 2r − 6 (EPF)
L2: s = 2r + 2 (Ext. W.)

L1
L2
L3

L1: s = 2r + 8 (V.T. Ext.)

Figure 1: The boundaries of the extensions of the Wiener attack
under different computational capabilities, where 256 and 299 are
the boundaries of the Wiener attack (W. Attack) and Boneh and
Durfee’s attack (B-D. Attack), respectively. L1, L2, and L3 denote the
boundaries of Verheul and Tilborg’s extension (V-T. Ext.) (see [20]),
the extension of the Wiener attack (Step 1) (Ext. W.) (see (24)), and
the extension of the Wiener attack through EPF (EPF) (see (48)).

We should point out that EPF can be applied to Dujella’s
refinement [14] and the generalized Wiener attack [18].
Moreover, we foresee that EPF could be applied to other
cryptogrammic aspects, especially to the attacks for cryp-
tosystems based on the integer factorization problem (IFP).
For example, the lattice technique is commonly used for
the cryptanalysis of RSA [17, 28–30] or for the attacks on
RSA with small exponents [15, 18, 19, 21, 22, 31, 32]. We
expect EPF to be a supportive tool for assisting the lattice
technique to increase the effort on the cryptanalysis of RSA.
As a conclusion, we would like to point out that with the
continuous improvements in computational capability, the
security levels are expected to be higher with the assistance
of EPF, and the security analysis should be considered more
carefully.
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