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Correspondence should be addressed to Andrea C. Levi; levi@fisica.unige.it

Received 16 April 2013; Accepted 31 October 2013

Academic Editors: F. Aquilante, T. S. Chu, and E. E. Ebenso

Copyright © 2013 Andrea C. Levi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A model of free will is proposed, appealing to the similarity with simple, two-body chemical reactions where the energy curves
for the reagents and for the products cross. The system at the crossing point has a freedom of choice to perform the reaction or
not. The Landau-Zener formula, corresponding to the opportunity of meeting twice the crossing point, is interpreted as free will
with an afterthought and generalized to the cases when a subject thinks about a choice 𝑛 times. If the probability distribution 𝑝

𝑛
of

afterthoughts is known, the probability of a final yes decision is given. The results are generalized to situations where a preference
for or against a change exists or where the freedom is only partial, has to fight with conditioning factors, and possibly decreases
with increasing instances of free choice.

1. Introduction

The problem of free will is very ancient, and even the
modern literature on it is vast and highly controversial. The
attempts of a number of intellectuals (usually nonphysicists)
to justify human free will via quantum-mechanical indeter-
minacy often lack precision and are not really meaningful.
Fortunately, however, some serious and profound discus-
sions of the relation between quantum physics and at least
some instances of free will do exist: a good example is an
article by Peres [1]. An even more interesting development
has led to the so-called free will theorems of Conway and
Kochen [2, 3], showing that due to some subtle properties
of quantum mechanics elementary particles (in particular,
spin-1 particles) possess a sort of “free will,” in the sense
that their response to an appropriate set of experiments is
not a function of earlier properties of the universe. Equally
interesting is the recent progress in neurological studies,
involving in particular the famous experiment by Libet et al.
[4] (showing that volition, as measured neurologically, takes
place earlier than conscious determination of volition), as
well as more recent developments refining it [5].

In the present paper the above difficult (although inter-
esting) issues are not addressed, but a much simpler question
is considered: how is a choice influenced by a number of
afterthoughts (whatever the status of free will may be)?

Although, as said above, naive attempts to understand free
will via quantum-mechanical indeterminacy generally fail, it
may be worthwhile, nevertheless, to explore (as it appears to
be possible) a model actually possessing some of the desired
properties. Human (and also animal) free will is actually a
freedom of choice: from some generic situation which may
evolve in two (or more, but two is sufficient for the present
purposes) different directions, one is chosen, and, indeed,
quantum chemistry affords many circumstances of this kind.

Let us consider, for example, the collision of a proton
H+ with a negative hydrogen ion H−. For most distances
the process takes place adiabatically, and nothing happens; at
some specific distance, however, the curve giving the energy
of the atomic state H-H crosses (the states considered are
asymptotic, corresponding to well-defined charge distribu-
tions and atomic states of the colliding partners; the curves
giving the true energy eigenvalues never cross) that of the
ionic state H−-H+. At this distance the nonadiabatic process
yielding the mutual neutralization reaction

H− +H+ 󳨀→ 2H (1)

becomes possible. There is, so to speak, a choice between the
ionic and the atomic state, with probabilities depending on
the matrix elements of the interaction Hamiltonian and on
the relative velocity of the colliding ions (the theory of such
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processes goes back to the 1930s, with the contributions of
famous physicists such as Landau, Zener, and Stückelberg
[6–8]; the problem of hydrogen mutual neutralization has
recently been treated by much more advanced and exact
methods, e.g., by Fussen and Kubach and by Stenrup et al. [9,
10], but only the Landau-Zener approach and its generaliza-
tions are relevant here; it was shown, on the other hand, that
the results of the Landau-Zener approach are surprisingly
good, when compared with present-time methods [9]). Such
behaviour exhibits an impressive resemblance with the true
choices performed by living beings.

Of course the latter are very different in the sense that they
are not decided only by chance, but by the body structure
and psyche of the performer and by the state in which the
performer is (more complex factors determining actions,
such as aims and plans, knowledge of the environment
and of other individuals, etc., should also be considered,
especially in the human case). But this is not strange from the
physicochemical point of view: it is enough to suppose (as
is clearly realistic) that the chemical reactions envisaged take
place in the presence of a complex physical environment (we
might in principle describe this by adding to the interaction
Hamiltonian between atoms a further interaction Hamilto-
nian (as complex as is necessary) with the remainder of the
system).

