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In vibration-based structural health monitoring of existing large civil structures, it is difficult, sometimes even impossible, to
measure the actual excitation applied to structures.Therefore, an identification method using output-only measurements is crucial
for the practical application of structural health monitoring. This paper integrates the ant colony optimization (ACO) algorithm
into the framework of the complete inverse method to simultaneously identify unknown structural parameters and input time
history using output-only measurements. The complete inverse method, which was previously suggested by the authors, converts
physical or spatial information of the unknown input into the objective function of an optimization problem that can be solved by
the ACO algorithm. ACO is a newly developed swarm computation method that has a very good performance in solving complex
global continuous optimization problems.The principles and implementation procedure of the ACO algorithm are first introduced
followed by an introduction of the framework of the complete inverse method. Construction of the objective function is then
described in detail with an emphasis on the common situation wherein a limited number of actuators are installed on some
key locations of the structure. Applicability and feasibility of the proposed method were validated by numerical examples and
experimental results from a three-story building model.

1. Introduction

Structural health monitoring (SHM) has remained an active
research topic in structural engineering since the 1970s. SHM
identifies the occurrence, location, and severity of structural
damage via significant adverse changes of structural param-
eters or properties. Thus, the core part of an SHM system
is the algorithm used to accurately identify the structural
parameters. A number of methods are available nowadays
for us to accomplish this identification task. Housner [1]
presented an extensive summary on the state-of-the-art
methods in the vibration control and health monitoring of
civil engineering structures. Zou et al. [2] summarized the
methods of vibration-based damage detection and health
monitoring for composite structures. Very recent reviews on
identification methods used in SHM can be found in Ou and
Li [3] and Fan and Qiao [4] among several others. Tradi-
tional identification algorithms are generally based on the

assumption that the system’s input (excitations) and output
(responses) are completely known (measured). However, in
vibration-based structural healthmonitoring of existing large
civil structures, it is difficult, sometimes even impossible,
to measure the actual excitation applied to the structures.
Therefore, output-only structural parameter identification
methods are of great significance for practical application of
SHM.

In contrast to a number of publications on structural
parameter identification with complete output and input
information, there is a paucity of publications addressing
the identification method using responses only. Since the
input/excitation is unknown, assumptions on the input are
necessary in order to make the traditional identification
method applicable. The most commonly adopted assump-
tion is treating the input as a white-noise process, whose
power spectrum is theoretically known.The classical Ibrahim
method plus random decrement technique, for instance, is
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Table 1: The basic parameters of the frame structure model.

Node number 1 2 3 4 5 6
Mass (kg) 610000 580000 530000 530000 530000 360000
Stiffness (kN/m) 271390 290360 282690 252480 233540 229940
Damping (kN⋅s/m) 2469.65 2874.56 2572.48 2297.57 2265.33 2092.45

based on this assumption. This assumption, however, is not
tenable for excitation like earthquakes or strong winds that
are in fact a nonstationary random process. Moreover, the
time history of the real input cannot be directly identified.
The second common way is assuming that the input has
some special features. For instance, Toki et al. [5] assumed
that the coda of the measured structural responses during an
earthquake could be treated as free vibration responses from
which the structural parameters could be easily identified.
Wang and Haldar [6] identified the unknown earthquake
input and structural parameters using output-only measure-
ments through a recursive identification procedure consisting
mainly of three steps. Step 1:The unknown structural param-
eters were identified by assuming that the input excitations
were zero at the beginning building up to four time instants,
say 𝑡

0
to 𝑡

4
. Step 2:The input excitationwas conjectured by the

measured structural responses and the parameters estimated
in the first step. Step 3: Replace excitation at 𝑡

0
to 𝑡

4
in step

1 with new values obtained at step 2, and then repeat step 1
and 2 until the identified input excitation at 𝑡

0
to 𝑡

4
converged

within a preset tolerance limit. For unknown wind load, Law
et al. [7] assumed the wind load model was known even
though the time histories of the wind load had not been
recorded. Based on this assumption, the time history of wind
load and the structural parameters could be identified using
the response measurements. More recently, Yang et al. [8]
suggested a recursive least squares estimation with unknown
inputs to identify the stiffness, damping, and other nonlinear
parameters at element level. The locations of the unknown
excitations are assumed known in their approach. The ASCE
structural damage benchmark structure was used to show
the feasibility of the method. Yang and Huang [9] further
extended thismethod to situations where external excitations
and some acceleration responses are not measured.

To deal with the unknown input identification problem,
we have proposed the concept of complete inverse problem,
which means identification of structural parameters and the
input’s time histories simultaneously from the output-only
measurements as per Chen and Li [10, 11], Li and Chen
[12, 13], and Zhao et al. [14, 15]. Within the framework of
complete inverse problem, we have suggested a series of
identification methods named as complete inverse methods
(CIM) addressing different types of unknown excitations.
The core idea of CIM is to convert any additional informa-
tion of the excitations (whose time histories are unknown)
into mathematical constraint conditions that can be further
integrated into an iteration identification procedure based
on least square technique. For instance, when the locations
of the excitations are known, the spatial information of the
external excitation can be used in the parameter identification
method [10, 11]. For ground motion excitation like that

Table 2: Parameters used by ACO
𝑅
for HIM.

Parameters Symbol Value
Speed of convergence 𝜉 0.85
Locality of the search process 𝑞 0.2
Archive size 𝑘 40
Number of dimensions 𝑁 12

resulting from an earthquake, itsmechanical features indicate
that the inertial force proportional to the mass can be
introduced into the interaction procedure as a mathematical
constraint to ensure a stable and unique solution [12, 13]. For
a proportional-type excitation, like wind loads, the ratio of
forces at different structural heights can be used as a math-
ematical condition to identify the structural parameters and
inputs. For shear-type building under earthquake excitation
and with limited response measurements, we proposed a
hybrid identification method where the unknown structural
parameters for the first floor are identified using measured
modal shapes, and parameters of all the other stories are
identified using measured acceleration responses [14, 15]. We
have also provided strictmathematical proofs fromChen and
Li [11] and Li andChen [13] to demonstrate the unconditional
convergence features of the proposed complete identification
methods.

