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A new method for detecting rooftops in satellite images is presented. The proposed method is based on a combination of machine
learning techniques, namely, k-means clustering and support vectormachines (SVM). Firstly k-means clustering is used to segment
the image into a set of rooftop candidates—these are homogeneous regions in the image which are potentially associated with
rooftop areas. Next, the candidates are submitted to a classification stage which determines which amongst them correspond to
“true” rooftops. To achieve improved accuracy, a novel two-pass classification process is used. In the first pass, a trained SVM is
used in the normal way to distinguish between rooftop and nonrooftop regions. However, this can be a challenging task, resulting in
a relatively high rate of misclassification. Hence, the second pass, which we call the “histogram method,” was devised with the aim
of detecting rooftops which were missed in the first pass.The performance of the model is assessed both in terms of the percentage
of correctly classified candidates as well as the accuracy of the estimated rooftop area.

1. Introduction

Automatic rooftop detection from satellite/aerial images is
an important task in a variety of applications. Interesting
examples include change detection in urban monitoring, the
production of digital maps, land use analysis, verification,
and updating GIS databases and route planning [1, 2]. For
example, accurate identification and localization of rooftops
in urban images are a key step in territorial planning and
city modeling. Similarly, knowledge of the location, profile,
and density of buildings can be very useful in estimating
the distribution of a city’s population. In particular, rooftop
detection can be used to analyze the size and location of
human settlements in slums and other disorganized areas [2].

However, detecting rooftops from aerial or satellite
images can be very challenging. One reason is that the images
used often differ in terms of lighting conditions, quality, and
resolution. Another reason is that buildings may have diverse
and complicated shapes and structures and as such can be
easily confused with similar objects such as cars, roads, and
courtyards. The result of these complications is that there

are currently no algorithms or features that are universally
applicable, that is, which can be used to detect roofs in all or
even a majority of aerial and satellite images.

Much of the earlier work on rooftop detection has
depended on computer vision and image processing tech-
niques such as edge detection, corner detection, and image
segmentation. One widely used approach is to first generate
rooftop candidates using image segmentation techniques and
then to identify the true rooftopswithin this set of candidates,
where the latter process is performed using discriminative
features such as intensity, shape, and area. Ren et al. and
Nosrati and Saeedi [3, 4] proposed a technique for automatic
polygonal rooftop extraction based on rooftop hypothesis
generation and refinement. In the hypothesis generation
step rooftop candidates are generated using edge and corner
detection.The generated hypotheses are refined in the second
step by using features that characterize rooftops such as the
standard deviation of pixel intensities within rooftop candi-
dates, relative gray level difference between rooftop surface
points and outside points. In [5] a method for automatic
building detection in aerial images using hierarchical feature
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based image segmentation is presented. In this approach the
images are first segmented using themean shift segmentation
algorithm [6] to generate candidate building regions. In the
subsequent step shadow information is used to determine if
a candidate region is a rooftop. Jin and Davis [7] proposed
a method based on differential morphological profile to
generate building hypotheses with a verification process
which used shadows and spectral information.

Many modern approaches have used machine learning
to perform rooftop detection. In [8] a method is presented
which used machine learning algorithms for selecting or
rejecting candidate rooftops. Use of machine learning tech-
niques facilitated better identification of true rooftops from
the candidates even in the presence of noise and artifacts. In
[9] a method for detecting building rooftops using LIDAR
data was presented (LIDAR is a remote sensing technology
that measures surface elevation using a laser). Mathematical
morphological filtering is first used to separate ground and
nonground objects in the image. Next, buildings and trees
are classified from the nonground objects. An unbalanced
support vector machine is used in the methodology since
this reflects the characteristics of the data to be classified.
For example, in urban areas the number of buildings in the
image may be considerably more than the number of trees.
Unbalanced SVM made the classification more accurate and
automatic. Similarly a technique of detecting trees in urban
areas has been presented in [10] using the aerial image LIDAR
data. The detection of trees in urban areas is eventually used
to exclude tree parts from the building rooftops for 3D city
modeling. Firstly, segmentation is performed using a region
growing algorithm and then trees are detected by performing
classification on segments using SVM. Classification perfor-
mance was assessed using ROC analysis. The performance
of this methodology was then compared to other traditional
approaches and was found to be better. In [11] a method is
presented for detecting building damage in aerial images.The
method used shadow information in addition to the spectral
information to perform building damage detection. Images
were first segmented using an improved watershed algorithm
to produce multilevel image segments. An SVM was then
used to classify the segments that were generated. It was
observed that the accuracy of the presentedmethodologywas
significantly higher than the benchmark methodology which
only used spectral information for classification.