We propose thus here a model of free will, treated
as a freedom of choice, appealing to the similarity with
simple, two-body chemical reactions, where the energy curve
corresponding to the initial state (i.e., to the reagent ele-
ments or compounds) crosses, at a well-defined distance, the
energy curve corresponding to the final state (i.e., to the
products). The system at this crossing has indeed a “freedom
of choice” to perform, or not to perform, the reaction. There
is here, moreover, a direct application to the problem of
afterthoughts, since the molecules meet a decision point (a
crossing) when they approach, but then they meet it again
when they separate, where they necessarily have what may be
termed an afterthought.

The crossing problem for the hydrogen neutralization
reaction, as studied by Zener [7], is shown in Figure 1 (see
also Appendix A).

2. Free Will with Afterthoughts

A central result of Landau and Zener, giving the probability
that the reaction takes place, is given by the little formula

𝑃 = 2𝑠 (1 − 𝑠) = 2𝑧 (1 − 𝑧) , (2)

where 𝑠 is the probability that no transition occurs at the
crossing point and 𝑧 = 1 − 𝑠, correspondingly, is the
probability that a transition does occur there (𝑠 can be
computed in terms of matrix elements of the Hamiltonian
(see Appendix A)). This is because the crossing must be met
twice, first when the atoms approach and then when they
part. We propose here the following interpretation: 𝑧 is the
probability to perform a change at each individual time of
choice;𝑃

𝑛
is the probability to perform itwhen thinking about

it 𝑛 times (or after a first thought and 𝑛 − 1 afterthoughts).
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Figure 1:The crossing of energy curves for mutual neutralization of
hydrogen, from Zener [7].

The Landau-Zener formula, quite generally, holds when-
ever a decision point must be met twice (actually, in the
chemical case, 𝑧 depends on the impact parameter of the
collision, and 𝑃 is obtained as an integral over it; but this
is irrelevant in the present case). Calling 𝑃 = 𝑃

2
the

probability that a decision for a change is taken by someone
thinking twice about the choice, the Landau-Zener formula
(if the above interpretation is accepted) affords immediately
interesting consequences: in particular,𝑃

2
can never be larger

than 1/2. In other words, for anybody thinking twice about
a possible change, the probability of performing it can never
be larger than the probability of leaving things as they stand.
Thinking twice is thus a clearly conservative attitude.

Generalizing, let us call 𝑃
𝑛
the probability that a decision

for a change is taken when one thinks 𝑛 times about the
choice. Then

𝑃
𝑛
= (1 − 𝑧) 𝑃

𝑛−1
+ 𝑧 (1 − 𝑃

𝑛−1
) , (3)

with the solution

𝑃
𝑛
=

1

2

[1 − (1 − 2𝑧)
𝑛

] , (4)

where 𝑃
𝑛

= 1/2 for 𝑧 = 1/2; if 𝑛 is even this is the
maximum; if 𝑛 is odd, on the contrary, it is only an inflection
point and 𝑃

𝑛
tends to 1 when 𝑧 → 1. For 𝑧 < 1/2, 𝑃

𝑛

increaseswith 𝑛, tending to 1/2 frombelow: that is, increasing
the number of afterthoughts, the probability of performing
a change increases, remaining, however, always less than
the probability not to perform it; see Table 1 (according to
Appendix A, the parameter 𝑢 is taken to be 𝑢 = [− ln(1 −
𝑧)]
1/2).
Is it reasonable to assume that the probability to change

status is always the same, 𝑧, at nomatterwhich crossing? For 𝑧
rather small (say, 𝑧 < 1/2) it appears to be reasonable, under
the condition that the subject is basically indifferent to the
choice. The case where there is a bias, that is, a preference for
one of the alternatives, is considered below (see (17)–(19)).

Let us consider now the case of 𝑧 > 1/2 (𝑢 > 0.83255),
where, so to speak, one changes one’smind every time.Also in
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Table 1: Probability tomake a change thinking about it 𝑛 times, if the
probability of making it the first time is 10% (𝑧 = 0.1, 𝑢 = 0.3246).

𝑛 𝑃
𝑛

1 0.1000
2 0.1800
3 0.2440
4 0.2952
5 0.3362
6 0.3689
7 0.3951
8 0.4161
9 0.4329
10 0.4463

Table 2: Probability to make a change thinking about it 𝑛 times,
if the probability of making it the first time is 90% (𝑧 = 0.9, 𝑢 =

1.5174).