Despite CIM’s success, it does have several limitations.
This paper thus tries to improve the CIM in two directions.
The first arises from replacing the least square method with
another efficient and more robust optimization method. The
recently emerged ant colony optimization algorithm (ACO)
has been adopted in this paper to identify the structural
parameter. The second improvement aims to validate the
proposed method by experimental examples. The feasibility
and effectiveness of all the aforementioned identification
methods have already been demonstrated by different kinds
of numerical examples. However, few experimental investiga-
tions have been conducted to assess the practical application
of these methods. The effect of measurement noise and
modeling error cannot be fully investigated in a numerical
simulation. However, time-domain identification methods
are known to be sensitive to measurement noise.

To this end, the paper first presents the principle of
ACO for solving both discrete optimization problems and
continuous optimization problems as well. Then, the ACO
is integrated into the CIM methods by constructing the
objective function according to the type of excitation. After
that, the proposed method is applied to numerical model
and an experimental model. The results show that the
CIM+ACO algorithm performs very well for a noise-free and
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Table 3: Identified results with noise-free measurements.

Parameters and its real values Case 1 Case 2 Case 3
𝜃0 𝜃

⬦
𝜃0 𝜃

⬦
𝜃0 𝜃

⬦

𝑘

1
271390 [1, 1𝐸6] 271390.00 [1, 1𝐸6] 271390.00 [1, 1𝐸7] 271389.99

𝑘

2
290360 [1, 1𝐸6] 290360.00 [1, 1𝐸6] 290360.00 [1, 1𝐸7] 290360.00

𝑘

3
282690 [1, 1𝐸6] 282690.00 [1, 1𝐸6] 282690.00 [1, 1𝐸7] 282689.99

𝑘

4
252480 [1, 1𝐸6] 252490.00 [1, 1𝐸6] 252479.99 [1, 1𝐸7] 252479.99

𝑘

5
233540 [1, 1𝐸6] 233540.00 [1, 1𝐸6] 233540.00 [1, 1𝐸7] 233540.00

𝑘

6
229940 [1, 1𝐸6] 229939.99 [1, 1𝐸6] 229940.00 [1, 1𝐸7] 229940.00

𝑐

1
2469.65 [1, 1𝐸6] 2469.6499 [1, 1𝐸6] 2469.6499 [1, 1𝐸7] 2469.6500

𝑐

2
2874.56 [1, 1𝐸6] 2874.5600 [1, 1𝐸6] 2874.5600 [1, 1𝐸7] 2874.5599

𝑐

3
2572.48 [1, 1𝐸6] 2572.4800 [1, 1𝐸6] 2572.4799 [1, 1𝐸7] 2572.4799

𝑐

4
2297.57 [1, 1𝐸6] 2297.5699 [1, 1𝐸6] 2297.5700 [1, 1𝐸7] 2297.5700

𝑐

5
2265.33 [1, 1𝐸6] 2265.3300 [1, 1𝐸6] 2265.3300 [1, 1𝐸7] 2265.3299

𝑐

6
2092.45 [1, 1𝐸6] 2092.4499 [1, 1𝐸6] 2092.4499 [1, 1𝐸7] 2092.4500

𝐿 100 20 100
Iteration number 410 417 968

𝜃0: initial values range of the parameter vector, generate 𝑘 solutions by uniform random sampling for archive 𝑇; 𝜃⬦: identified parameter vector, 𝐿: number of
sampling points used.

Table 4: Identified results with noise-pollution measurements.

Case 1 Case 2 Case 3 Case 4
Parameters and its
real values (Noise = 1%) (Noise = 5%) (Noise = 10%) (Noise = 15%)

𝜃
⬦ Error (%) 𝜃

⬦ Error (%) 𝜃
⬦ Error (%) 𝜃

⬦ Error (%)
𝑘

1
𝑘

1
271390 271212 −0.07 270655 −0.27 267110 −1.58 251259 −7.42

𝑘

2
290360 290206 −0.05 288793 −0.54 288103 −0.78 273108 −5.94

𝑘

3
282690 282877 0.07 281526 −0.41 278466 −1.49 276999 −2.01

𝑘

4
252480 252271 −0.08 252238 −0.10 249497 −1.18 246445 −2.39

𝑘

5
233540 233605 0.03 232816 −0.31 230917 −1.12 229261 −1.83

𝑘

6
229940 229767 −0.08 229776 −0.07 230418 0.21 222248 −3.35

𝑐

1
2469.65 2451.16 −0.75 2484.77 0.61 2061.82 −16.51 1591.87 −35.54

𝑐

2
2874.56 2878.74 0.15 2865.31 −0.32 3047.32 6.01 3293.65 14.58

𝑐

3
2572.48 2564.28 −0.32 2601.61 1.13 2124.07 −17.43 2192.95 −14.75

𝑐

4
2297.57 2297.05 −0.02 2273.31 −1.06 2468.87 7.46 2490.99 8.42

𝑐

5
2265.33 2266.12 0.03 2246.78 −0.82 2231.8 −1.48 2191.78 −3.25

𝑐

6
2092.45 2095.25 0.13 2107.04 0.70 2134.34 2.00 2038.22 −2.59

𝐿 200 300 200 300
For all cases, identical initial values range [1, 1𝐸7] is used for all stiffness and damping parameters; 𝜃⬦: identified parameter vector; Error: relative error, 𝐿:
number of sampling points used.

noise-polluted case and has good identification accuracy in
parameters and inputs.