Other studies have used both spectral and spatial features
for the classification task (e.g., [12]). The main motivation for
using both spatial and spectral features was that land cover
types in urban areas are spectrally similar. So, the accuracy
obtained using spectral features alone is comparatively low.
It was observed that the use of spatial features along with
the spectral features improved the accuracy of the building
damage detection task considerably.

Based on our review of the literature, a new rooftop
detection system which is novel in a number of key respects
was developed. The proposed method has the following key
characteristics.

(1) It uses only panchromatic images. In contrast, most of
the approaches mentioned in the literature have used

LIDAR data [9, 10] and/or multispectral images [11,
12], both of which aremore informative but alsomore
difficult to obtain and expensive.

(2) It based on both spectral and spatial features extracted
from the images.

(3) It utilizes machine learning techniques, namely, 𝑘-
means clustering to segment the image into rooftop
candidates and SVM to perform classification on
these candidates.

(4) classification results obtained using the SVM are
subjected to a second-pass classification stage. For
easy reference we will refer to this as the “histogram
method.”

There do not seem to be any existing studies which combine
all four characteristics above, and we believe that presented
together these represent a significant improvement over exist-
ing methods for performing rooftop detection. The original
motivation for this study was to assess the available rooftop
area in Abu Dhabi, for the deployment of photovoltaics, as
such images from this area are used to evaluate this method.

2. Proposed Method

Theproposed rooftop detection system consists of the follow-
ing three main steps.

(1) Image Segmentation. Each image is first divided into
a set of candidate regions. This is done by first using
𝑘-means clustering, to divide pixels into a number of
clusters based on colors and then using the flood-fill
algorithm to group the pixels in each cluster into a set
of connected components or regions. Each of these
regions is now a rooftop candidate.

(2) Feature Extraction and SVM Classification. For each
candidate, 8 features are extracted using MATLAB’s
regionprops method. These extracted features form
the dataset, where each row represents a single can-
didate region. The SVM classifier is then trained to
distinguish between rooftop regions and nonrooftop
regions.

(3) Histogram Method. Although the trained SVM suc-
cessfully detects many of the rooftops in the test
images, in practice there were also many rooftop
regions which were not detected (specific examples of
these will be shown later). To detect initially rooftops
that were missed initially, the histogram method
was devised, which seeks to leverage the distribution
of grayscale intensities of rooftop pixels that were
correctly detected by the SVM. This method is based
on the observation that rooftops which are in close
proximity to one another also tend to have the same
color.

The overall approach is shown in Figure 1. All the three steps
listed above will now be discussed in greater detail.
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Figure 1: Diagram describing the overall model.

2.1. Image Segmentation. The goal of image segmentation is
to create a set of candidate regions (segments), each of which
will later be classified as rooftop or nonrooftop. To divide an
image into segments we use 𝑘-means clustering [13], to divide
the pixels in an image into 𝑘 clusters. The clustering is based
on the color of the pixels, where each row presented to the 𝑘-
means function represents a single pixel with 3 features: the
red, green, and blue component intensities.

