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We introduce Mann-type viscosity approximation methods for finding solutions of a multivalued variational inclusion (MVVI)
which are also common ones of finitely many variational inequality problems and common fixed points of a countable family
of nonexpansive mappings in real smooth Banach spaces. Here the Mann-type viscosity approximation methods are based on the
Mann iterationmethod and viscosity approximationmethod.We consider and analyzeMann-type viscosity iterative algorithms not
only in the setting of uniformly convex and 2-uniformly smooth Banach space but also in a uniformly convex Banach space having
a uniformly Gáteaux differentiable norm. Under suitable assumptions, we derive some strong convergence theorems. In addition,
we also give some applications of these theorems; for instance, we prove strong convergence theorems for finding a common fixed
point of a finite family of strictly pseudocontractive mappings and a countable family of nonexpansive mappings in uniformly
convex and 2-uniformly smooth Banach spaces. The results presented in this paper improve, extend, supplement, and develop the
corresponding results announced in the earlier and very recent literature.

1. Introduction

Let 𝑋 be a real Banach space whose dual space is denoted by
𝑋
∗.The normalized duality mapping 𝐽 : 𝑋 → 2

𝑋
∗

is defined
by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

} , ∀𝑥 ∈ 𝑋,

(1)
where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
𝐽(𝑥) is nonempty for each 𝑥 ∈ 𝑋. Let 𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1}

denote the unite sphere of 𝑋. A Banach space 𝑋 is said to be
uniformly convex if, for each 𝜖 ∈ (0, 2], there exists 𝛿 > 0

such that, for all 𝑥, 𝑦 ∈ 𝑈,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≥ 𝜖 󳨐⇒

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ 1 − 𝛿. (2)

It is known that a uniformly convex Banach space is reflexive
and strict convex. A Banach space 𝑋 is said to be smooth if
the limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(3)

exists for all 𝑥, 𝑦 ∈ 𝑈; in this case, 𝑋 is also said to
have a Gáteaux differentiable norm. 𝑋 is said to have a
uniformly Gáteaux differentiable norm if, for each 𝑦 ∈

𝑈, the limit is attained uniformly for 𝑥 ∈ 𝑈. Moreover,
it is said to be uniformly smooth if this limit is attained
uniformly for 𝑥, 𝑦 ∈ 𝑈. The norm of 𝑋 is said to be the
Fréchet differential if, for each 𝑥 ∈ 𝑈, this limit is attained
uniformly for 𝑦 ∈ 𝑈. In addition, we define a function 𝜌 :



2 Abstract and Applied Analysis

[0,∞) → [0,∞) called the modulus of smoothness of 𝑋 as
follows:

𝜌 (𝜏) = sup {1
2
(
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

−1 : 𝑥, 𝑦 ∈ 𝑋, ‖𝑥‖ = 1,
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 𝜏} .

(4)

It is known that 𝑋 is uniformly smooth if and only if
lim
𝜏→0

𝜌(𝜏)/𝜏 = 0. Let 𝑞 be a fixed real number with 1 < 𝑞 ≤

2. Then a Banach space𝑋 is said to be 𝑞-uniformly smooth if
there exists a constant 𝑐 > 0 such that 𝜌(𝜏) ≤ 𝑐𝜏

𝑞 for all 𝜏 > 0.
It is well-known that no Banach space is 𝑞-uniformly smooth
for 𝑞 > 2. In addition, it is also known that 𝐽 is single-valued
if and only if𝑋 is smooth, whereas if𝑋 is uniformly smooth,
then the mapping 𝐽 is norm-to-norm uniformly continuous
on bounded subsets of 𝑋. If 𝑋 has a uniformly Gáteaux
differentiable norm then the duality mapping 𝐽 is norm-to-
weak∗ uniformly continuous on bounded subsets of𝑋.

Let𝐶 be a nonempty closed convex subset of a real Banach
space𝑋. A mapping 𝑇 : 𝐶 → 𝐶 is called nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (5)

The set of fixed points of 𝑇 is denoted by Fix(𝑇). We use the
notation⇀ to indicate the weak convergence and the one →
to indicate the strong convergence.

Definition 1. Let𝐴 : 𝐶 → 𝑋 be a mapping of 𝐶 into𝑋. Then
𝐴 is said to be

(i) accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists 𝑗(𝑥 − 𝑦) ∈

𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0, (6)

where 𝐽 is the normalized duality mapping;

(ii) 𝛼-strongly accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists
𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, (7)

for some 𝛼 ∈ (0, 1);

(iii) 𝛽-inverse strongly accretive if for each 𝑥, 𝑦 ∈ 𝐶 there
exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, (8)

for some 𝛽 > 0;

(iv) 𝜆-strictly pseudocontractive if for each 𝑥, 𝑦 ∈ 𝐶 there
exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝜆
󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

(9)

for some 𝜆 ∈ (0, 1).

