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The role of container logistics centre as home bases for merchandise transportation has become increasingly important. The
container carriers need to select a suitable centre location of transshipment port to meet the requirements of container shipping
logistics. In the light of this, the main purpose of this paper is to develop a fuzzy multi-criteria decision-making (MCDM)model to
evaluate the best selection of transshipment ports for container carriers. At first, some concepts and methods used to develop the
proposed model are briefly introduced.The performance values of quantitative and qualitative subcriteria are discussed to evaluate
the fuzzy ratings. Then, the ideal and anti-ideal concepts and the modified distance measure method are used in the proposed
model. Finally, a step-by-step example is illustrated to study the computational process of the quantitative and qualitative fuzzy
MCDM model. The proposed approach has successfully accomplished our goal. In addition, the proposed fuzzy MCDM model
can be empirically employed to select the best location of transshipment port for container carriers in the future study.

1. Introduction

Shipping and port are two major aspects in the sea transport.
The issues of shipping and port logistics distribution centres
are discussed in the academic literature [1–7] for years. The
increasing container transport in liner shipping market has
had a vast expansion on the world shipping is growing in
importance. In the recent years, due to the blooming devel-
opment of container shipping in the world, the needs of the
transshipment containers in and out of the hub loading centre
have been growing rapidly in the Far East. In addition, the
governments of Far Eastern countries actively pushed their
container ports to become a transshipment centre. Particu-
larly, they engaged in improving computer hardware and
software, inland transport systems, and the customs clearance
operation and reducing the container handling charges in
order to attract more carriers to call their ports as well as to

obtain more transshipment quantity of containers to enlarge
their port capacity.

The scopes of shipping logistics services [8] are covering
forwarding and consolidation services, logistics operations
services, value-added services, warehousing and distribution
services, intermodal transport services, information tech-
nology (IT) solutions, processing of customs clearance, and
specialized services. The container port [9] is a nodal point
to handle container cargo to offer value-added services such
as collection, warehousing, packing, and distribution among
international trade and logistics systems. When the hub-
and-spoke network of global container shipping is gradu-
ally emerged, the container port in the nodal points has been
starting to strengthen its competitive ability to withstand
the keen environment. In particular, container transport
demands required efficient integratedmoves, premium pack-
age services, and making the best use of available model
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transport operations and container terminals. Due to the
importance of container logistics centres as home bases for
merchandise transport, the container carriers need to select a
suitable location of a transshipment port to meet the custom-
ers’ requirements.

Furthermore, because a good location [2, 10] will effec-
tively help expand agglomeration economy effects and
increase competitive advantages for container ports, as well
as the location can help container carriers to be swift the
commodities in order to reduce the logistics cost and increase
customers’ satisfaction. Hence, the container carriers will
invest considerable sources for software and hardware facil-
ities subsequently once the location is decided, in which its
planning, design, construction, and operation will be also
time consuming. In order to satisfy the needs of the container
carriers and their customers, there is a need to proceed with
a study on the effects from various perspectives and evaluate
proper location. Therefore, the location selection of trans-
shipment port for the container carriers is an important issue
to study.

The container carriers take many evaluation criteria into
consideration while facing the uncertainty environment with
keen competition. Due to the quantitative and qualitative
characteristics ofmultiple criteria decision-making (MCDM)
[11–15] of location selection of transshipment port and a
change in various criteria upon group decision environment,
the evaluation problem of location selection of transshipment
port is essential to study. Besides, the decision information
is hard to come by and is often vague, particularly regarding
the linguistic terms. The fuzzy set theory [16] was therefore
designed to sort through the uncertainties of vague linguistic
terms [17] and helped generate a single possible outcome.
Finally, we will propose a quantitative and qualitative fuzzy
MCDM method to assist with improving the decision-mak-
ing quality in this paper.

In summary, the main purpose of this paper is to
develop a quantitative and qualitative fuzzy MCDM method
to evaluate the problemof location selection of transshipment
port for the container carriers. Section 2 presents the research
methodologies. The proposed fuzzy MCDM method for
evaluating the location of transshipment port is constructed
in Section 3. A numerical example is studied in Section 4.
Finally, a conclusion is made in the last section.

2. Research Methodologies

In this section, some concepts used to develop an inte-
grated fuzzy MCDM method are introduced. These include
the triangular fuzzy numbers and algebraic operations, the
linguistic values, the graded mean integration representa-
tion (GMIR) method, and the modified distance measure
approach, respectively.

2.1. Triangular Fuzzy Numbers and the Algebraic Operations.
In a universe of discourse𝑋, a fuzzy subset 𝐴 of𝑋 is defined
by a membership function 𝑓

𝐴
(𝑥), which maps each element

𝑥 in 𝑋 to a real number in the interval [0, 1]. The function
value 𝑓

𝐴
(𝑥) represents the grade of membership of 𝑥 in 𝐴.

A fuzzy number 𝐴 [18] in real lineR is a triangular fuzzy
number if its membership function 𝑓

𝐴
: R → [0, 1] is as

follows

𝑓
𝐴 (𝑥) =

{{{{{{{

{{{{{{{

{

(𝑥 − 𝑙)

(𝑚 − 𝑙)
, 𝑙 ≤ 𝑥 ≤ 𝑚,

(𝑥 − 𝑢)

(𝑚 − 𝑢) ,
𝑚 ≤ 𝑥 ≤ 𝑢,

0, otherwise,

(1)

with −∞ < 𝑙 ≤ 𝑚 ≤ 𝑢 < ∞. A triangular fuzzy number can
be denoted by (𝑙, 𝑚, 𝑢).

The triangular fuzzy numbers are easy to use and easy
to interpret. The parameter 𝑚 gives the maximal grade of
𝑓
𝐴
(𝑥); that is, 𝑓

𝐴
(𝑚) = 1; it is the most probable value of

the evaluation data. In addition, “𝑙” and “𝑢” are the lower and
upper bounds of the available area for the evaluation data.
They are used to reflect the fuzziness of the evaluation data.
The narrower the interval [𝑙, 𝑢], the lower the fuzziness of the
evaluation data.

The Zadeh’s extension principle [16] and the Chen’s func-
tion principle [19] are employed to proceed with the algebraic
operations of fuzzy numbers. The merit of the function
principle not only does not change the type of membership
function of fuzzy number after operations, but also can
reduce the troublesomeness and tediousness of operations.
Hence, we used the Chen’s function principle in this paper.
Let 𝐴

1
= (𝑙
1
, 𝑚
1
, 𝑢
1
) and 𝐴

2
= (𝑙
2
, 𝑚
2
, 𝑢
2
) be fuzzy numbers.