𝑛 𝑃
𝑛

1 0.9000
2 0.1800
3 0.7560
4 0.2952
5 0.6638
6 0.3689
7 0.6049
8 0.4161
9 0.5671
10 0.4463

this case𝑃
𝑛
tends to 1/2 as 𝑛 increases (the decisions in favour

of a change or against it tend to become equiprobable), but
now with an oscillating behaviour (see Table 2). If someone
thinks over it an odd number of times the change is slightly
more probable, if an even number of times the refusal of
change. This simple “chemical” model of free will, however,
in this case perhaps should be taken less seriously: not
because chemistry fails, but because supposing that at each
afterthought 𝑧 remains exactly the same, always somewhat
artificial, is more critical in this case.

Now let us ask: if the afterthoughts have a particular
probability distribution 𝑝

𝑛
, which is the probability, in the

end, to make a yes decision? In general the answer will be

⟨𝑃⟩ = ∑

𝑛

𝑝
𝑛
𝑃
𝑛
. (5)

It is immediate to calculate ⟨𝑃⟩ if there is perfect randomness,
that is, if 𝑝

𝑛
is the Poisson distribution

𝑝
𝑛
= 𝑒
−𝑁

𝑁
𝑛

𝑛!

, (6)

where𝑁 is the mean number of afterthoughts (𝑁 = ]𝑇 if 𝑇 is
the total time we have at our disposal and ] is the frequency
of afterthoughts). In this case ⟨𝑃⟩ is given by

⟨𝑃⟩ =

1

2

(1 − 𝑒
−2𝑁𝑧

) . (7)

Psychophysicists, however, assert on the basis of a statis-
tical theory (but have also demonstrated experimentally) that
the distribution of times 𝜏 by which two competitive percepts
alternate (typically in the interpretation of an ambiguous
figure) is the gamma distribution [11–13]

𝑝 (𝜏) =

𝑏
𝜎

𝑒
−𝑏𝜏

𝜏
𝜎−1

Γ (𝜎)

, (8)

where for 𝜎 = 1 the gamma distribution reduces to an
exponential, corresponding to the Poisson distribution.

Let us note that for 𝜎 > 1 the gamma distribution has a
smaller variance than the Poisson distribution and tends to
certainty as 𝜎 → ∞. In the latter case ⟨𝑃⟩ is directly given
by (4):

⟨𝑃⟩ =

1

2

[1 − (1 − 2𝑧)
𝑁

] . (9)

Equation (9) may be compared to (7); see Appendix B. As
𝑁 increases it appears that in all cases ⟨𝑃⟩ tends to 0.5:
thinking about a choice between A and B too many times,
the probabilities to choose A or B become the same. But, if
𝑧 is small, the probabilities given by (7) and (9) are similar;
on the contrary, if 𝑧 is large, (7) continues increasing with𝑁,
whereas (9) tends to 0.5 oscillating.

Let now the gamma distribution be considered in detail.
Going back to (5), the problem is to determine 𝑝

𝑛
, the

probability of making 𝑛 attempts, if the distribution of times
between an attempt and the next is 𝑝(𝜏). Let us take for the
latter the gamma distribution. This corresponds [11] to the
characteristic function

𝑏
𝜎

(𝑏 − 𝑖𝑥)
𝜎
. (10)

The characteristic function for 𝑛 events obtains simply by
taking the 𝑛th power; thus

𝑏
𝜎𝑛

(𝑏 − 𝑖𝑥)
𝜎𝑛

(11)

and the probability density 𝑝
𝑛
(𝜏) will again be a gamma

distribution with 𝜎𝑛 in place of 𝜎.
The probability 𝑝

𝑛
that exactly 𝑛 events occur during the

time 𝑇will be the difference between the integral from 0 to 𝑇
of 𝑝
𝑛
(𝜏) and that of 𝑝

𝑛+1
(𝜏). For gamma distributions

𝑝
𝑛
=

1

Γ (𝜎𝑛)

∫

𝑏𝑇

0

𝑒
−𝑢

𝑢
𝜎𝑛−1

𝑑𝑢

−

1

Γ [𝜎 (𝑛 + 1)]

∫

𝑏𝑇

0

𝑒
−𝑢

𝑢
𝜎(𝑛+1)−1

𝑑𝑢.

(12)

If 𝜎 is 1, the result

𝑝
𝑛
=

𝑒
−𝑏𝑇

𝑏
𝑛

𝑇
𝑛

𝑛!