To improve the quality of the extracted segments bilateral
filtering [14] is applied prior to clustering. Bilateral filtering
is a preprocessing method which seeks to remove noise
while preserving edge information. It combines two filtering
approaches: domain filtering, which enforces closeness by
weighing pixel values with coefficients that fall off with
distance, and range filtering, which averages pixel values
with weights that decay with dissimilarity. The result of the
bilateral filtering is shown in Figure 2(b). In the same figure
the results of the 𝑘-means clustering are shown both without
and with bilateral filtering (Figures 2(c) and 2(d)). It can be
observed that the use of bilateral filtering results in smoother
and visually “cleaner” segments. In contrast, it can be seen
that many segments obtained without the use of bilateral
filtering contain noticeable levels of noise.

An important consideration is the choice of an appropri-
ate value of 𝑘 (the number of clusters). As is commonly done,
a range of values were tested after which it was observed that
𝑘 = 4 provided the best result (examples which illustrate this
are shown later).

The result of applying the 𝑘-means algorithm is a labeling
of each pixel in a given image into one of four different
clusters (in cases where 𝑘 = 4). The next step is to
convert these labeled pixels into candidate rooftops, and this
is achieved by grouping them into connected regions. For
this purpose, the 4-connected flood fill algorithm is applied
separately to pixels from each of the four clusters—the result
is a set of regions where each pixel in a region is connected
to at least one other pixel in the same region via one of the
four principle directions. Another option was to use the 8-
connected flood fill algorithm, which permits connections
via any of the 8 pixels in the immediate neighborhood of a
given pixel. In practice no significant difference was observed
between these two methods (an example of this is shown in
Figure 3) and as such the 4-connected flood fill algorithmwas
used as it was computationally less demanding [15].

2.2. Feature Extraction and SVMModel

2.2.1. Data Preparation. After dividing the training images
into candidate regions (segments) as described in the previ-
ous section, the dataset was constructed, in which each row
represents one of the segments. Eight features were extracted
to describe each segment (this is discussed in more detail in
the next section). Each row is manually labeled as “1” (if it
corresponds to a rooftop) or “0” (if not).

2.2.2. Feature Extraction. Features are numerical attributes
which characterize the object to be classified. So, the extracted
features are those which hold properties which can help to
distinguish rooftops and nonrooftops in an image [16]. In
the proposed method eight features are considered which are
highly relevant to the classification task at hand. These are as
follows.

(1) Area. This is the area of a given segment in terms of
the number of pixels. This feature can help filter out
objects such as trees and cars which are simply too
small to be a rooftop.

(2) Ratio of Minor Axis to Major Axis Lengths. This is the
ratio of width to length of a given region. In Figure 4,
the major and minor axes of a building are shown in
red and blue, respectively. As can be seen the lengths
of the minor and major axes of the highlighted build-
ing are comparable—in comparison, objects such as
roads are elongated and have very lowminor tomajor
axis ratios.

(3) Visible Vegetation Index (VVI). The VVI gives an
indication of the presence of vegetation in an image
[10]. VVI is frequently calculated for multispectral
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Figure 2: The original image (a). The result after applying bilateral filtering on the original image (b). The result of the 𝑘-means clustering
with 4 clusters on the original image (c).The result of the 𝑘-means clustering with 4 clusters on the image obtained after bilateral filtering (d).

(a) (b) (c)

Figure 3: The original image (a). The result of 4-connected flood-fill algorithm (b). The result of 8-connected flood-fill algorithm (c).

images, but in the case of an RGB image it can be
approximated using

VVI

= [(1 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅 − 𝑅
0

𝑅 + 𝑅
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) (1 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐺 − 𝐺
0

𝐺 + 𝐺
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) (1 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵 − 𝐵
0

𝐵 + 𝐵
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)]

1/𝑊

.

(1)

Here, 𝑅, 𝐺, and 𝐵 denote the red, green, and blue
intensities in the image, whereas 𝑅

0
, 𝐵
0
, and 𝐺

0
are

the values of red, blue and green used to reference the
green color.𝑊 is used to adjust the sensitivity of the
scale and is known as weight component [17].