The algebraic operations of any two fuzzy numbers𝐴
1
and𝐴

2

can be expressed as follows.

(1) Fuzzy Addition. 𝐴
1
⊕𝐴
2
= (𝑙
1
+𝑙
2
, 𝑚
1
+𝑚
2
, 𝑢
1
+𝑢
2
), where

𝑙
1
,𝑚
1
, 𝑢
1
, 𝑙
2
,𝑚
2
, and 𝑢

2
are any real numbers.

(2) Fuzzy Multiplication.𝐴
1
⊗𝐴
2
= (𝑙
1
𝑙
2
, 𝑚
1
𝑚
2
, 𝑢
1
𝑢
2
), where

𝑙
1
,𝑚
1
, 𝑢
1
, 𝑙
2
,𝑚
2
, and 𝑢

2
are all nonzero positive real numbers.

(3) Fuzzy Division. (i) (𝐴
1
)
−1

= (𝑙
1
, 𝑚
1
, 𝑢
1
)
−1

= (1/𝑢
1
, 1/𝑚
1
,

1/𝑙
1
), where 𝑙

1
,𝑚
1
, and 𝑢

1
are all positive real numbers or all

negative real numbers.
(ii) 𝐴

1
0𝐴
2
= (𝑙
1
/𝑢
2
, 𝑚
1
/𝑚
2
, 𝑢
1
/𝑙
2
), where 𝑙

1
, 𝑚
1
, 𝑢
1
, 𝑙
2
,

𝑚
2
, and 𝑢

2
are all nonzero positive real numbers.

2.2. Linguistic Values. In fuzzy decision environments, two
preference ratings can be used. They are fuzzy numbers and
linguistic values (LVs) characterized by fuzzy numbers [17].
Depending on practical needs, decision makers (DMs) may
apply one or both of them. In this paper, the weighting set
and preference rating set are used to analytically express the
LV and describe how important and how good the involved
criteria, subcriteria, and alternatives against various subcrite-
ria above the alternative level are.

In this paper, the weighting set is defined as 𝑊 = {VL, L,
M,H,VH} and rating set as 𝑆 = {VP,P, F,G,VG}; whereVL=
Very Low, L = Low,M=Medium,H=High, VH=VeryHigh,
VP = Very Poor, P = Poor, F = Fair, G = Good, and VG =Very
Good. Here, we define the LVs as VL = VP = (0, 0, 0.2), L =

P = (0, 0.2, 0.4), M = F = (0.3, 0.5, 0.7), H = G = (0.6, 0.8, 1),
and VH = VG = (0.8, 1, 1), respectively.
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2.3. Graded Mean Integration Representation Method. In a
fuzzy decision-making environment, a defuzzification meth-
od of the triangular fuzzy numbers for ranking the alterna-
tives is essential. To match the fuzzy MCDM method devel-
oped in this paper and to solve the problem powerfully,
the gradedmean integration representation (GMIR)method,
proposed by Chen and Hsieh [20], is employed to defuzzify
the triangular fuzzy numbers.

Let 𝐴
𝑖
= (𝑙
𝑖
, 𝑚
𝑖
, 𝑢
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, be 𝑛 triangular fuzzy

numbers. By the GMIR method, the GMIR 𝐺(𝐴
𝑖
) of 𝐴

𝑖
is as

follows:

𝐺 (𝐴
𝑖
) =

𝑙
𝑖
+ 4𝑚
𝑖
+ 𝑢
𝑖

6
. (2)

Suppose𝐺(𝐴
𝑖
) and𝐺(𝐴

𝑗
) are the GMIR of the triangular

fuzzy numbers𝐴
𝑖
and𝐴

𝑗
, respectively. We define the follow-

ing:

𝐴
𝑖
> 𝐴
𝑗
⇐⇒ 𝐺(𝐴

𝑖
) > 𝐺 (𝐴

𝑗
) ,

𝐴
𝑖
< 𝐴
𝑗
⇐⇒ 𝐺(𝐴

𝑖
) < 𝐺 (𝐴

𝑗
) ,

𝐴
𝑖
= 𝐴
𝑗
⇐⇒ 𝐺(𝐴

𝑖
) = 𝐺 (𝐴

𝑗
) .

(3)

2.4. Modified Distance Measure Approach. Two famous dis-
tance measure approaches between two fuzzy numbers, that
is, mean and geometrical distance measures, were intro-
duced by Heilpern [21] in 1997. However, Heilpern’s method
cannot satisfy some special cases between two fuzzy numbers.
Hsieh and Chen [22] had proposed the modified geo-
metrical distance approach to improve the drawback of
Heilpern’s method. To match the integrated fuzzy MCDM
method developed in this paper, this modified geometrical
distance approach is used to measure the distance of two
fuzzy numbers.

Let 𝐴
𝑖
= (𝑙
𝑖
, 𝑚
𝑖
, 𝑢
𝑖
) and 𝐴

𝑗
= (𝑙
𝑗
, 𝑚
𝑗
, 𝑢
𝑗
) be fuzzy num-

bers. Then, the Hsieh and Chen’s modified geometrical dis-
tance can be denoted by the following:

MD (𝐴
𝑖
, 𝐴
𝑗
)

= {
1

4
[(𝑙
𝑖
− 𝑙
𝑗
)
2

+ 2(𝑚
𝑖
− 𝑚
𝑗
)
2

+ (𝑢
𝑖
− 𝑢
𝑗
)
2

]}

1/2

.

(4)

3. The Proposed Fuzzy MCDM Method

A stepwise description of the hybrid fuzzy MCDM method
for selecting hub location of transshipment port for the con-
tainer carriers is proposed in the following.

3.1. Developing a Hierarchical Structure. A hierarchy struc-
ture is the framework of system structure. It can not only be
utilized to study the interaction among the elements involved
in each layer but also help decisionmakers (DMs) to explore
the impact of different elements against the evaluated system.
The concepts of hierarchical structure analysis with three

distinct levels; that is, criteria level, subcriteria level, and
alternatives level, are used in this paper. Figure 1 shows
the complete hierarchical structure of selecting location of
transshipment port with 𝑘 criteria, 𝑛

1
+ ⋅ ⋅ ⋅ + 𝑛

𝑡
+ ⋅ ⋅ ⋅ + 𝑛

𝑘

subcriteria, and𝑚 alternatives.
With regard to the evaluation criteria and subcriteria, the

authors referred to some of the literature, which are made
known in academic and management publications [2, 10,
23–34]. Finally, six criteria and twenty-nine subcriteria are
suggested. Their codes are shown in the parentheses. In this
paper, six quantitative subcriteria (i.e.,𝐶

15
,𝐶
21
,𝐶
22
,𝐶
23
,𝐶
24
,

and 𝐶
25
) are negative, whereas three quantitative ones (i.e.,

𝐶
31
, 𝐶
32
, and 𝐶

33
) are positive. However the other twenty

subcriteria are qualitative and positive.