2. Ant Colony Optimization

Inspired by the ants’ foraging behavior, Dorigo [16] proposed
the ant colony optimization algorithm (ACO). ACO emulates
the behavior of a group of ants in searching food from
their nest to the food sources. Every ant leaves an amount
of pheromone on the path that it passes and chooses the
path with more pheromone left on it from the previous ants.
Then, after more and more ants pass, the path having the
maximumpheromonewill be the best (shortest) way from the
nest to the food source. ACO algorithms have already been

successfully applied for solving combinatorial optimization
problems, including the traveling salesman problem (TSP)
[17], the routing problem in a computer network [18], the
quadratic assignment problem (QAP) [19], and structural
health monitoring problems [20, 21]. ACO algorithms for
continuous optimization have been proposed in the literature
[22–24]. All the above work has proven ACO to be an
efficient and versatile tool for solving various continuous
optimization problems.TheACO algorithm has already been
well established so far. Principal and application procedures
of ACO are briefly summarized in Section 2.1.

2.1. Ant System Model [22]. As mentioned earlier, ACO
emulates the behavior of a group of ants in searching for
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Figure 1: Comparison of identified time histories of inputs with real input at different floor.

food. Modeling of the ant system and the pheromone left by
ants on the path are of great importance for application of
ACO.WhenACO is used for discrete optimization problems,
ants construct solutions incrementally.That is, each ant starts

with an empty solution 𝑆

0 and a component of the solution is
added at each construction step. If𝐶𝑖 denotes all the available
solutions at step 𝑖, we need to choose one best solution from
𝐶

𝑖 and add the solution to previous solution 𝑆

𝑖−1 leading to
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Figure 2: The 3-story building model in the test.

the new solution as 𝑆𝑖. The definition of the available solution
componentdepends on the problem tackled. For instance, in
the popular travelling salesman problem (TSP), a component
of the solution is a city that is added to a tour. The solution
components may be defined differently for other problems.

A probability-based strategy is adopted to choose the best
solution components from 𝐶

𝑖 for constructing the current
partial solution 𝑆

𝑖. This decision is usually influenced by
amount of pheromone 𝜏 associated with available choices
and by heuristic information about the problem. To avoid
the loss of generality, in the following problem, no heuristic
information is used. Assuming that the partial solution
constructed is 𝑆

𝑖 so far, the probability 𝑝 is usedto choose a
solution component 𝑐 ∈ 𝐶

𝑖 at step 𝑖 in iteration 𝑡 as calculated
by the following;

𝑝

𝑆
𝑖
𝑐
(𝑡) =

𝜏

𝑆
𝑖
𝑐
(𝑡)

∑

𝑗∈𝐶
𝑖 𝜏𝑆
𝑖
𝑗
(𝑡)

, (1)

where 𝜏 is the pheromone, the subscript 𝑆 denotes the
solution domain, and 𝑖 means the 𝑖th iteration step. Hence,
in case of discrete optimization problems, the ants make a
probabilistic decision according to some discrete probabil-
ity distribution at each construction step. For continuous
optimization problems, the domain changes from discrete to
continuous.The logical adaptation alsowould bemoved from
using the discrete probability distribution to a continuous
one—the probability density function (PDF). Instead of
choosinga component 𝑐 ∈ 𝐶

𝑖 at step 𝑖, the ants would generate
a random number according to a certain PDF 𝑃(𝑥).

2.2. ACO for Continuous Domain: ACOR [22, 23]. The
original ACO algorithm applies only to discrete domain
and cannot be directly introduced into continuous domain
optimization problems. Structural identification in nature is
an optimization problem that aims to find the best parameters
for a given objective function defined in a continuous

domain. The ACO for continuous domain is, therefore,
necessary. We adopted the method suggested by Socha [22]
and Socha and Dorigo [23], which is an ACO for continuous
domain (ACO

𝑅
) based on Gaussian probability density func-

tions. Application of ACO
𝑅
is briefly summarized here for the

purpose of completion. More technical details of ACO
𝑅
can

be found in Socha [22] and Socha and Dorigo [23].
A Gaussian kernel PDF is used in ACO

𝑅
to account for

themultiple-peaks (multiple optimization solutions) domain.
Suppose the optimization problem on hand is 𝑖 = 1, 2, . . . , 𝑛

dimensions; for the 𝑖th dimension, the Gaussian kernel PDF
𝐺

𝑖
(𝑥) is defined as aweighted sumof several one-dimensional

Gaussian functions as follows:

𝐺

𝑖
(𝑥) =

𝑘

∑

𝑙=1

𝜔

𝑙
𝑔

𝑖

𝑙
(𝑥) =

𝑘

∑

𝑙=1

𝜔

𝑙

1

𝜎

𝑖

𝑙
√
2𝜋

exp(−

(𝑥 − 𝜇

𝑖

𝑙
)

2

2(𝜎

𝑖

𝑙
)

2
) ,

(2)

where, 𝑖 = 1, 2, . . . , 𝑁 is the number of dimensions of the
problem; 𝑙 = 1, 2, . . . , 𝑘 is the number of single Gaussian
functions constituting the Gaussian kernel PDF; 𝜔

𝑙
is the

weight associated with the 𝑙th individual Gaussian function;
𝜇

𝑖

𝑙
and 𝜎

𝑖

𝑙
are the mean and standard deviation for the 𝑙th

function in the 𝑖th dimension. They can also be expressed in
vector form as {𝜇𝑖} and {𝜎

𝑖
} whose cardinality is equal to 𝑘.

For an 𝑁-dimension problem, an ant constructs a solu-
tion in 𝑁 steps. At each step, an ant gets a value for the
unknown variable 𝑥

𝑖
. For each solution 𝑠

𝑙
, ACO

𝑅
will store

the current results of𝑁 as unknown variables and the value of
the objective function 𝑓(𝑠

𝑙
) in an archive 𝑇. All the solutions

are ordered in 𝑇 according to their qualities, that is, 𝑓(𝑠

1
) ≤

𝑓(𝑠

2
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑠

𝑙
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑠

𝑘
). Each solution has

an associated weight 𝜔 that is proportional to the solution
quality, 𝜔

1
≥ 𝜔

2
≥ ⋅ ⋅ ⋅ ≥ 𝜔

𝑙
≥ ⋅ ⋅ ⋅ ≥ 𝜔

𝑘
. The PDF 𝐺

𝑖 is
constructed using only the 𝑖th coordinates of all 𝑘 solutions
from the archive.