(4) Solidity. Solidity can be calculated as the ratio of the
total area of a region to the area of the convex hull of
the region [18]. Becausemost rooftops are rectangular
in shape, rooftop-related regions in an image are likely
to have higher values of solidity.

(5) Mean Intensity. This is the mean of all the grayscale
intensity values present in a region [18]. Usually mean
intensity values of the rooftops are similar. As in
Figure 4 the rooftops are of similar intensity which is

Rooftops

Minor axisMajor axis

Road

Figure 4: The image showing rooftop and nonrooftop objects
together with the features.

different from that of other objects such as roads and
vegetation.

(6) Variance in Intensity. This is the variance of the
pixel intensities within a segmented region. A rooftop
would tend to be fairly homogeneous in appearance,
and as such the corresponding regionwould also have
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a lower variance of intensity when compared to a
nonrooftop region.

(7) Extent. The extent is the ratio of pixels in a given
region to the total number of pixels of the bounding
box. This is similar in concept to the solidity feature.

(8) Eccentricity.The value of eccentricity ranges from 0 to
1. A segment having eccentricity 0 is a circle whereas
segment with eccentricity 1 is a line segment. This
feature can help the classifier to reject objects which
are overly elongated.

Each feature was normalized by subtracting the mean of the
feature and dividing it by the standard deviation.

2.2.3. SVM Model. The support vector machine (SVM) is
a machine learning technique which finds the decision
boundary (or “hyperplane”) that optimally separates the data
points of one class from those of the other class, where a
“hyperplane” is optimal if it maximizes the margin of sep-
aration between the two classes. Like most kernel methods,
the performance of an SVM is heavily dependent on the
choice of kernel function. Because of its good classification
performance on our data, we used the Gaussian radial basis
function kernel:

𝐾(𝑥, 𝑦) = 𝑒
−(𝑥−𝑦)

2
/2𝜎
2

. (2)

Different values of sigma were tried and it was found that
setting 𝜎 = 1 produced the best results (illustrative examples
are shown later).

2.3. HistogramMethod. As alreadymentioned, it is likely that
the SVM will not be able to detect all the rooftop regions in
an image. To help address this problem, color information
from the detected rooftops was subsequently used to find the
“missing” rooftops.

The main idea is to use the information from the regions
which were classified by the SVM as rooftops in order to
detect the misclassified segments. This is based on the obser-
vation that rooftops within a single image tend to have the
same pixel intensities. Hence, the idea is to use the intensity
information of the segments which were classified as rooftops
by the SVM, to affect a “second-pass” of classification. An
example is shown in Figure 5. In Figure 5(b) the segments
which have been labeled black are the ones which were
classified as rooftops by the SVM and the ones which were
colored by black boundary are some of rooftop segments
which were misclassified as nonrooftops. As can be seen, the
grayscale intensities of these misclassified regions are similar
of those of the detected rooftops, which suggest the histogram
method could be very useful for these situations.

Two histogramswere used: one for the intensities of pixels
whichwere classified as rooftops and another for pixels which
were classified as nonrooftops. Each histogram consisted of
10 bins, which represented a reasonable balance between
computational requirements, good results, and adequate
coverage of each bin (in terms of pixels). The two histograms
are shown in Figures 5(c) and 5(d).

From the first distribution (shown in Figure 5(c)) 2 bins
were chosen which contained the most number of pixels. At
this point we applied the heuristic that misclassified rooftop
pixels should fall into either of these two bins or into one of
the immediate neighbors. In this way we ended up examining
up to 6 bins out of 10 bins (in boundary cases this can be as
low as 3 bins); thus the likelihood of the misclassified pixels
falling into one of these 6 bins is very high.

Considering only 2 bins also avoids adding too much
noise to the model, since considering too many bins can
significantly increase both true positive and false positive
rates. An example is shown in Figure 6, where it can be seen
that taking 3 bins with the most number of pixels helps to
detect brown rooftops; however it also resulted in an increase
in false positives (Figure 6(c)).