(1) Geographical condition (𝐶
1
). This criterion includes

“level of closeness to the import/export area (𝐶
11
),”

“level of proximity of the feeder port (𝐶
12
),” “level

of closeness to main navigation route (𝐶
13
),” “level

of frequency of ship calls (𝐶
14
),” and “delivery time

(𝐶
15
).”

(2) Cost (𝐶
2
).This criterion includes “transportation cost

(𝐶
21
),” “cargo operation cost (𝐶

22
),” “land cost (𝐶

23
),”

“labour cost (𝐶
24
),” and “port charges (𝐶

25
).”

(3) Economy condition (𝐶
3
).This criterion includes “vol-

ume of import containers (𝐶
31
),” “volume of export

containers (𝐶
32
),” “volume of transshipment contain-

ers (𝐶
33
),” “level of economic growth (𝐶

34
),” and “the

other trade variables (𝐶
35
).”

(4) Government, law, and social conditions (𝐶
4
). This

criterion includes “level of private ownership of enter-
prise (𝐶

41
),” “level of efficiency of customs (𝐶

42
),”

“level of efficiency of government department (𝐶
43
),”

and “level of social stability (𝐶
44
).”

(5) Investment conditions (𝐶
5
). This criterion includes

“level of tax break and preferential treatment (𝐶
51
),”

“level of law on investment restrictions (𝐶
52
),” “level

of political stability (𝐶
53
),” “level of land availability

and expansion possibility (𝐶
54
),” and “level of labour

quality (𝐶
55
).”

(6) Infrastructure conditions (𝐶
6
).This criterion includes

“level of port facilities (𝐶
61
),” “level of loading and

discharging facilities (𝐶
62
),” “level of intermodal link

(𝐶
63
),” “level of cargo handling efficiency (𝐶

64
),” and

“level of computer information system (𝐶
65
).”

3.2. Estimation of Fuzzy Weights of All Criteria and Subcri-
teria. In this paper, the arithmetic mean method is used to
obtain the average fuzzy weights of all criteria and subcriteria
as well as the fuzzy ratings of alternatives versus all qualitative
subcriteria.TheLVs of theweighting set and preference rating
set, mentioned in the Section 2.2, are assisted in obtaining the
fuzzy weights and fuzzy ratings. This is done as follows.
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Objective level

Criteria level

Subcriteria level

Alternatives level

Objective

𝐶1
𝐶𝑡 𝐶𝑘

𝐶11 𝐶12 𝐶1𝑛1
𝐶𝑡1 𝐶𝑡2

𝐶𝑡𝑛𝑡 𝐶𝑘1 𝐶𝑘2 𝐶𝑘𝑛𝑘

𝐴1 𝐴𝑖 𝐴𝑚

· · ·

· · · · · · · · · · · · · · ·

· · · · · ·

· · ·

Figure 1: The hierarchy structure.

Let 𝑊ℎ
𝑡

= (𝑙
ℎ

𝑡
, 𝑚
ℎ

𝑡
, 𝑢
ℎ

𝑡
), 𝑡 = 1, 2, . . . , 𝑘; ℎ = 1, 2, . . . , 𝐸, be

the weight given to criterion𝐶
𝑡
by ℎth DM.Then, the average

fuzzy weight of 𝐶
𝑡
can be represented as follows:

𝑊
𝑡
=

1

𝐸
⊗ (𝑊
1

𝑡
⊕𝑊
2

𝑡
⊕ ⋅ ⋅ ⋅ ⊕ 𝑊

𝐸

𝑡
)

= (𝑙
𝑡
, 𝑚
𝑡
, 𝑢
𝑡
) ,

(5)

where 𝑙
𝑡

= (1/𝐸)∑
𝐸

ℎ=1
𝑙
ℎ

𝑡
, 𝑚
𝑡

= (1/𝐸)∑
𝐸

ℎ=1
𝑚
ℎ

𝑡
, 𝑢
𝑡

= (1/

𝐸)∑
𝐸

ℎ=1
𝑢
ℎ

𝑡
.

Let 𝑊ℎ
𝑡𝑗

= (𝑙
ℎ

𝑡𝑗
, 𝑚
ℎ

𝑡𝑗
, 𝑢
ℎ

𝑡𝑗
), 𝑡 = 1, 2, . . . , 𝑘; 𝑗 = 1, 2, . . . , 𝑝

𝑡
;

ℎ = 1, 2, . . . , 𝐸, be the weight given to subcriterion SC
𝑡𝑗
by ℎth

DM. Then, the average fuzzy weight of SC
𝑡𝑗
can be repre-

sented as follows:

𝑊
𝑡𝑗
=

1

𝐸
⊗ (𝑊
1

𝑡𝑗
⊕𝑊
2

𝑡𝑗
⊕ ⋅ ⋅ ⋅ ⊕ 𝑊

E
𝑡𝑗
)

= (𝑙
𝑡𝑗
, 𝑚
𝑡𝑗
, 𝑢
𝑡𝑗
) ,

(6)

where 𝑙
𝑡𝑗

= (1/𝐸)∑
𝐸

ℎ=1
𝑙
ℎ

𝑡𝑗
, 𝑚
𝑡𝑗

= (1/𝐸)∑
𝐸

ℎ=1
𝑚
ℎ

𝑡𝑗
, 𝑢
𝑡𝑗

= (1/

𝐸)∑
𝐸

ℎ=1
𝑢
ℎ

𝑡𝑗
.

3.3. Estimation of Fuzzy Ratings of All Alternatives Versus All
Subcriteria. In this paper, the subcriteria are classified into
two categories: (1) the subjective criteria, which have linguis-
tic/qualitative definition, for example, level of closeness to
the import/export area; and (2) the objective ones, which are
defined inmonetary/quantitative terms, for example, delivery
time or transport cost.

That is, let 𝑆 = {𝑠
1
, . . . , 𝑠

𝑡
, . . . , 𝑠

𝑞
} and 𝑂 = {𝑜

1
, . . . , 𝑜

𝑟
,

. . . , 𝑜
𝑝
} be the sets of all 𝑞 qualitative subcriteria and 𝑝 quan-

titative ones above the alternatives level. When we measure
the fuzzy ratings of all alternatives versus all subcriteria, we
face two cases as follows.