For each dimension 𝑖 = 1, 2, . . . , 𝑁 of the problem, there
is a different Gaussian kernel PDF 𝐺

𝑖
(𝑥) defined. For each

𝐺

𝑖
(𝑥), the values of the 𝑖th variable of all the solutions in the

archive 𝑇 become the elements of the vector 𝜇𝑖:

𝜇
𝑖
= {𝜇

𝑖

1
, . . . , 𝜇

𝑖

𝑘
} = {𝑠

𝑖

1
, . . . , 𝑠

𝑖

𝑘
} . (3)

Before each solution is added to the archive 𝑇, it must
be evaluated and ranked. The solutions in the archive are
sorted according to their rank—that is, solution 𝑠

𝑙
has rank

𝑙. Better solutions will have a higher weight. The weight 𝜔
𝑙
of

the solution 𝑠

𝑙
is calculated by the following:

𝜔

𝑙
=

1

𝑞
√
2𝜋

exp(−

(𝑙 − 1)

2

2𝑞

2
) . (4)

The weight is for the Gaussian function with argument
𝑙, mean 1.0, and standard deviation 𝑞. In the ACO

𝑅
, 𝑞 is

in fact a parameter to balance between diversification and
intensification. When 𝑞 is small, the best-ranked solutions
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Figure 3: Dimensions of the building model.
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Figure 5: The integrated velocity and displacement from accelerations shown in Figure 4.

are strongly preferred, and when it is large, the probability
becomes uniform.

In practice, generating the Gaussian kernel PDF is
accomplished as follows. First, choose one of the individual
Gaussian functions that compose the Gaussian kernel with

probability 𝑝

𝑙
given by (5). Then generate the chosen Gaus-

sian function

𝑝

𝑙
=

𝜔

𝑙

∑

𝑘

𝑟=1
𝜔

𝑟

. (5)
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Table 5: (a) Identified results for single hammer hit on the top floor (computation points = 60). (b) Identified results for single hammer
hit on the top floor (computational points = 100). (c) Identified results for single hammer hit on the top floor (computation points = 300).
(d) Identified results for single hammer hit on the top floor (computation points = 100 with different initial values for parameters).

(a)

Computation response segments Identification results (×10

5
) and identification errors

𝑘

1
Error 𝑘

2
Error 𝑘

3
Error

10.0∼10.2 s 5.6027 −0.60 5.5243 −1.99 5.6330 −0.06
10.4∼10.6 s 5.5882 −0.86 5.5804 −1.00 5.6430 0.12
10.8∼11.0 s 5.5042 −2.35 5.7150 1.39 5.6406 0.07
11.2∼11.4 s 5.6356 −0.02 5.4636 −3.07 5.6258 −0.19
11.6∼11.8 s 5.4920 −2.56 5.6482 0.21 5.6706 0.60
12.0∼12.2 s 5.5471 −1.59 5.6079 −0.51 5.6128 −0.42
12.4∼12.6 s 5.6005 −0.64 5.5197 −2.07 5.6233 −0.23
12.8∼13.0 s 5.4536 −3.25 5.6930 1.00 5.5977 −0.69
13.2∼13.4 s 5.5688 −1.20 5.6138 −0.40 5.6182 −0.32
13.6∼14.0 s 5.6279 −0.15 5.4499 −3.31 5.5719 −1.15
Average value 5.5621 −1.32 5.5816 −0.97 5.6237 −0.23

(b)

Computation response segments Identification results (×10

5
) and identification errors

𝑘

1
Error 𝑘

2
Error 𝑘

3
Error

10.0∼10.33 s 5.5985 −0.67 5.6083 −0.50 5.6364 0.00
10.2∼10.53 s 5.5308 −1.88 5.5969 −0.70 5.6462 0.17
10.4∼10.73 s 5.5931 −0.77 5.5587 −1.38 5.6623 0.46
10.6∼10.93 s 5.5365 −1.77 5.6322 −0.08 5.6652 0.51
10.8∼11.13 s 5.5277 −1.93 5.6426 0.11 5.6669 0.54
11.0∼11.33 s 5.5702 −1.18 5.5808 −0.99 5.6591 0.40
11.2∼11.53 s 5.5274 −1.94 5.5934 −0.76 5.6655 0.51
11.4∼11.73 s 5.5155 −2.15 5.6174 −0.34 5.6615 0.44
11.6∼11.93 s 5.5655 −1.26 5.5664 −1.24 5.6284 −0.14
11.8∼12.13 s 5.5815 −0.98 5.5713 −1.16 5.5944 −0.75
Average value 5.5547 −1.45 5.5968 −0.70 5.6486 0.21

(c)

Computation response segments Identification results (×10

5
) and identification errors

𝑘

1
Error 𝑘

2
Error 𝑘

3
Error

10.0∼11.0 s 5.5588 −1.38 5.6011 −0.63 5.6436 0.13
10.4∼11.4 s 5.5589 −1.38 5.6011 −0.63 5.6436 0.13
10.8∼11.8 s 5.5202 −2.06 5.626 −0.19 5.6538 0.31
11.2∼12.2 s 5.546 −1.61 5.5637 −1.29 5.6396 0.05
11.6∼12.6 s 5.5457 −1.61 5.5805 −0.99 5.6326 −0.07
12.0∼13.0 s 5.5195 −2.08 5.6151 −0.38 5.6089 −0.49
12.4∼13.4 s 5.5409 −1.70 5.5773 −1.05 5.5951 −0.73
12.8∼13.8 s 5.5409 −1.70 5.5773 −1.05 5.5951 −0.73
13.2∼14.2 s 5.5392 −1.73 5.5713 −1.16 5.5805 −0.99
13.6∼14.6 s 5.5578 −1.40 5.5061 −2.31 5.5519 −1.50
Average value 5.5428 −1.66 5.5820 −0.97 5.6145 −0.39

(d)

Computation response segments Identification results (×10

5
) and identification errors

𝑘

1
Error 𝑘

2
Error 𝑘

3
Error

10.0∼10.33 s 5.5985 −0.67 5.6083 −0.50 5.6364 0.00
12.0∼12.33 s 5.5665 −1.24 5.5997 −0.65 5.5795 −1.01
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(d) Continued.