Another issue related to the histogram method is having
different objects (roads, cars, and so on), which are of the
same color as the rooftops (as an example see Figure 7(a)).
In such cases the histogrammethod cannot effectively distin-
guish nonrooftop from rooftop regions. A similar problem is
encountered when there are no rooftops on the image at all
(see Figure 7(b)). In such cases the histogram method will
admit large numbers of false positives.

In order to avoid the situations discussed above a thresh-
olding scheme was applied. The scheme adopted is based on
the fact that the aim of the histogram method is to comple-
ment SVM classification; if the number of nondetected pixels
in a bin is significantly higher than that of detected pixels in
the same bin, there would be little sense in using that bin.
For example, from Figure 5(d) it can be observed that there
are 10000 nondetected pixels in the fifth bin; however from
Figure 5(c) we have only less than 200 detected pixels in the
fifth bin. Thus, the number of nonrooftop pixels (based on
the SVM classification) is greater than the number of rooftop
pixels by factor 50. It was found that applying a threshold to
this ratio was very useful in avoiding cases like this. In our
case setting a threshold of 15 proved to be the best choice
for our datasets, though this remains as a tunable parameter
which needs to empirically set when used with different
datasets.

The results will be discussed in greater detail in the next
section, but briefly our observation was that the “histogram”
method performed very well for one of our datasets, where
it resulted in a big increase in performance. Unfortunately
for the second dataset this method did not perform as
well; however, even in this case it still produced a slight
improvement in performance. Suggested reasons for this will
be presented later on in the paper.

3. Results and Discussion

3.1. Data. As explained earlier, one of the aims of research
was for the proposed method to be able to work using only
panchromatic data. Such data can be obtained from a variety
of commercial sources, but for this study images that were
manually collected from Google Maps were used. Since this
paper was focused on finding the total amount of rooftop area
for deployment of photovoltaics in Abu Dhabi, UAE, we use



6 ISRNMachine Vision

(a) (b)

Two bins with the 
most number of 

pixels  

4500

4000

3500

3000

2500

2000

1500

1000

500

0

12.8 38.4 64 89.6 115.2 140.8 166.4 192 217.6 243.2

Centers of the bins

N
um

be
r o

f p
ix

els

 classified as rooftop by SVM
Pixels’ histogram of regions which have been 

(c)

Two  
corresponding 

bins  

12.8 38.4 64 89.6 115.2 140.8 166.4 192 217.6 243.2

Centers of the bins

N
um

be
r o

f p
ix

els

 classified as nonrooftop by SVM
Pixels’ histogram of regions which have been

10

9

8

7

6

5

4

3

2

1

0

×10
4

(d)

Figure 5:The original image (a) .The result after the SVM (b).The distribution of intensities of the detected rooftop pixels (c) .The distribution
of intensities of the nondetected rooftop pixels (d).
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Figure 6: The original image (a). The result when considering 2 bins (b). The result when considering 3 bins (c).
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images gathered from selected residential areas in Abu Dhabi
city. To ensure the generality of our model, it was tested on
two separate datasets, “Raha” and “Khalifa,” which consist of
images gathered from Al Raha Gardens and Khalifa City A.

For the segmentation process to work properly, the 𝑘-
means algorithm had to be provided with images of an
appropriate size. For this study, satellite images were divided
into small tiles with 512 × 512 pixels, which corresponded to
a plot of land measuring 70m × 70m. This size was chosen
because it provided a pragmatic balance between being small
enough such that the 𝑘-means algorithm could be effective,
while still being large enough such that each tile typically
contained a number of houses and hence roofs. The second
issue was important as it meant that rooftops were rarely split
between neighboring tiles.

14 such images were collected for each dataset, out of
which 8 were used for training and the remaining 6 images
were used for testing and validation. In addition rooftops
in each of these images were manually labeled and these
labels were subsequently used to label the regions extracted
during the segmentation process, where each rooftop region
is labeled “1” and nonrooftop regions “0.”