Case I (for the qualitative subcriteria). In this paper, the
arithmetic mean method is used to obtain the average fuzzy

ratings of alternatives versus all qualitative subcriteria. The
LVs of the preference rating set, mentioned in the Section 2.2,
are assisted in obtaining the fuzzy ratings. This is done as
follows.

Let 𝑆ℎ
𝑖𝑡𝑗

= (𝑙
ℎ

𝑖𝑡𝑗
, 𝑚
ℎ

𝑖𝑡𝑗
, 𝑢
ℎ

𝑖𝑡𝑗
), 𝑖 = 1, 2, . . . , 𝑚; 𝑡 = 1, 2, . . . , 𝑘;

𝑗 = 1, 2, . . . , 𝑝
𝑡
; ℎ = 1, 2, . . . , 𝐸, be the rating assigned to

alternative 𝐴
𝑖
by ℎth DM for subcriterion SC

𝑡𝑗
. Then, the

average fuzzy rating of alternative 𝐴
𝑖
can be represented as

follows:

𝑆
𝑖𝑡𝑗

=
1

𝐸
⊗ (𝑆
1

𝑖𝑡𝑗
⊕ 𝑆
2

𝑖𝑡𝑗
⊕ ⋅ ⋅ ⋅ ⊕ 𝑆

𝐸

𝑖𝑡𝑗
)

= (𝑙
𝑖𝑡𝑗
, 𝑚
𝑖𝑡𝑗
, 𝑢
𝑖𝑡𝑗
) ,

(7)

where 𝑙
𝑖𝑡𝑗

= (1/𝐸)∑
𝐸

ℎ=1
𝑙
ℎ

𝑖𝑡𝑗
, 𝑚
𝑖𝑡𝑗

= (1/𝐸)∑
𝐸

ℎ=1
𝑚
ℎ

𝑖𝑡𝑗
, 𝑢
𝑖𝑡𝑗

= (1/

𝐸)∑
𝐸

ℎ=1
𝑢
ℎ

𝑖𝑡𝑗
.

Case II (for the quantitative subcriteria). We use the fol-
lowing method [35, 36] to deal with the fuzzy ratings of all
alternatives versus all quantitative subcriteria.

(a) When the appropriateness rating of alternative can
be estimated effectively in values, the triangular fuzzy
numbers can be used directly. For example, if the
transport cost per month is about US Dollars 0.65
million, it can be subjectively expressed as (0.63, 0.65,
and 0.68) or (0.61, 0.65, and 0.67).

(b) If there are historical data, for example, let 𝑡
1
, 𝑡
2
, . . . , 𝑡V

represent the transport cost of past V periods, the
fuzzy rating of the transport cost can be used the
geometric mean method to express the following:

(min
𝑖

{𝑡
𝑖
} , (

V

∏

𝑖=1

𝑡
𝑖
)

1/V

,max
𝑖

{𝑡
𝑖
}) . (8)

For example, four historical data of the transport cost of
alternative𝐴

1
are 0.63, 0.71, 0.54, and 0.69, then based on (8)

mentioned above, the evaluation value can be transformed
into triangular fuzzy number as (0.54, 0.639, 0.71).
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3.4. Calculation of Fuzzy Ideal and Anti-Ideal Solutions. In
this paper, the ideal and anti-ideal concepts [37] are used to
employ in the proposed fuzzy MCDM algorithm. The logic
of ideal and anti-ideal solutions is based on the concept of
relative closeness in compliance with the shorter (longer) the
distance of alternative 𝑖 to ideal (anti-ideal), the higher the
priority can be ranked.

Firstly, to ensure compatibility between fuzzy ratings of
qualitatively positive criteria (or subcriteria) and negative
criteria (or subcriteria), the average fuzzy superiority values
must be converted to dimensionless indices. The fuzzy
ideal values with minimum values in negative subcriteria
or maximum values in positive subcriteria should have the
maximum rating. Based on the principle stated above, let
𝑆
𝑖𝑡𝑗

= (𝑙
𝑖𝑡𝑗
, 𝑚
𝑖𝑡𝑗
, 𝑢
𝑖𝑡𝑗
) (𝑖 = 1, 2, . . . , 𝑚; 𝑡 = 1, 2, . . . , 𝑘; 𝑗 = 1, 2,

. . . , 𝑝
𝑡
) be the average fuzzy rating value of 𝑖th alternative

under subcriterion SC
𝑡𝑗
. Let 𝛿

𝑡𝑗
= max

𝑖
{𝑢
𝑖𝑡𝑗
}, 𝜀
𝑡𝑗
= min

𝑖
{𝑙
𝑖𝑡𝑗
},

then the normalized average fuzzy superiority value 𝜆
𝑖𝑡𝑗

of
alternative 𝐴

𝑖
for subcriterion SC

𝑡𝑗
can be defined as follows.

(1) For the positive subcriterion SC
𝑡𝑗
(the subcriteria that

have positive contribution to the objective, i.e., benefit
subcriterion):

𝜆
𝑖𝑡𝑗

= (𝑥
𝑖𝑡𝑗
, 𝑦
𝑖𝑡𝑗
, 𝑧
𝑖𝑡𝑗
) = (

𝑙
𝑖𝑡𝑗

𝛿
𝑡𝑗

,

𝑚
𝑖𝑡𝑗

𝛿
𝑡𝑗

,

𝑢
𝑖𝑡𝑗

𝛿
𝑡𝑗

) . (9)

(2) For the negative subcriterion SC
𝑡𝑗
(the subcriteria that

have negative contribution to the objective, i.e., cost
subcriterion):

𝜆
𝑖𝑡𝑗

= (𝑥
𝑖𝑡𝑗
, 𝑦
𝑖𝑡𝑗
, 𝑧
𝑖𝑡𝑗
) = (

𝜀
𝑡𝑗

𝑢
𝑖𝑡𝑗

,

𝜀
𝑡𝑗

𝑚
𝑖𝑡𝑗

,

𝜀
𝑡𝑗

𝑙
𝑖𝑡𝑗

) . (10)

Then, by using the GMIR method mentioned in
Section 2.3, the GMIR value can be express as 𝐺(𝜆

𝑖𝑡𝑗
). The

fuzzy ideal value 𝐼
+

𝑡𝑗
and fuzzy anti-ideal value 𝐼

−

𝑡𝑗
of each

subcriterion above the alternatives layer can be judged and
determined by comparing with these GMIR values 𝐺(𝜆

𝑖𝑡𝑗
).