, (13)

that is, the Poisson distribution, is immediately obtained. But
for any value of 𝜎 (provided it is an integer) 𝑝

𝑛
can be simply

obtained:

𝑝
𝑛
= 𝑒
−𝑏𝑇

𝜎𝑛+𝜎−1

∑

𝑗=𝜎𝑛

(𝑏𝑇)
𝑗

𝑗!

. (14)



4 Journal of Theoretical Chemistry

In particular, for 𝜎 = 2,

𝑝
𝑛
= 𝑒
−𝑏𝑇

[

(𝑏𝑇)
2𝑛

(2𝑛)!

+

(𝑏𝑇)
2𝑛+1

(2𝑛 + 1)!

] . (15)

For 𝜎 = 2 the result for ⟨𝑃⟩ (corresponding to (7) for 𝜎 = 1)
is, if 𝑧 < 1/2 and letting 𝑍 = √1 − 2𝑧,

⟨𝑃⟩ =

1

2

−

1

4𝑍

𝑒
−𝑚

[(1 + 𝑍) 𝑒
𝑚𝑍

− (1 − 𝑍) 𝑒
−𝑚𝑍

] . (16)

The latter expression can also be written using hyperbolic
sine and cosine; if 𝑧 > 1/2 instead, a similar expression
holds with trigonometric sine and cosine. If, as above, 𝑁 is
interpreted as the mean number of afterthoughts, then the
parameter 𝑚 equals a good approximation 2𝑁 + 1/2 (more
exactly, 𝑁 = (1/2)𝑚 − (1/4)(1 − 𝑒

−2𝑚

)). See Appendix B for
numerical values.

The present theory can be immediately extended to the
case where a bias or preference (in favour of or against the
change to a new state) exists. Indeed, if there is such a bias,
two different probabilities of change, 𝑧

+
(forward) and 𝑧

−

(backward), replace the single 𝑧 considered up to here. Then
(3) can be effectively replaced by

𝑃
𝑛
= (1 − 𝑧

−
) 𝑃
𝑛−1

+ 𝑧
+
(1 − 𝑃

𝑛−1
) , (17)

with the solution

𝑃
𝑛
=

𝑧
+

𝑧
+
+ 𝑧
−

[1 − (1 − 𝑧
+
− 𝑧
−
)
𝑛

] . (18)

But (18), letting 𝑧 = (𝑧
+
+ 𝑧
−
)/2, can be rewritten,

𝑃
𝑛
=

𝑧
+

2𝑧

[1 − (1 − 2𝑧)
𝑛

] , (19)

identical to (4), apart from a trivial coefficient 𝑧
+
/𝑧. Thus

all results extend to the biased case, provided the latter
coefficient is taken into account. Notice that, if there is a bias
or preference, the upper bound to 𝑃

2
is no longer 1/2, but

rather 𝑧
+
/(𝑧
+
+ 𝑧
−
) (which is larger than 1/2 if 𝑧

+
> 𝑧
−
).

3. Partially Free Will

Baumeister [14] has proposed the idea that the will is, in
fact, only partially free and that (in agreement with Kant
[15]) people have a capacity for free action but only use
it sometimes (in the Critique of Practical Reason, Kant
discusses at length the distinction between the instances of
free choice, corresponding to the self-imposedmoral law, and
the instances of choice conditioned by a material purpose
(which may simply be the search of happiness)). According
to Baumeister, free will is expensive, and using it consumes a
reserve andmakes subsequent items of free will more difficult
(the reserve, very materialistically, can be replenished by
furnishing glucose to the brain, as an experiment performed
by his group shows [16]). Let us see how such ideas can affect
the probabilities of afterthoughts.

Assume for the 𝑛th afterthought a freedom fraction 𝛼
𝑛
<

1. In the simplest situation, 𝛼
𝑛
will be a constant independent

of 𝑛. In a more complex situation, 𝛼
𝑛
will decrease with

increasing 𝑛 (perhaps for increasing lack of glucose): we will
assume 𝛼

𝑛
= 𝛼
𝑛, with 𝛼 < 1 as an appropriate parameter. In

the present section, for simplicity, we will not consider a bias,
although this would not be difficult.

If 𝛼
𝑛
is the freedom fraction, the remainder 1 − 𝛼

𝑛
will

be conditioned (by surroundings, by orders, by advice, by
fatigue, by immediate pleasure or pain or desire, etc.) and it
will discourage the change (the probabilities in this case will
be indicated as 𝑃

𝑑,𝑛
) or encourage it (with probabilities 𝑃

𝑒,𝑛
).