Figure 8 shows examples of images from both datasets
and also an example of a manually labeled image. As can
be seen, many objects (such as cars and roads) have pixel
intensities which are very similar to rooftops and as such our
model needs to be able to distinguish these objects from true
rooftops. For example for “Raha” images it is obvious that
roads have almost the same color as most of the rooftops (see
Figure 8(a)) and for “Khalifa” images there are many brown
regions which look like rooftops; however they are not (see
Figure 8(b)).

3.2. Experimental Results. Commonly adopted performance
metrics were used to evaluate the performance of the system.
These are Precision, Recall and 𝐹

1
score, which are defined as

shown here:

Precision = TP
TP + FP

∗ 100%,

Recall = TP
TP + FN

∗ 100%,

𝐹
1
=
2 ∗ Precision ∗ Recall
Precision + Recall

∗ 100%.

(3)

Here TP, TN, FP, FN are, respectively, true positive, true
negative, false positive, and false negative rates.

As mentioned, to determine the optimal value of 𝜎, the
performance in terms of 𝐹

1
score was calculated for a range

of values of𝜎. Results for Raha andKhalifa datasets are shown
in Figures 9(a) and 9(b). As we mentioned previously, it can
be seen that 𝜎 = 1 results in the best performance.

As might be expected, it can be seen that the accuracy
of the SVM grows with the size of the training dataset. The
relationship between the𝐹

1
score for the SVMon the training

dataset and the number of training images used is shown in
Figure 10.

Table 1: The results for trained SVM on Al Raha Gardens (a) and
Khalifa City A (b) validation datasets.

(a)

Number of clusters 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6
Precision (%) 60.5 68.19 79.66 73.5 67.39
Recall (%) 86.62 84.9 83.71 72.4 68.22
𝐹
1
score (%) 71.24 75.6 81.63 72.94 67.8

(b)

Number of clusters 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6
Precision (%) 64.5 68.2 77.2 75.5 69.12
Recall (%) 69.2 73.72 88.55 73.4 69.4
𝐹
1
score (%) 66.76 70.85 82.48 74.43 69.25

Table 2:The numbers of detected rooftops before and after applying
the histogram method.

Before the
histogram method

After the
histogram method

Image 1 from
Raha 12 out of 17 14 out of 17

Image 2 from
Raha 9 out of 14 10 out of 14

Image 3 from
Raha 7 out of 12 12 out of 12

Image 1 from
Khalifa 4 out of 13 13 out of 13

Image 2 from
Khalifa 6 out of 15 14 out of 15

Image 3 from
Khalifa 4 out of 12 10 out of 12

While accuracy increases with the number of images
used, this seems to level off after around 8 images and this
was hence deemed to be sufficient amount of training data.

Finally, there was also the issue of the suitable value of
𝑘 to be used when performing segmentation. As was already
mentionedwe have tried different values of 𝑘 and found 𝑘 = 4
to be the most suitable in our case. The performance of the
SVMwith parameter𝜎 = 1 for different number of clusters on
the validation dataset is shown inTable 1, where the best result
(𝐹
1
score equal 82%) for both validation sets can be seen.
We evaluate the overall performance of ourmethod based

on two criteria: the number of detected rooftops and the
overall area covered by detected rooftops. We compare the
results before and after applying the histogram method. In
Table 2 the results for all 6 testing images are given.

It can be observed that the SVM performs quite well on
“Raha” images even without using the histogram method.
However for “Khalifa” images the performance of the basic
SVM is weak and the histogram method produces a huge
improvement for “Khalifa” datasets. One possible reason for
this is that rooftops on “Raha” images are well separated from
each other by white boundaries (see Figure 8(a)). Hence the
image segmentation step often results in candidate regions
which in general represent single rooftop. Since all rooftops



8 ISRNMachine Vision

(a) (b)

Figure 7: The image with roads of the same intensity as the rooftops (a). The image without any rooftop (b).