Then,
(1) if 𝐺(𝜆

𝑥𝑡𝑗
) = max

𝑖
𝐺(𝜆
𝑖𝑡𝑗
), then the fuzzy ideal value is

𝐼
+

𝑡𝑗
= 𝜆
𝑥𝑡𝑗

. (11)

(2) if𝐺(𝜆
𝑦𝑡𝑗

)=min
𝑖
𝐺(𝜆
𝑖𝑡𝑗
), then the fuzzy anti-ideal value

is

𝐼
−

𝑡𝑗
= 𝜆
𝑦𝑡𝑗

. (12)

Finally, we integrate the fuzzy ideal/anti-ideal values into
the fuzzy ideal/anti-ideal solutions. Define the fuzzy ideal
solution 𝐼

+ and fuzzy anti-ideal solution 𝐼
− as follows:

𝐼
+
= (𝐼
+

11
, 𝐼
+

12
, . . . , 𝐼

+

𝑡1
, . . . , 𝐼

+

𝑡𝑝
𝑡

, . . . ,

𝐼
+

𝑘1
, . . . , 𝐼

+

𝑘𝑝
𝑘

) ,

𝐼
−
= (𝐼
−

11
, 𝐼
−

12
, . . . , 𝐼

−

𝑡1
, . . . , 𝐼

−

𝑡𝑝
𝑡

, . . . ,

𝐼
−

𝑘1
, . . . , 𝐼

−

𝑘𝑝
𝑘

) .

(13)

Table 1: The fuzzy weights of all criteria and subcriteria.

Criteria/subcriteria DMs LVs Fuzzy weights

𝐶
1

A M
(0.633, 0.833, 0.9)B VH

C VH

𝐶
2

A M
(0.5, 0.7, 0.9)B H

C H

𝐶
3

A H
(0.3, 0.5, 0.7)B L

C M

𝐶
4

A H
(0.5, 0.7, 0.9)B M

C H

𝐶
5

A VH
(0.633, 0.833, 0.9)B VH

C M

𝐶
6

A M
(0.467, 0.667, 0.8)B M

C VH

𝐶
11

A H
(0.733, 0.933, 1)B VH

C VH

𝐶
12

A L
(0.1, 0.3, 0.5)B L

C M

𝐶
13

A VH
(0.667, 0.867, 1)B H

C H

𝐶
14

A M
(0.467, 0.667, 0.8)B M

C VH

𝐶
15

A H
(0.733, 0.933, 1)B VH

C VH

𝐶
21

A M
(0.4, 0.6, 0.8)B M

C H

𝐶
22

A L
(0.2, 0.4, 0.6)B H

C L

𝐶
23

A M
(0.567, 0.767, 0.9)B VH

C H

𝐶
24

A H
(0.5, 0.7, 0.9)B M

C H

𝐶
25

A H
B VH (0.733, 0.933, 1)
C VH

𝐶
31

A VH
B VH (0.633, 0.833, 0.9)
C M
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Table 1: Continued.

Criteria/subcriteria DMs LVs Fuzzy weights

𝐶
32

A VH
B M (0.633, 0.833, 0.9)
C VH

𝐶
33

A M
(0.5, 0.7, 0.9)B H

C H

𝐶
34

A L
(0.2, 0.4, 0.6)B H

C L

𝐶
35

A M
(0.567, 0.767, 0.9)B VH

C H

𝐶
41

A H
(0.6, 0.8, 1)B H

C H

𝐶
42

A M
(0.567, 0.767, 0.9)B H

C VH

𝐶
43

A VH
(0.467, 0.667, 0.8)B M

C M

𝐶
44

A VH
(0.667, 0.867, 1)B H

C H

𝐶
51

A H
(0.567, 0.767, 0.9)B VH

C M

𝐶
52

A H
(0.3, 0.5, 0.7)B L

C M

𝐶
53

A VH
(0.633, 0.833, 0.9)B M

C VH

𝐶
54

A VH
(0.633, 0.833, 0.9)B VH

C M

𝐶
55

A H
(0.6, 0.8, 1)B H

C H

𝐶
61

A H
(0.5, 0.7, 0.9)B M

C H

𝐶
62

A H
(0.733, 0.933, 1)B VH

C VH

𝐶
63

A H
(0.5, 0.7, 0.9)B M

C H

𝐶
64

A H
B VH (0.733, 0.933, 1)
C VH

Table 1: Continued.

Criteria/subcriteria DMs LVs Fuzzy weights

𝐶
65

A VH
(0.667, 0.867, 1)B H

C H

3.5. Computation of the Distance of Different Alternatives
versus the Fuzzy Ideal/Anti-Ideal Solutions. As mentioned in
Section 3.2, let 𝑊

𝑡
and𝑊

𝑡𝑗
, 𝑡 = 1, 2, . . . , 𝑘; 𝑗 = 1, 2, . . . , 𝑝

𝑡
, be

the average fuzzy weights of criteria 𝐶
𝑡
and subcriteria SC

𝑡𝑗
,

respectively. Then the normalized integration weights of the
subcriteria SC

𝑡𝑗
can be obtained by using the GMIR method

in Section 2.3, denoted by the following:

Γ
∗

𝑡𝑗
=

𝐺 (𝑊
𝑡
)

∑
𝑘

𝑡=1
𝐺 (𝑊
𝑡
)

×

𝐺 (𝑊
𝑡𝑗
)

∑
𝑝
𝑡

𝑗=1
𝐺(𝑊
𝑡𝑗
)

, 0 ≤ Γ
∗

𝑡𝑗
≤ 1, ∑Γ

∗

𝑡𝑗
= 1.

(14)

Then, compute the distance of different alternatives versus
𝐼
+ and 𝐼

− which were denoted by 𝐷
+

𝑖
and 𝐷

−

𝑖
, respectively.

Define the following:

𝐷
+

𝑖
= √

𝑘

∑

𝑡=1

𝑝
𝑡

∑

𝑗=1

[(Γ
∗

𝑡𝑗
)
2

× (MD (𝐼
+

𝑡𝑗
, 𝜆
𝑖𝑡𝑗
))
2

],

𝑖 = 1, 2, . . . , 𝑚,

𝐷
−

𝑖
= √

𝑘

∑

𝑡=1

𝑝
𝑡

∑

𝑗=1

[(Γ
∗

𝑡𝑗
)
2

× (MD (𝐼
−

𝑡𝑗
, 𝜆
𝑖𝑡𝑗
))
2

],

𝑖 = 1, 2, . . . , 𝑚,

(15)

where MD(⋅) can be obtained by using (4) mentioned in
Section 2.4.