Then (3) will be generalized to

𝑃
𝑑,𝑛

= 𝛼
𝑛
[(1 − 𝑧) 𝑃

𝑑,𝑛−1
+ 𝑧 (1 − 𝑃

𝑑,𝑛−1
)] ,

𝑃
𝑒,𝑛

= 𝛼
𝑛
[(1 − 𝑧) 𝑃

𝑒,𝑛−1
+ 𝑧 (1 − 𝑃

𝑒,𝑛−1
)] + 1 − 𝛼

𝑛
.

(20)

If 𝛼
𝑛
is a constant 𝛼, these equations can be immediately

solved (the solutions are obvious generalizations of (4)):

𝑃
𝑑,𝑛

= 𝑃
𝑑
[1 − 𝛼

𝑛

(1 − 2𝑧)
𝑛

] ,

𝑃
𝑒,𝑛

= 𝑃
𝑒
[1 − 𝛼

𝑛

(1 − 2𝑧)
𝑛

] ,

(21)

where

𝑃
𝑑
=

𝛼𝑧

1 − 𝛼 + 2𝛼𝑧

, 𝑃
𝑒
=

1 − 𝛼 + 𝛼𝑧

1 − 𝛼 + 2𝛼𝑧

. (22)

As an example, we give here the discouraged (𝑃
𝑑,𝑛
) and

encouraged (𝑃
𝑒,𝑛
) probabilities at the 𝑛th afterthought for

the case 𝛼 = 9/10 (the will is nearly free), 𝑧 = 1/4 (for
comparison we also give 𝑃

𝑛
for totally free will, from (4)). It

is clear that 𝑃
𝑑,𝑛

< 𝑃
𝑛
< 𝑃
𝑒,𝑛
; moreover, 𝑃

𝑑
+ 𝑃
𝑒
= 1.

For the situation where 𝛼
𝑛
= 𝛼
𝑛 decreases with increasing

𝑛, we give a numerical table, with the same parameters. Here

𝑃
𝑑,𝑛

= 𝑧

𝑛−1

∑

𝑖=0

𝛼
(𝑖+1)(2𝑛−𝑖)/2

(1 − 2𝑧)
𝑖

,

𝑃
𝑒,𝑛

= 1 − 𝑃
𝑑,𝑛

− 𝛼
𝑛(𝑛+1)/2

(1 − 2𝑧)
𝑛

.

(23)

The situation is very different, as expected, and ultimately the
conditioned contribution largely prevails (see Table 4).

The present results are represented in Figure 2.

4. Conclusions

The present paper shows how the phenomena of
afterthoughts can simply be described mathematically,
provided that a given probability 𝑧 to decide for a change (or
to come back from it) is taken to hold at each afterthought.
The probabilities of decision are computed in particular in
three cases:

(1) assuming perfectly free will and indifference (4);
(2) assuming perfectly free will, but a preference for or

against the change considered (see (19));
(3) assuming partial conditioning, such that the change

is encouraged or discouraged (Tables 3 and 4).
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Figure 2: Probabilities of change for afterthoughts up to 𝑛 = 5, for
𝑧 = 1/4. Dots: 𝛼 = 1 (perfect free will). In the other cases 𝛼 = 0.9.
Diamonds: 𝑃

𝑑,𝑛
, 𝛼
𝑛
= 𝛼. Crosses: 𝑃

𝑒,𝑛
, 𝛼
𝑛
= 𝛼. Circles: 𝑃

𝑑.𝑛
, 𝛼
𝑛
= 𝛼
𝑛.

Squares: 𝑃
𝑒,𝑛
, 𝛼
𝑛
= 𝛼
𝑛.

Table 3: 𝛼
𝑛
= 𝛼 = 0.9, 𝑧 = 0.25.

𝑛 𝑃
𝑑,𝑛

𝑃
𝑒,𝑛

𝑃
𝑛

1 0.2250 0.3250 0.2500
2 0.3262 0.4712 0.3750
3 0.3718 0.5371 0.4375
4 0.3923 0.5667 0.4687
5 0.4015 0.5800 0.4844
6 0.4057 0.5860 0.4922
7 0.4076 0.5887 0.4961
8 0.4084 0.5899 0.4980
9 0.4088 0.5905 0.4990
10 0.4090 0.5907 0.4995

Table 4: 𝛼
𝑛
= 𝛼
𝑛, 𝛼 = 0.9, and 𝑧 = 0.25.