Computation response segments Identification results (×10

5
) and identification errors

𝑘

1
Error 𝑘

2
Error 𝑘

3
Error

14.0∼14.33 s 5.5667 −1.24 5.5997 −0.65 5.5795 −1.01
16.0∼16.33 s 5.5005 −2.41 5.5325 −1.85 5.5381 −1.75
18.0∼18.33 s 5.5362 −1.78 5.5068 −2.30 5.4753 −2.86
20.0∼20.33 s 5.5362 −1.78 5.5068 −2.30 5.4752 −2.86
22.0∼22.33 s 5.3287 −5.46 5.2234 −7.33 5.0971 −9.57
24.0∼24.33 s 5.1685 −8.30 5.0521 −10.37 4.8238 −14.42
26.0∼26.33 s 5.0674 −10.10 4.9758 −11.72 4.6406 −17.67
28.0∼28.33 s 4.8131 −14.61 4.8464 −14.02 4.0776 −27.66

We consider the chosen Gaussian function given in (5)
with 𝜇

𝑖

𝑙
a standard solution for other ant solutions to explore.

To establish the value of the standard deviation 𝜎

𝑖

𝑙
at step 𝑖, we

calculate the average distance from 𝜇

𝑖

𝑙
to all solutions in the

archive 𝑇, and multiply it by the parameter 𝜉:

𝜎

𝑖

𝑙
= 𝜉

𝑘

∑

𝑒=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑠

𝑖

𝑒
− 𝑠

𝑖

𝑙

󵄨

󵄨

󵄨

󵄨

󵄨

𝑘 − 1

,
(6)

where the parameter 𝜉 > 0 has a similar effect to the
pheromone evaporation rate in traditional ACO. The higher
the value of 𝜉, the lower the convergence speed of the
algorithm.

At the start of the algorithm, the solution archive 𝑇

is initialized generating 𝑘 solutions by uniform random
sampling. Pheromone update is accomplished by adding the
set of newly generated solutions to the solution archive 𝑇 and
then removing the same number of the worst solutions so
that the total size of the archive does not change.This process
ensures that only the best solutions are kept in the archive,
so that they effectively guide the ants in the search process.
When the algorithm is completed, the solutions are ordered
in the archive according to their quality, and the best solution
is s
1
= {𝑠

1

1
, 𝑠

2

1
, . . . , 𝑠

𝑙

1
, . . . , 𝑠

𝑁

1
}.

3. Integration of ACOR with CIM

3.1. Introduction of CIM. Theequation ofmotion of a 𝑛-DOFs
system can be expressed as follows:

M ̈X (𝑡) + C ̇X (𝑡) + KX (𝑡) = F (𝑡) , (7)

where M, C, and K represent, respectively, mass, damping,
and stiffness matrices of the structures, X(𝑡) and ̇X(𝑡), while
̈X(𝑡) represents, respectively, the displacements, velocities,

and accelerometers response vector of the structure; F(𝑡) is
the external excitation on the structures. Equation (7) can be
rewritten as (8), which can be further rearranged as (9) at time
instant 𝑡

𝑖
[10]:

C ̇X (𝑡) + KX (𝑡) = F (𝑡) − M ̈X (𝑡) , (8)

H (𝑡

𝑖
) 𝜃 = Y (𝑡

𝑖
) , (9)

where vector 𝜃 contains all the unknown parameters to
be identified; matrix H consists of the measured structural
responses; and vector Y is the system input. To assemble (9)
at all the sampling time instants 𝑡

𝑖
, 𝑖 = 1, 2, . . . , 𝑄 together,

will give

H
𝑄
𝜃 = Y

𝑄
. (10)

The components of matrix H and Y depend on the type
of structure. For a shear-type structure, the expressions forH,
Y, and 𝜃 are

𝜃 = [𝑐

1
, 𝑘

1
, 𝑐

2
, 𝑘

2
, . . . , 𝑐

𝑛
, 𝑘

𝑛
]

𝑇
,

(11)

H
𝑄

= [H (𝑡

1
) ,H (𝑡

2
) , . . . ,H(𝑡

𝑄
)]

𝑇
,

(12)

H (𝑡

𝑖
) =

[

[

[

[

[

[

𝑥̇

1
(𝑡

𝑖
) 𝑥

1
(𝑡

𝑖
) 𝑥̇

1
(𝑡

𝑖
) − 𝑥̇

2
(𝑡

𝑖
) 𝑥

1
(𝑡

𝑖
) − 𝑥

2
(𝑡

𝑖
) ⋅ ⋅ ⋅ 0

0 0 𝑥̇

2
(𝑡

𝑖
) − 𝑥̇

1
(𝑡

𝑖
) 𝑥

2
(𝑡

𝑖
) − 𝑥

1
(𝑡

𝑖
) 𝑥̇

2
(𝑡

𝑖
) − 𝑥̇

3
(𝑡

𝑖
) 𝑥

2
(𝑡

𝑖
) − 𝑥

3
(𝑡

𝑖
)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑥̇

𝑛
(𝑡

𝑖
) − 𝑥̇

𝑛−1
(𝑡

𝑖
) 𝑥

𝑛
(𝑡

𝑖
) − 𝑥

𝑛−1
(𝑡

𝑖
)

]

]

]

]

]

]

, (13)

Y
𝑄

= [Y(𝑡

1
),Y(𝑡

2
), . . . ,Y(𝑡

𝑄
)]

𝑇
,

(14)