(a)

(b)

(c)

Figure 8: Sample images from Al Raha Gardens (a). Sample images from Khalifa City A (b). An example of a manually labeled image (c).
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Figure 9: 𝐹
1
score for different values of sigma for “Raha” (a) and “Khalifa” datasets (b).
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Figure 10: 𝐹
1
score for different number of training images for “Khalifa” dataset.

Table 3: The amount of detected rooftop pixels before and after
applying the histogram method for Khalifa City A (a) and Al Raha
Gardens test images (b).

(a)

Before the histogram
method

After the histogram
method

Precision (%) 92.8 93.16
Recall (%) 52.4 70.01
𝐹
1
score (%) 66.9 79.9

(b)

Before the histogram
method

After the histogram
method

Precision (%) 88.5 97.6
Recall (%) 7.1 79.7
𝐹
1
score (%) 13.1 87.7

have almost similar values for the extracted features, it makes
the job of the SVM to make better classification easier.

In contrast in “Khalifa” images rooftops are not separated
from each other very well (see Figure 8(b)); hence after
the image segmentation step it is possible that 2 and more
rooftops will be represented in a single candidate region,
which forces the SVM to consider such candidate regions as
outliers. Since rooftops in the Al Raha Gardens region have
almost the same intensity as roads, cars, and other nonrooftop
objects, the “histogram” method was frequently unable to
detected rooftops that were not already detected using the
other features. In contrast the rooftops in the Khalifa City
A images are quite distinct in terms of the intensities of
the corresponding regions, and this allowed the “histogram”
method to make a significant contribution.

To better evaluate the overall performance of the model,
results based on the correctly classified rooftop and non-
rooftop pixels are presented in Table 3.

Again it can be observed that in contrast to the “Raha”
dataset, the histogram method significantly improves the
performance of the system on the “Khalifa” dataset (though
we still see a slight improvement in the case of the “Raha”
dataset).
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(a) (b) (c)

(d) (e) (f)

Figure 11: The original image from Raha Gardens (a). The result after the SVM (b). The result after the “histogrammethod” (c). The original
image from Khalifa City A (d). The result after the SVM (e). The result after the “histogram method” (f).

More results of the performance of ourmodel can be seen
in Figure 11. It can be seen that there is not a big difference
between Figures 11(b) and 11(c) since the basic SVM already
performs well and the task of the histogram method in this
case is to avoid the inclusion of additional noise. However
a significant difference can be observed between Figures
11(e) and 11(f),which shows how the histogram method
significantly improves the performance of the system.

4. Conclusion

The paper presented a new approach for detecting rooftops
using machine learning techniques like 𝑘-means and SVM.
While the results are still preliminary, we showed that the
proposed method was able to retrieve a very high percentage
of the rooftops present in an image while at the same time
maintaining a low false positive rate. The method gives
especially good results when all the rooftops in the image
are of a similar color or gray level intensity. A unique feature
of this method is its use of the “histogram method” to find
rooftops which were initially missed by the SVM.

However there are still some situations in which the
method does not perform well. For example rooftops which
are very big relative to the image size were sometimes clas-
sified as nonrooftop by the SVM, which tended to consider
such rooftops as outliers.

Another weakness of the method is poor performance
when rooftops ofmany different colors are encountered. Also,

when there is a single “dominant” rooftop color, it renders the
system less sensitive to rooftops with less common colors.

For future work we intend to extend the system along
three main directions:

(1) improvements to the classification process via addi-
tional feature engineering to discover more infor-
mative features and screening and testing alternative
classifiers, such as the unbalanced SVM used in [9];

(2) the addition of a higher-order classification stage.
Rooftops which are in close proximity to each other
tend to have similar characteristics (color, design, ori-
entation, density, etc).While the histogrammethod is
a step in this direction there are other characteristics
beyond simply the grayscale intensity;

(3) testing and extension of the method to larger geo-
graphical areas.
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