𝑛 𝑃
𝑑,𝑛

𝑃
𝑒,𝑛

1 0.2250 0.3250
2 0.2936 0.5241
3 0.2893 0.6443
4 0.2589 0.7193
5 0.2241 0.7695
6 0.1924 0.8059
7 0.1656 0.8340
8 0.1433 0.8567
9 0.1246 0.8754
10 0.1089 0.8911

I believe that these cases cover many interesting situa-
tions.Thepossible criticism, according towhich the probabil-
ity of change may vary at subsequent afterthoughts, is in fact
partly included: for example, Table 4 describes the situation
where the will becomes less and less free at subsequent
afterthoughts, because of some sort of tiredness (freedom is
expensive).

Table 5

𝑢 𝑧

0 0
0.5 0.2212
1 0.6321
1.5 0.8946
2 0.9817

Experiments to test the present formulae are somewhat
difficult to devise (although some ideas to that end exist) and
unfortunately have not been done yet (of course they would
be very welcome). For example, to verify the treatment of
the biased case, (19) depends on two parameters; hence all
𝑃
𝑛
’s (in particular 𝑃

3
) should be given in terms of 𝑃

1
and 𝑃

2
.

Letting 𝑃
2
= 𝑃
1
(1 + 𝜔), according to the present theory 𝑃

3

should be given by 𝑃
3
= 𝑃
1
(1 + 𝜔 + 𝜔

2

), and this in principle
could be verified experimentally. Equally welcome would be
a wider description of free will with afterthoughts, covering
cases only marginally discussed here.

Appendices

A. Zener’s Results and Their Generalization

Let us consider 𝑠 = 1 − 𝑧 explicitly, following, for example,
Geltman [17], who gives a detailed account of Zener’s theory
[7]. 𝑠 has approximately a Gaussian form and, neglecting
some nonorthogonality problems, is given (see formula
(27.23) of Geltman’s book) by

𝑠 = 𝑒
−𝑢
2

, (A.1)

where 𝑢 is defined as

𝑢 = 𝛽(

2𝜋

𝛼V
)

1/2

, (A.2)

where, with reference to the matrix elements of the Hamilto-
nian operator𝐻 and using subscript 𝑖 for the ionic state and
𝑎 for the atomic state,

𝐻
𝑎𝑎
− 𝐻
𝑖𝑖
= ℎ (𝑅 − 𝑅

0
) 𝛼, 𝐻

𝑎𝑖
= ℎ𝛽, (A.3)

where 𝑅 is the distance, 𝑅
0
in particular the crossing point

distance, and V the relative velocity at crossing.
𝑧 = 1−𝑠 = 1−𝑒

−𝑢
2

trivially increases with 𝑢 (see Table 5).
Formula (A.2) at first sight may seem strange: V is in the

denominator, so that the transition happensmore easily when
the motion is slow (𝑢 and 𝑧 decrease with increasing V). One
would expect, on the contrary, that the processwould bemore
strongly nonadiabatic when the collision is fast. The point is
that Zener’s treatment, although nonadiabatic, remains close
to adiabatic conditions and the transition occurs more easily
when more time is spent near the crossing point.

For really fast processes (A.2) will no longer hold and for
large velocities (short duration times 𝛿𝑡) 𝑧will increase again.
Let us give an (altogether nonrigorous) plausibility argument
for this, trying to generalize Zener’s ideas. In fact, a short time
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Table 6

𝑁 ⟨𝑃⟩(𝑁, 1) ⟨𝑃⟩(𝑁, 2) ⟨𝑃⟩(𝑁,∞)

For 𝑧 = 0.1

1 0.0906 0.0936 0.1000
2 0.1648 0.1707 0.1800
3 0.2256 0.2334 0.2440
4 0.2753 0.2842 0.2952
5 0.3161 0.3252 0.3362
6 0.3494 0.3585 0.3689
7 0.3767 0.3854 0.3951
8 0.3991 0.4072 0.4161
9 0.4174 0.4249 0.4329
10 0.4323 0.4392 0.4463

For 𝑧 = 0.2

1 0.1648 0.1748 0.2000
2 0.2753 0.2923 0.3200
3 0.3494 0.3677 0.3920
4 0.3991 0.4157 0.4352
5 0.4323 0.4463 0.4611
6 0.4546 0.4658 0.4767
7 0.4696 0.4782 0.4860
8 0.4796 0.4861 0.4916
9 0.4863 0.4911 0.4950
10 0.4908 0.4944 0.4970