Y (𝑡

𝑖
) = [𝑓1

(𝑡

𝑖
) − 𝑚

1
𝑥̈

1
(𝑡

𝑖
) 𝑓

2
(𝑡

𝑖
) − 𝑚

2
𝑥̈

2
(𝑡

𝑖
) ⋅ ⋅ ⋅ 𝑓

𝑛
(𝑡

𝑖
) − 𝑚

𝑛
𝑥̈

𝑛
(𝑡

𝑖
)]

𝑇

,
(15)



10 Mathematical Problems in Engineering

5 10 15 20 25 30
Number of iteration

St
iff

ne
ss

 (N
/m

)
8

7

6

5

4

×105

k3

(a) Stiffness 𝑘3

St
iff

ne
ss

 (N
/m

)

8

7

6

5

4
5 10 15 20 25 30

Number of iteration

×105

k2

(b) Stiffness 𝑘2

St
iff

ne
ss

 (N
/m

)

8

7

6

5

4
5 10 15 20 25 30

Number of iteration

×105

k1

(c) Stiffness 𝑘1

Figure 6: Parameter identification convergence procedure for Segments 10.2–10.53 sec in Table 5(b).

where 𝑘

1
, 𝑘

2
, . . . , 𝑘

𝑛
, and 𝑐

1
, 𝑐

2
, . . . , 𝑐

𝑛
represent, respectively,

the stiffness and damping coefficients of the structure for each
story, and 𝑥

𝑗
(𝑡

𝑖
) and 𝑓

𝑗
(𝑡

𝑖
) are the displacement response and

external excitation force of the 𝑗th DOF (𝑗 = 1, 2, . . . , 𝑛) at
the time instant 𝑡

𝑖
.

In traditional calculations, the parameters of the structure
can be identified from (10) by the least-squares technique as

𝜃 = [H𝑇
𝑄
H
𝑄
]

−1

H𝑇
𝑄
Y
𝑄
.

(16)

However, (16) cannot be easily solved to determine the
stiffness and damping parameters since there are unknown
quantities involved in calculatingH

𝑄
and Y

𝑄
.

As mentioned earlier, we have suggested the complete
inverse method to tackle the unknown input situation in
structural identification. Following the framework of CIM,
Chen and Li [11] suggested the total compensation method.
The total compensation method rests on the assumption that
the locations of the external forces are known even though
their time histories are unknown, and the number of DOF
with applied (unknown) forces is less than the number of
DOFwhose responses aremeasured.This assumption reflects

the situation of a forced vibration survey of structure where a
limited number of one or several actuator(s) are installed on
key locations of the structure to excite it. In this case, the input
excitations in (15) can be further expressed into two parts:

𝑦

𝑢
(𝑡

𝑖
) = 𝑓

𝑢
(𝑡

𝑖
) − 𝑚

𝑢
(𝑡

𝑖
) 𝑥̈

𝑢
(𝑡

𝑖
) , 𝑖 = 1, 2, . . . , 𝑄,

𝑦

𝑙
(𝑡

𝑖
) = 𝑓

𝑙
(𝑡

𝑖
) − 𝑚

𝑙
(𝑡

𝑖
) 𝑥̈

𝑙
(𝑡

𝑖
) = −𝑚

𝑙
(𝑡

𝑖
) 𝑥̈

𝑙
(𝑡

𝑖
) ,

𝑖 = 1, 2, . . . , 𝑄,

(17)

where 𝑦

𝑢
(𝑡

𝑖
) denotes those DOFs with unknown external

excitation and 𝑦

𝑙
(𝑡

𝑖
) stands for those DOFs without applied

force, that is, 𝑓
𝑙
(𝑡

𝑖
) ≡ 0.

3.2. Objective Function. In order to identify structural pa-
rameters and the input time history from output-only mea-
surements, an objective function is defined as minimizing
discrepancies between the force 𝑦

𝑙
(𝑡) and the calculated

force 𝑦

⬦

𝑙
(𝑡). The minimization of the objective function is
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Figure 7: Parameter identification convergence procedure for Segments 11.0–11.33 sec in Table 5(b).

expressed as a bound-constrained nonlinear least squares
problem:

min
𝑡𝑄

∑

𝑡𝑖=𝑡1

𝑧 (𝑡

𝑖
) =

𝑡𝑄

∑

𝑡𝑖=𝑡1

∑

𝑙∈𝐿

󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝑙
(𝑡

𝑖
) − 𝑦

⬦

𝑙
(𝑡

𝑖
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

, 𝑖 = 1, 2, . . . , 𝑄,

(18)

where 𝐿 is the set of 𝑙 and the identified force 𝑦

⬦

𝑙
(𝑡

𝑖
) is given

by

𝑦

⬦

𝑙
(𝑡

𝑖
) = H

𝑙
(𝑡

𝑖
) 𝜃
⬦
, 𝑖 = 1, 2, . . . , 𝑄, (19)

whereH
𝑙
(𝑡

𝑖
) is 𝑙th row of thematrixH(𝑡

𝑖
), and 𝜃⬦ is the result

of identified parameters based on ACO
𝑅
with the details as

𝜃
⬦

= [𝑐

⬦

1
, 𝑘

⬦

1
, 𝑐

⬦

2
, 𝑘

⬦

2
, . . . , 𝑐

⬦

𝑛
, 𝑘

⬦

𝑛
]

𝑇

= [𝑠

1

1
, 𝑠

2

1
, . . . , 𝑠

2𝑛−1

1
, 𝑠

2𝑛

1
]

𝑇

,

(20)

where 𝑠

𝑟

1
, 𝑟 = 1, 2, . . . , 2𝑛 is the value of the first row of the

archive 𝑇, which is the best solution for (18).
Once the iterative procedure converges, the updated

parameter vectors in (20) will give the final identification
result of all the structural parameters, whilst the time history
of the input F(𝑡) can be easily determined by (7).