3.6. Calculation of the Relative Approximation Value of Dif-
ferent Alternatives Versus Ideal Solution and Ranking the
Alternatives. The relative approximation value (i.e., the rel-
ative closeness) of different alternatives 𝐴

𝑖
versus fuzzy ideal

solution 𝐼
+ can be calculated, which can be denoted as fol-

lows:

RC∗
𝑖
=

𝐷
−

𝑖

𝐷
+

𝑖
+ 𝐷
−

𝑖

, 𝑖 = 1, 2, . . . , 𝑚. (16)

It is obvious that 0 ≤ RC∗
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑚. Suppose alter-

native 𝐴
𝑖
is an ideal solution (i.e., 𝐷+

𝑖
= 0), then RC∗

𝑖
= 1.

Otherwise, if 𝐴
𝑖
is an anti-ideal solution (i.e., 𝐷−

𝑖
= 0), then

RC∗
𝑖
= 0. The nearer the value RC∗

𝑖
to 1, the closer alternative

𝐴
𝑖
comes near the ideal solution.That is, the maximum value

of RC∗
𝑖
, then the all alternatives can be ranked. Finally, the

best alternative can be selected.

4. The Numerical Example

In this section, a numerical example of selecting hub location
of transshipment port for a container carrier is illustrated to
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Table 2: The original fuzzy ratings of three alternatives versus twenty qualitative/positive subcriteria.

Subcriteria Alternative DM Linguistic values Fuzzy ratings
X Y Z X Y Z

𝐶
11

A P G P
(0.1, 0.233, 0.433) (0.733, 0.933, 1) (0, 0.133, 0.333)B VP VG VP

C F VG P

𝐶
12

A VP VG VP
(0.2, 0.267, 0.467) (0.733, 0.933, 1) (0, 0, 0.2)B G G VP

C VP VG VP

𝐶
13

A P P P
(0.2, 0.333, 0.533) (0.2, 0.333, 0.533) (0.2, 0.333, 0.533)B G G G

C VP VP VP

𝐶
14

A F G P
(0.567, 0.767, 0.9) (0.667, 0.867, 1) (0.267, 0.467, 0.6)B G G P

C VG VG VG

𝐶
34

A G G G
(0.467, 0.667, 0.8) (0.467, 0.667, 0.8) (0.467, 0.667, 0.8)B VG VG VG

C P P P

𝐶
35

A G VG VP
(0.4, 0.6, 0.8) (0.733, 0.933, 1) (0, 0.067, 0.267)B G G VP

C P VG P

𝐶
41

A F F F
(0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.2, 0.333, 0.533)B F F VP

C F F F

𝐶
42

A P P P
(0.1, 0.233, 0.433) (0.367, 0.567, 0.7) (0, 0.133, 0.333)B F F P

C VP VG VP

𝐶
43

A G G VP
(0.567, 0.767, 0.9) (0.667, 0.867, 1) (0.367, 0.5, 0.633)B F G F

C VG VG VG

𝐶
44

A F G F
(0.567, 0.767, 0.9) (0.733, 0.933, 1) (0.1, 0.233, 0.433)B VG VG VP

C G VG P

𝐶
51

A VP VG P
(0.1, 0.167, 0.367) (0.367, 0.5, 0.633) (0, 0.133, 0.333)B F F P

C VP VP VP

𝐶
52

A F F VP
(0.1, 0.233, 0.433) (0.3, 0.5, 0.7) (0, 0.067, 0.267)B VP F VP

C P F P

𝐶
53

A G G G
(0.467, 0.667, 0.8) (0.467, 0.667, 0.8) (0.567, 0.767, 0.9)B VG VG F

C P P VG

𝐶
54

A P G P
(0, 0.133, 0.333) (0.467, 0.667, 0.8) (0, 0.133, 0.333)B VP VG VP

C P P P

𝐶
55

A G P G
(0.467, 0.667, 0.8) (0, 0.133, 0.333) (0.467, 0.667, 0.8)B VG VP VG

C P P P

𝐶
61

A P G G
(0, 0.133, 0.333) (0.467, 0.667, 0.8) (0.467, 0.667, 0.8)B VP VG VG

C P P P

𝐶
62

A F G F
(0.2, 0.333, 0.533) (0.467, 0.667, 0.8)B VP VG VP (0.2, 0.333, 0.533)

C F P F
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Table 2: Continued.

Subcriteria Alternative DM Linguistic values Fuzzy ratings
X Y Z X Y Z

𝐶
63

A G F P
(0.467, 0.667, 0.8) (0.2, 0.333, 0.533)B VG VP VP (0, 0.133, 0.333)

C P F P

𝐶
64

A G F G
(0.467, 0.667, 0.8) (0.2, 0.333, 0.533) (0.467, 0.667, 0.8)B VG VP VG

C P F P

𝐶
65

A G P G
(0.467, 0.667, 0.8) (0, 0.133, 0.333) (0.467, 0.667, 0.8)B VG VP VG

C P P P

Table 3: The original fuzzy superiority of three alternatives versus six quantitative/negative subcriteria.

Subcriteria Original data Fuzzy ratings
Month X Y Z X Y Z

𝐶
15

January 3.2 3.5 3.4

(2.9, 3.07, 3.2) (3.1, 3.27, 3.5) (3.2, 3.0, 3.4)February 2.1 3.3 3.3
March 2.9 3.2 3.3
April 3.1 3.1 3.2

𝐶
21

January 189 182 173

(178, 181.9, 189) (181, 182.5, 184) (173, 179.9, 190)February 182 181 179
March 179 183 178
April 178 184 190

𝐶
22

January 75 74 72

(72, 75.95, 79) (74, 75.49, 78) (71, 72.98, 75)February 72 75 74
March 78 75 75
April 79 78 71

𝐶
23

January 1235 1211 1285

(1235, 1235, 1235) (1211, 1211, 1211) (1285, 1285, 1285)February 1235 1211 1285
March 1235 1211 1285
April 1235 1211 1285

𝐶
24

January 23 23 21

(23, 24.47, 26) (23, 23.74, 25) (20, 21.47, 23)February 24 23 20
March 25 24 23
April 26 25 22

𝐶
25

January 11 9 10

(8, 9.87, 12) (7, 8.21, 9) (9, 9.98, 11)February 12 8 11
March 9 9 10
April 8 7 9

demonstrate the computational process of the proposed fuzzy
MCDMmodel as follows.

Step 1. Assume that a container carrier needs to select a hub
location of transshipment port. Three candidate locations 𝑋,
𝑌, and 𝑍 are chosen after a preliminary screening for further
evaluation. A committee of three DMs (i.e., 𝐴, 𝐵, and 𝐶)
is formed to evaluate the best location of transshipment
ports among three candidates. Six criteria and twenty-nine
subcriteria are suggested in the Section 3.1. It is noted that
six quantitative subcriteria (i.e., 𝐶

15
, 𝐶
21
, 𝐶
22
, 𝐶
23
, 𝐶
24
, and

𝐶
25
) are negative, whereas three quantitative ones (i.e., 𝐶

31
,

𝐶
32
, and 𝐶

33
) are positive. The other twenty subcriteria are

qualitative and positive.