For 𝑧 = 0.3

1 0.2256 0.2450 0.3000
2 0.3494 0.3767 0.4200
3 0.4174 0.4408 0.4680
4 0.4546 0.4716 0.4872
5 0.4751 0.4864 0.4949
6 0.4863 0.4935 0.4980
7 0.4925 0.4969 0.4992
8 0.4959 0.4985 0.4997
9 0.4977 0.4993 0.4999
10 0.4988 0.4997 0.4999

For 𝑧 = 0.4

1 0.2753 0.3052 0.4000
2 0.3991 0.4332 0.4800
3 0.4546 0.4778 0.4960
4 0.4796 0.4926 0.4992
5 0.4908 0.4976 0.4998
6 0.4959 0.4992 0.5000
7 0.4982 0.4997 0.5000
8 0.4992 0.4999 0.5000
9 0.4996 0.5000 0.5000
10 0.4998 0.5000 0.5000
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Table 6: Continued.

𝑁 ⟨𝑃⟩(𝑁, 1) ⟨𝑃⟩(𝑁, 2) ⟨𝑃⟩(𝑁,∞)

For 𝑧 = 0.5

1 0.3161 0.3564 0.5000
2 0.4323 0.4695 0.5000
3 0.4751 0.4944 0.5000
4 0.4908 0.4990 0.5000
5 0.4966 0.4998 0.5000
6 0.4988 0.5000 0.5000
7 0.4995 0.5000 0.5000
8 0.4998 0.5000 0.5000
9 0.4999 0.5000 0.5000
10 0.5000 0.5000 0.5000

For 𝑧 = 0.6

1 0.3494 0.3995 0.6000
2 0.4546 0.4911 0.4800
3 0.4863 0.5003 0.5040
4 0.4959 0.5002 0.4992
5 0.4988 0.5000 0.5002
6 0.4996 0.5000 0.5000
7 0.4999 0.5000 0.5000
8 0.5000 0.5000 0.5000
9 0.5000 0.5000 0.5000
10 0.5000 0.5000 0.5000

For 𝑧 = 0.7

1 0.3767 0.4355 0.7000
2 0.4696 0.5028 0.4200
3 0.4925 0.5014 0.5320
4 0.4982 0.5001 0.4872
5 0.4995 0.5000 0.5051
6 0.4999 0.5000 0.4980
7 0.5000 0.5000 0.5008
8 0.5000 0.5000 0.4997
9 0.5000 0.5000 0.5001
10 0.5000 0.5000 0.4999

For 𝑧 = 0.8

1 0.3991 0.4652 0.8000
2 0.4796 0.5076 0.3200
3 0.4959 0.5007 0.6080
4 0.4992 0.4999 0.4352
5 0.4998 0.5000 0.5389
6 0.5000 0.5000 0.4767
7 0.5000 0.5000 0.5140
8 0.5000 0.5000 0.4916
9 0.5000 0.5000 0.5050
10 0.5000 0.5000 0.4970
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Table 6: Continued.

𝑁 ⟨𝑃⟩(𝑁, 1) ⟨𝑃⟩(𝑁, 2) ⟨𝑃⟩(𝑁,∞)

For 𝑧 = 0.9

1 0.4174 0.4892 0.9000
2 0.4863 0.5083 0.1800
3 0.4977 0.4997 0.7560
4 0.4996 0.4999 0.2952
5 0.4999 0.5000 0.6638
6 0.5000 0.5000 0.3689
7 0.5000 0.5000 0.6049
8 0.5000 0.5000 0.4161
9 0.5000 0.5000 0.5671
10 0.5000 0.5000 0.4463

𝛿𝑡 involves an indeterminacy ℎ/𝛿𝑡.This amounts to a possible
transition if it is larger than, say, |𝐻

𝑎𝑎
−𝐻
𝑖𝑖
| = ℎ(𝑅−𝑅

0
)𝛼, that

is, taking for 𝑅−𝑅
0
a typical length 𝐿 (which will presumably

be of the order of the range of the interaction potential), if
ℎ/𝛿𝑡 ≈ ℎV/𝐿 > ℎ𝐿𝛼 and hence if

V > 𝛼𝐿
2

. (A.4)

Conversely, no transition of this kind will occur in the
opposite case, which may be represented by a factor in 𝑠 of
the form 𝑒

−V/(𝛼𝐿2), that is, by a generalization of 𝑢:

𝑢
2

= 𝑢
2

1
+ 𝑢
2

2
, 𝑢

2

1
=

2𝜋𝛽
2

𝛼V
, 𝑢

2

2
=

V
𝛼𝐿
2
, (A.5)

where of course 𝑢
1
coincides with (A.2) but the additional

term involving 𝑢
2
yields a strong contribution to the transi-

tion probability for fast collisions; (A.1) still applies but 𝑠 has
a maximum and 𝑧 a minimum for a velocity V = √2𝜋𝐿𝛽: for
higher velocities 𝑢 and 𝑧 increase again. The point is that for
really fast collisions 𝛽 becomes unimportant, the transition
being determined no longer by the nondiagonal element𝐻

𝑎𝑖

of the Hamiltonian, but solely by the indeterminacy ℎ/𝛿𝑡,
hence by the diagonal elements𝐻

𝑖𝑖
and𝐻

𝑎𝑎
crossing at 𝑅

0
.

B. Mean Probability ⟨𝑃⟩(𝑁, 𝜎) for Different
Values of 𝑧

Table 6 gives ⟨𝑃⟩, the second column for 𝜎 = 1 (Poisson),
the third column for the particular case of the gamma
distribution with 𝜎 = 2, and the fourth column for 𝜎 → ∞

(i.e., (9); for 𝑧 = 0.1 this column coincides with Table 1, for
𝑧 = 0.9 with Table 2).

⟨𝑃⟩ is the probability of a yes decision in time 𝑇 if the
frequency of afterthoughts is ] and𝑁 = ]𝑇. It is seen that, at
least for 𝑧 < 1/2, the values of ⟨𝑃⟩ for 𝜎 = 2 are intermediate,
as expected, between Poisson statistics (13) and certainty,
represented by (9).

C. Stückelberg Oscillations

It is interesting to explore a genuine quantum effect: the
Stückelberg oscillations [6, 8]. If the Landau-Zener model is

Table 7: 𝑧 = 0.1.

𝑛 𝑃̃
𝑛

𝑃
𝑛

10%
1 0.0967 0.1000 0.0997
2 0.3494 0.1800 0.1969
3 0.6604 0.2440 0.2856
4 0.9093 0.2952 0.3566
5 0.9999 0.3362 0.4026
6 0.8971 0.3689 0.4217
7 0.6407 0.3951 0.4197
8 0.3298 0.4161 0.4075
9 0.0848 0.4329 0.3981
10 0.0004 0.4463 0.4017

really taken seriously, the phase that each crossing (in our
case, each afterthought) producesmust be taken into account;
such phases accumulate over the successive afterthoughts.
These effects are under active study at present (of course in
physics, not in psychology) because they are the basis of a new
and interesting interferometry, amply discussed in a review
article by Shevchenko et al. [18]. The resulting probability
distributions are very different from (4), and moreover they
differ completely according to whether the interference is
constructive or destructive.

I will consider the particularly interesting case of con-
structive interference, described, in a good approximation,
by the article of Shevchenko et al. [18, equation (43)].
Indicating such probabilities of constructive interference by
𝑃̃
𝑛
(Shevchenko et al. write𝑃

1𝑍
in place of 𝑧 and𝑃

+
(𝑡) in place

of 𝑃̃
𝑛
),

𝑃̃
𝑛
= sin2 (𝑛√𝑧) . (C.1)

In Table 7 I show, for 𝑧 = 0.1, the probabilities given by (C.1),
to be compared with those (very different and, for 𝑛 small but
larger than 1, much less) given by (4).

Obviously, while 𝑃
𝑛
for 𝑧 < 1/2 gradually increases and

tends to 1/2 (and for 𝑧 > 1/2 oscillates), 𝑃̃
𝑛
always oscillates,

with a period 𝜋/√𝑧 definitely longer than the period (=2) of
the “classical” oscillation that 𝑃

𝑛
for 𝑧 > 1/2 shows.
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It is not easy to say whether these Stückelberg oscillations
have a bearing on the problem of free will. One could imagine
that some internal, spontaneous oscillation of the soul does
exist, and that, if the afterthoughts happen to be in phase with
such oscillation, something like a constructive interference
may occur. The latter can never be so strong as the 𝑃̃

𝑛

indicates, but a partial constructive interference contribution
could be there. In the last column of Table 7 I give the result
that would be obtained if the amount of such contribution
was 10%. Comparing this column with the column giving 𝑃

𝑛
,

the main effect appears to be that, for a few afterthoughts,
the probabilities approach 1/2 faster than in the absence of
interference (but for a larger number of afterthoughts the
opposite may happen).
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