4. Numerical Examples

The suggested algorithm has been applied to several numer-
ical examples including a truss structure, a 6-story shear
frame, and a 12-story shear frame structure [25]. Since the
observations for all numerical examples are similar, only the
results for the 6-story shear frame structure are presented
here in detail. The mass, stiffness, and damping coefficient of
each story of the structure are shown in Table 1. Sinusoidal
excitations are applied on the 4th and the 6th floor, which
are f
4
(𝑡) = 6.74 × 10

5 sin(6𝑡) and f
6
(𝑡) = 8.53 × 10

5 sin(4𝑡),
respectively. Therefore the set 𝐿 in (18) is 𝐿 = {1, 2, 3, 5} for
this example.The dynamic responses of all six stories are first
calculated in terms of displacement, velocity, and acceleration
using the Newmark-𝛽 method [26]. Twenty ants are used in
each iteration of the ACO

𝑅
algorithm, and the convergence

threshold in the objective function is set as 1.0 × 10

−6 for all
the cases. All the computation parameters used for ACO

𝑅
are

summarized in Table 2.

4.1. Noise-Free Measurements. The proposed ACO
𝑅
method

is first applied to noise-free measurements. The parameter
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Figure 8: The real input on the top floor and the identified inputs of each floor.

identification results of the three cases are shown in Table 3,
whereCases 1 and 2 have the same initial parameters’ estimate
but different measurement durations, and Cases 1 and 3 have
the same measurement duration but different initial parame-
ters. It is seen from Table 3 that, for all cases, the unknown
parameters can be accurately identified by the proposed
method with short duration of measurements and if the
method is robust to obtain the initial estimated parameters.
The input excitation can also be accurately identified by the
ACO
𝑅
method in the noise-free case.

4.2. Noise-Pollution Measurements. White noise is numer-
ically added to the calculated responses to simulate noisy
measured data by the following equation:

̂

𝑥̈ = 𝑥̈ + 𝐸

𝑝
𝑁noiseMax [𝑥̈] , (21)

where 𝐸

𝑝
is the noise level expressed as a percentage, 𝑁noise

is a uniform distribution vector with interval [−1, 1], and
Max(𝑥̈) is the maximum value of the calculated acceleration
response. Four different noise levels at 1%, 5%, 10%, and 15%
were considered in the calculation.

The identification results are summarized in Table 4,
from which we can see that the proposed method can
accurately identify the stiffness parameters for a noise-level

up to 10%. The maximum parameter identification error of
the stiffness parameter is lower than 0.1%, 0.6%, 1.6%, and
7.5% for noise levels 1%, 5%, 10%, and 15%, respectively.
The identification accuracy for the damping ratio, however,
is relatively low. This is not surprise since damping is very
sensitive to measurement noise.

It is interesting to compare the inverse input time history
of the top floorwith that of the second floorwhere no external
force was applied.The identified input forces of the two floors
for different noise levels are shown in Figure 1, where the solid
blue is the actual force curve and the dotted black line is the
identified time history. Visually, even for noise level of 15% the
identified force of the top floor matches well with the actual
force. Amplitude of the identified curve of the second floor,
on the other hand, is approximately zero compared with that
of the top floor for noise level of 10%. This and several other
numerical examples [25] have demonstrated the applicability
and accuracy of the proposed identification method.

5. Experimental Example

The experimental data from a hammer test on a 3-story steel
frame structure was adopted to further validate the applica-
bility of the proposed identification method. The structural
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Table 6: Identified results for continuous hammer hits on the top floor.

Computation response segments Identification results (×10

5
) and identification errors

𝑘

1
Error 𝑘

2
Error 𝑘

3
Error

12.0∼12.33 s 5.5252 −1.97 5.5454 −1.62 5.6421 0.10
13.0∼13.33 s 5.5462 −1.60 5.6372 0.01 5.6888 0.93
27.0∼27.33 s 5.5804 −1.00 5.6745 0.67 5.6446 0.14
28.0∼28.33 s 5.5929 −0.77 5.4982 −2.45 5.7204 1.49
39.4∼39.73 s 5.5038 −2.35 5.4916 −2.57 5.5697 −1.19
40.4∼40.73 s 5.4955 −2.50 5.5077 −2.29 5.6238 −0.23
43.4∼43.73 s 5.4719 −2.92 5.6114 −0.45 5.5332 −1.83
Average value 5.5308 −1.87 5.5666 −1.24 5.6318 −0.08
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Figure 9: The recorded acceleration responses of each floor for continuous hammer test.

model is shown in Figure 2 and dimensions of the model are
given in Figure 3. The strength of the steel of the model was
tested as 435Mpa, and the elastic module was 200Gpa. The
overall dimension of the structure is 850 ∗ 500 ∗ 1450mm
(Figure 3). The structure’s column was made of a 9.5 ×

75mm steel plate and the floor was made by an 850 × 500 ×

25mm steel plate. Additional mass of 130 kg was installed
on each floor leading a total floor mass to 230.3 Kg. The

structural model can be treated as a shear-type building, and
the shear stiffness of each floor was computed as 563651N/m.
Hammer tests, hand-shaking tests, and shaking table tests
were conducted on the model. Only hammer tests and hand-
shaking tests data are adopted in this paper. The hammer
tests can be broadly divided into two categories. The first is
an impact test where a certain floor of the building is hit
once by a force hammer and then the building vibrates freely.
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Figure 10: The real input on the top floor and the identified inputs of each floor.

The second is a continuous test wherein a certain floor of the
building is hit continuously by the hammer.