Step 2. ThreeDMsuse the LVs (mentioned in the Section 2.2)
of weighting sets to evaluate the importance weights. Then,
according to (5) and (6), the results of the importance weights
are shown in Table 1.

Step 3. Evaluate the fuzzy ratings of three alternatives versus
all subcriteria. By using the method presented in Section 3.3,
the original preference ratings of twenty qualitative/positive
subcriteria, the superiority of six quantitative/negative ones



Mathematical Problems in Engineering 9

Table 4: The original fuzzy superiority of three alternatives versus three quantitative/positive subcriteria.

Subcriteria Original data Fuzzy ratings
Month X Y Z X Y Z

𝐶
31

January 476 460 509

(476, 499.3, 515) (430, 456, 470) (508, 523.3, 545)February 495 470 545
March 512 465 508
April 515 432 532

𝐶
32

January 871 715 890

(865, 876.4, 892) (715, 748.2, 763) (890, 897.5, 912)February 892 763 912
March 878 755 893
April 865 761 895

𝐶
33

January 325 285 215

(312, 322.2, 327) (265, 276.6, 285) (215, 234.9, 251)February 312 276 234
March 325 281 251
April 327 265 241

Table 5: The NFR and GMIR values of three alternatives versus all subcriteria.

Subcriteria X Y Z
NFR GMIR NFR GMIR NFR GMIR

𝐶
11

(0.1, 0.233, 0.433) 0.244 (0.733, 0.933, 1) 0.911 (0, 0.133, 0.333) 0.144
𝐶
12

(0.2, 0.267, 0.467) 0.289 (0.733, 0.933, 1) 0.911 (0, 0, 0.2) 0.033
𝐶
13

(0.375, 0.625, 1) 0.646 (0.375, 0.625, 1) 0.646 (0.375, 0.625, 1) 0.646
𝐶
14

(0.567, 0.767, 0.9) 0.756 (0.667, 0.867, 1) 0.856 (0.267, 0.467, 0.6) 0.456
𝐶
15

(0.906, 0.945, 1) 0.948 (0.829, 0.887, 0.935) 0.885 (0.853, 0.967, 0.906) 0.938
𝐶
21

(0.915, 0.951, 0.972) 0.949 (0.940, 0.948, 0.956) 0.948 (0.911, 0.962, 1) 0.960
𝐶
22

(0.899, 0.935, 0.986) 0.938 (0.910, 0.941, 0.959) 0.939 (0.947, 0.973, 1) 0.973
𝐶
23

(0.981, 0.981, 0.981) 0.981 (1, 1, 1) 1 (0.942, 0.942, 0.942) 0.942
𝐶
24

(0.769, 0.817, 0.870) 0.818 (0.80, 0.842, 0.870) 0.840 (0.870, 0.932, 1) 0.933
𝐶
25

(0.583, 0.709, 0.875) 0.716 (0.778, 0.853, 1) 0.865 (0.636, 0.701, 0.778) 0.703
𝐶
31

(0.873, 0.916, 0.945) 0.914 (0.789, 0.837, 0.862) 0.833 (0.932, 0.960, 1) 0.962
𝐶
32

(0.948, 0.961, 0.978) 0.962 (0.784, 0.820, 0.837) 0.817 (0.976, 0.984, 1) 0.985
𝐶
33

(0.954, 0.985, 1) 0.982 (0.810, 0.846, 0.872) 0.844 (0.657, 0.718, 0.768) 0.716
𝐶
34

(0.584, 0.834, 1) 0.820 (0.584, 0.834, 1) 0.820 (0.584, 0.834, 1) 0.820
𝐶
35

(0.4, 0.6, 0.8) 0.60 (0.733, 0.933, 1) 0.911 (0, 0.067, 0.267) 0.089
𝐶
41

(0.429, 0.714, 1) 0.714 (0.429, 0.714, 1) 0.714 (0.286, 0.476, 0.761) 0.492
𝐶
42

(0.143, 0.333, 0.619) 0.349 (0.524, 0.810, 1) 0.794 (0, 0.190, 0.476) 0.206
𝐶
43

(0.567, 0.767, 0.9) 0.756 (0.667, 0.867, 1) 0.856 (0.367, 0.5, 0.633) 0.50
𝐶
44

(0.567, 0.767, 0.9) 0.756 (0.733, 0.933, 1) 0.911 (0.1, 0.233, 0.433) 0.244
𝐶
51

(0.158, 0.264, 0.580) 0.299 (0.580, 0.790, 1) 0.790 (0, 0.210, 0.526) 0.228
𝐶
52

(0.143, 0.333, 0.619) 0.349 (0.429, 0.714, 1) 0.714 (0, 0.096, 0.381) 0.128
𝐶
53

(0.519, 0.741, 0.889) 0.729 (0.519, 0.741, 0.889) 0.883 (0.630, 0.852, 1) 0.840
𝐶
54

(0, 0.166, 0.416) 0.180 (0.584, 0.834, 1) 0.820 (0, 0.166, 0.416) 0.180
𝐶
55

(0.584, 0.834, 1) 0.820 (0, 0.166, 0.416) 0.180 (0.584, 0.834, 1) 0.820
𝐶
61

(0, 0.166, 0.416) 0.180 (0.584, 0.834, 1) 0.820 (0.584, 0.834, 1) 0.820
𝐶
62

(0.25, 0.416, 0.666) 0.430 (0.584, 0.834, 1) 0.820 (0.25, 0.416, 0.666) 0.430
𝐶
63

(0.584, 0.834, 1) 0.820 (0.25, 0.416, 0.666) 0.430 (0, 0.166, 0.416) 0.180
𝐶
64

(0.584, 0.834, 1) 0.820 (0.25, 0.416, 0.666) 0.430 (0.584, 0.834, 1) 0.820
𝐶
65

(0.584, 0.834, 1) 0.820 (0, 0.166, 0.416) 0.180 (0.584, 0.834, 1) 0.820
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Table 6: The fuzzy ideal and anti-ideal values of all subcriteria.

Fuzzy ideal values Fuzzy anti-ideal values
𝐶
11 (0.733, 0.933, 1) (0, 0.133, 0.333)

𝐶
12 (0.733, 0.933, 1) (0, 0, 0.2)

𝐶
13 (0.375, 0.625, 1) (0.375, 0.625, 1)

𝐶
14 (0.667, 0.867, 1) (0.267, 0.467, 0.6)

𝐶
15 (0.906, 0.945, 1) (0.829, 0.887, 0.935)

𝐶
21 (0.911, 0.962, 1) (0.940, 0.948, 0.956)

𝐶
22 (0.947, 0.973, 1) (0.899, 0.935, 0.986)

𝐶
23 (1, 1, 1) (0.942, 0.942, 0.942)

𝐶
24 (0.870, 0.932, 1) (0.769, 0.817, 0.870)

𝐶
25 (0.778, 0.853, 1) (0.636, 0.701, 0.778)

𝐶
31 (0.932, 0.960, 1) (0.789, 0.837, 0.862)

𝐶
32 (0.976, 0.984, 1) (0.784, 0.820, 0.837)

𝐶
33 (0.954, 0.985, 1) (0.657, 0.718, 0.768)

𝐶
34 (0.584, 0.834, 1) (0.584, 0.834, 1)

𝐶
35 (0.733, 0.933, 1) (0, 0.067, 0.267)

𝐶
41 (0.429, 0.714, 1) (0.286, 0.476, 0.761)

𝐶
42 (0.524, 0.810, 1) (0, 0.190, 0.476)

𝐶
43 (0.667, 0.867, 1) (0.367, 0.5, 0.633)

𝐶
44 (0.733, 0.933, 1) (0.1, 0.233, 0.433)

𝐶
51 (0.580, 0.790, 1) (0, 0.210, 0.526)

𝐶
52 (0.429, 0.714, 1) (0, 0.096, 0.381)

𝐶
53 (0.519, 0.741, 0.889) (0.519, 0.741, 0.889)

𝐶
54 (0.584, 0.834, 1) (0, 0.166, 0.416)

𝐶
55 (0.584, 0.834, 1) (0, 0.166, 0.416)

𝐶
61 (0.584, 0.834, 1) (0, 0.166, 0.416)

𝐶
62 (0.584, 0.834, 1) (0.25, 0.416, 0.666)

𝐶
63 (0.584, 0.834, 1) (0, 0.166, 0.416)

𝐶
64 (0.584, 0.834, 1) (0.25, 0.416, 0.666)

𝐶
65 (0.584, 0.834, 1) (0, 0.166, 0.416)

and of three quantitative/positive ones can be obtained, as
shown in Tables 2, 3, and 4, respectively.

Step 4. Calculate the fuzzy ideal solution and anti-ideal
solution. At first, the original fuzzy ratings and superiority of
all subcriteria must be normalized by using the method pre-
sented in Section 3.4. The normalized fuzzy rating (NFR)
values above the three alternatives and the GMIR values can
be obtained. The results can be shown in Table 5.

Then, according to Table 5, the fuzzy ideal value (𝐼+
𝑡𝑗
) and

fuzzy anti-ideal value (𝐼−
𝑡𝑗
) can be obtained by comparingwith

the GMIR values. The results can be shown in Table 6.
Hence, we can obtain the fuzzy ideal solution (𝐼+) and

fuzzy anti-ideal solution (𝐼−); that is,

𝐼
+
= [(0.733, 0.933, 1), (0.733, 0.933, 1), (0.375, 0.625,

1), . . . , . . . , (0.584, 0.834, 1), (0.584, 0.834, 1), (0.584,

0.834, 1)], and

𝐼
−
= [(0, 0.133, 0.333), (0, 0, 0.2), (0.375, 0.625, 1), . . . ,

. . . , (0, 0.166, 0.416), (0.25, 0.416, 0.666), (0, 0.166,

0.416)].

Table 7: Distance of three alternatives versus fuzzy ideal and anti-
ideal solutions.

Candidates 𝐷
+

𝑖
𝐷
−

𝑖

𝑋 0.003276528 0.002853978
𝑌 0.001331147 0.006064825
𝑍 0.00613908 0.001789796

Step 5. Compute the distance of three alternatives versus
fuzzy ideal/anti-ideal solutions. Using (14) and (15) proposed
in Section 3.5, the results can be shown in Table 7.

Step 6. Calculate the relative closeness value of three alter-
natives and ranking. Using (16) proposed in Section 3.6, the
RCs of three alternatives are RC∗

𝑋
= 0.4655, RC∗

𝑌
= 0.820,

and RC∗
𝑍
= 0.2257.

The ranking order of RC∗
𝑖
for three alternatives is 𝑌, 𝑋,

and𝑍, respectively.The best location of transshipment port is
obviously 𝑌. Therefore, the committee shall recommend that
transshipment port 𝑌 be the most appropriate location for
the container carriers based on the proposed fuzzy MCDM
model.

5. Conclusion

Because the role of container logistics centre as home bases
for merchandise transportation has become increasingly
important. The container carriers need to select a suitable
centre location of transshipment port to meet the require-
ments of container shipping logistics. The evaluation process
of location selection problem of transshipment port involves
a multiplicity of complex considerations and poses an
MCDM situation. Moreover, some evaluation criteria faced
an ambiguous and uncertain nature. Hence, the evaluation of
location selection of transshipment port is confronted with
a fuzzy decision-making environment. In the light of this,
the main purpose of this paper is to develop a hybrid fuzzy
MCDM model to evaluate the problem of location selection
of transshipment port for the container carriers.

To effectively select best location of transshipment port,
a hybrid fuzzy MCDM model is proposed. We develop a
hierarchical structure of selecting location of transshipment
port with six criteria and twenty-nine subcriteria. The fuzzy
weights of all criteria and subcriteria are evaluated. The
performance values of quantitative and qualitative subcriteria
are discussed to evaluate the fuzzy ratings.Then, the concepts
of ideal and anti-ideal solutions are employed in the proposed
fuzzy MCDM model. Moreover, Zadeh’s linguistic values,
Chen andHsieh’s GMIRmethod, andHsieh and Chen’s mod-
ified geometrical distance approach are applied to develop
the fuzzy MCDM model. Finally, a step-by-step example is
illustrated to study the computational process of the fuzzy
MCDM model. In addition, the proposed approach has
successfully accomplished our goal. Future study can apply
this hybrid fuzzy MCDMmodel to evaluate the best location
selection of transshipment port for container carriers.

In general, the merits of this hybrid fuzzy MCDMmodel
are listed as follows: (1) the quantitative and qualitative sub-
criteria as well as positive and negative ones are considered in
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this approach; (2) the GMIR method and the modified dis-
tance method can improve the quality of this fuzzy ideal and
anti-ideal algorithm process; and (3) the proposed model not
only releases the limitation of crisp values, but also facilitates
its implementation as a computer-based decision support
system for prioritizing the best location selection in a fuzzy
environment.
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