5.1. Impact Test. In this test, the building model was hit by
a hammer once on the 3rd floor and was then released for
free decayed vibration in the 𝑥 direction. Figure 4(a) shows
the recorded accelerations for each floor. The accelerations
were then integrated to obtain the corresponding velocity
and displacement as shown in Figure 5. To reduce the
measurement noise, the high-pass Butterworth signal filter
was applied to the integration with the filter order 𝑁 = 4

where the lower cut-off frequency = 0.16 rad/sec.
The known information for this case is 𝑓

1
(𝑡) ≡ 0.0 and

𝑓

2
(𝑡) ≡ 0.0, and the structural parameters are to be identified

by the proposed ACO
𝑅
method with the following objective

function:
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Tables 5(a), 5(b), and 5(c) show, respectively, the iden-
tified stiffness parameters from ten different response seg-
ments. Each has the same duration of 0.2, 0.33 and 1.0 second
(i.e., 60, 100, and 300 data points for a sampling frequency
300Hz). The same initial values for all the unknown param-
eters were used in the calculation. The maximum average
identification error for all three cases is less than 2%, and
the maximum identification error for a single parameter is
less than 4%. Comparison between Tables 5(a), 5(b), and
5(c) also demonstrates that the identification accuracy is not
sensitive to the duration of the response segment. Table 5(d)
shows the identification results for response duration of
0.33 second (100 data points) and different initial values of
unknown parameters. Comparison between Tables 5(b) and
5(d) shows that the proposed method is not sensitive to the
initial estimates of the unknown parameters. All the above
results indicate a very good identification accuracy achieved
by the proposed method for a very short response duration,
which has potential application for online structural health
monitoring. It should be noted that the damping identifi-
cation results are not satisfied in this case. The damping
properties can be identified by other effective identification
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Figure 11: The recorded acceleration responses of each floor for hand-shaked test.

techniques such as the empirical mode decomposition plus
Hilbert transform method suggested by the authors [27].

Figures 6 and 7 show the convergence procedure of
all the stiffness parameters for the computational segments
as 10.2∼10.53 s and 11.0∼11.33 s in Table 5(b). Note that the
unknown stiffness parameters can be accurately identified
using a short duration of response and the results are robust
to the parameters’ initial guess.

Figure 8(a) shows the time history of the actual hammer
force on the 3rd floor, and Figures 8(b) to 8(c) show the
identified time histories of forces for the 3rd, 1st, and 2nd
floor, respectively. Note that the identified input on the 3rd
floor has a spike at the same time instant as the real input.The
amplitudes of the identified inputs on the 1st and 2nd floor are
almost zero compared to that of the 3rd floor.

5.2. Continuous Hammer Test. In this test case, the hammer
hit the 3rd floor continuously, and the resulting accelerations
for each floor are shown in Figure 9. The actual test duration
was 60 seconds, but only the first 20 seconds were plotted
for the sake of clarity. Using the same objective function as
(22), the structural parameters were identified by the ACO

𝑅

method, and the results are summarized in Table 6.

Note that the average identification error for each of the
seven response segments is less than 2%, and the maximum
identification error for each single parameter is less than 3%.
Using the global average value of all the identified parameters,
the inputs of each floor can be identified. Figures 10(a) and
10(b) compare the identified input and real input on the 3rd
floor. It is clear that the identified input has the continued
impact spikes (peaks) at the same time as instants for the real
input. The amplitudes of the identified inputs of the 2nd and
1st floor are almost zero compared to that of the 3rd floor.The
result is consistent with the real test situation.

5.3. Push the Building for a While and Release It to Free Vi-
bration. In this test, the model was hand-shaked on the 2nd
floor to vibrate for a while and was then released for free
vibration. Figure 11 shows the acceleration responses of each
floor for this case. The known information is 𝑓

1
(𝑡) ≡ 0.0

and 𝑓

3
(𝑡) ≡ 0.0, where the objective function can then be

established as follows:
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Table 7: Identified results for hand-shaked tests on the second floor.

Computation response segments Identification results (×10

5
) and identification errors

𝑘

1
Error 𝑘

2
Error 𝑘

3
Error

19.0∼19.33 s 5.6022 −0.61 5.5341 −1.82 5.6282 −0.15
20.0∼20.33 s 5.5308 −1.88 5.5969 −0.70 5.6462 0.17
24.0∼24.33 s 5.6062 −0.54 5.6089 −0.49 5.6598 0.41
30.0∼30.33 s 5.6013 −0.62 5.6068 −0.53 5.6424 0.10
40.0∼40.33 s 5.6181 −0.33 5.6101 −0.47 5.6444 0.14
50.0∼50.33 s 5.5968 −0.70 5.6174 −0.34 5.6403 0.07
60.0∼60.33 s 5.5837 −0.94 5.6017 −0.62 5.6009 −0.63
Average value 5.5913 −0.80 5.5966 −0.71 5.6375 0.02
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Figure 12: The identified inputs of each floor.

Table 7 shows the identification results for this case for
seven different response segments. The maximum identi-
fication error is less than 1%. It is interesting to compare
the identified results of input with the real input. Figures
12(a) to 12(c) show the identified inputs of 1st to 3rd floors,
respectively. It is interesting to find that the input of the
2nd floor (Figure 12(b)) has a relatively large excitation force
for the duration of 12 to 22 seconds. That is consistent with
the test at that duration where the model was hand-shaked.
The amplitudes of the inputs from the 1st and 3rd floor are
relatively small compared to that of the 2nd floor. The above

three cases demonstrate the applicability and feasibility of the
proposed hybrid identification method using response-only
measurements.

6. Conclusions

This paper combines the complete inverse method with
the ant colony optimization algorithm to identify the input
excitation and the structural parameters from the output-
only measurements. The core idea of the complete inverse
method is to convert the physical features of the excitation
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into a mathematical confinement condition. In theory, the
proposed method has no limitation on the type of excitation.
This paper applies the method to the situation where spatial
locations of a limited number of excitations are known.
Numerical examples were carried out to evaluate the feasi-
bility of the proposed method. For the situation of noise-
free output measurements, numerical studies show that the
proposed method can reliably and efficiently identify both
the structural parameters and the input time history using
a short duration of measurements. Moreover, the accuracy
and convergence of themethod are robust to the initial values
selected for the unknown parameters. For 𝑓 noise-pollution
measurements, the stiffness parameters as well as the input
excitation were identified satisfactorily even with high noise
level. The identification accuracy of the damping coefficients
is broadly acceptable at low noise level and become relatively
poor at high noise level.The proposedmethod is then applied
to experimental results of a three-story building model and
the results also prove the feasibility of the method.
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