Let𝑋 be a real smoothBanach space. Let𝐶 be a nonempty
closed convex subset of𝑋 and let 𝐴 : 𝐶 → 𝑋 be a nonlinear
mapping. The so-called variational inequality problem (VIP)
is the problem of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐴𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (10)

which was considered by Aoyama et al. [1]. Note that VIP
(10) is connected with the fixed point problem for nonlinear
mapping (see e.g., [2]), the problem of finding a zero point of
a nonlinear operator (see e.g., [3]), and so on. In particular,
whenever𝑋 = 𝐻 a Hilbert space, the VIP (10) reduces to the
classical VIP of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐴𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (11)

whose solution set is denoted by VI(𝐶, 𝐴). Recently, in order
to find a solution of VIP (10), Aoyama et al. [1] introduced
Mann-type iterative scheme for an accretive operator 𝐴 as
follows:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
)Π
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) , ∀𝑛 ≥ 1, (12)

whereΠ
𝐶
is a sunny nonexpansive retraction from𝑋 onto𝐶.

Then they proved a weak convergence theorem.

Definition 2. Let 𝐶 be a nonempty convex subset of a real
Banach space𝑋. Let {𝑇

𝑖
}
𝑁

𝑖=1
be a finite family of nonexpansive

mappings of 𝐶 into itself and let 𝜆
1
, . . . , 𝜆

𝑁
be real numbers

such that 0 ≤ 𝜆
𝑖
≤ 1 for every 𝑖 = 1, . . . , 𝑁. Define a mapping

𝐾 : 𝐶 → 𝐶 as follows:

𝑈
1
= 𝜆
1
𝑇
1
+ (1 − 𝜆

1
) 𝐼,

𝑈
2
= 𝜆
2
𝑇
2
𝑈
1
+ (1 − 𝜆

2
) 𝑈
1
,

𝑈
3
= 𝜆
3
𝑇
3
𝑈
2
+ (1 − 𝜆

3
) 𝑈
2
,

...

𝑈
𝑁−1

= 𝜆
𝑁−1

𝑇
𝑁−1

𝑈
𝑁−2

+ (1 − 𝜆
𝑁−1

) 𝑈
𝑁−2

,

𝐾 = 𝑈
𝑁
= 𝜆
𝑁
𝑇
𝑁
𝑈
𝑁−1

+ (1 − 𝜆
𝑁
) 𝑈
𝑁−1

.

(13)

Such a mapping 𝐾 is called the 𝐾-mapping generated by
𝑇
1
, . . . , 𝑇

𝑁
and 𝜆

1
, . . . , 𝜆

𝑁
.

Lemma 3 (see [4]). Let 𝐶 be a nonempty closed convex subset
of a strictly convex Banach space. Let {𝑇

𝑖
}
𝑁

𝑖=1
be a finite family

of nonexpansive mappings of 𝐶 into itself with ∩𝑁
𝑖=1

Fix(𝑇
𝑖
) ̸= 0

and let 𝜆
1
, . . . , 𝜆

𝑁
be real numbers such that 0 < 𝜆

𝑖
< 1

for every 𝑖 = 1, . . . , 𝑁 − 1 and 0 < 𝜆
𝑁

≤ 1. Let 𝐾 be
the 𝐾-mapping generated by 𝑇

1
, . . . , 𝑇

𝑁
and 𝜆

1
, . . . , 𝜆

𝑁
. Then

Fix(K) = ∩
𝑁

𝑖=1
Fix(𝑇
𝑖
).

From Lemma 3, it is easy to see that the 𝐾-mapping is a
nonexpansive mapping.

On the other hand, let 𝐶𝐵(𝑋) be the family of all
nonempty, closed, and bounded subsets of a real smooth
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Banach space 𝑋. Also, we denote by 𝐻(⋅, ⋅) the Hausdorff
metric on 𝐶𝐵(𝑋) defined by

𝐻(𝐴, 𝐵) := max{sup
𝑥∈𝐵

inf
𝑦∈𝐴

𝑑 (𝑥, 𝑦) , sup
𝑥∈𝐴

inf
𝑦∈𝐵

𝑑 (𝑥, 𝑦)} ,

∀𝐴, 𝐵 ∈ 𝐶𝐵 (𝑋) .

(14)

Let 𝑇, 𝐹 : 𝑋 → 𝐶𝐵(𝑋) be two multivalued mappings, let 𝐴 :

𝐷(𝐴) ⊂ 𝑋 → 2
𝑋 be an 𝑚-accretive mapping, let 𝑔 : 𝑋 →

𝐷(𝐴)be a single-valuedmapping, and let𝑁(⋅, ⋅) : 𝑋×𝑋 → 𝑋

be a nonlinear mapping. Then for any given V ∈ 𝑋, 𝜆 > 0,
Chidume et al. [5] introduced and studied the multivalued
variational inclusion (MVVI) of finding 𝑥 ∈ 𝐷(𝐴) such that
(𝑥, 𝑤, 𝑘) is a solution of the following:

V ∈ 𝑁 (𝑤, 𝑘) + 𝜆𝐴 (𝑔 (𝑥)) , ∀𝑤 ∈ 𝑇𝑥, 𝑘 ∈ 𝐹𝑥. (15)

If V = 0 and 𝜆 = 1, then the MVVI (15) reduces to the
problem of finding 𝑥 ∈ 𝐷(𝐴) such that (𝑥, 𝑤, 𝑘) is a solution
of the following:

0 ∈ 𝑁 (𝑤, 𝑘) + 𝐴 (𝑔 (𝑥)) , ∀𝑤 ∈ T𝑥, 𝑘 ∈ 𝐹𝑥. (16)

We denote by Γ the set of such solutions 𝑥 for MVVI (16).
The authors [5] established an existence theorem for

MVVI (15) in a smooth Banach space𝑋 and then proved that
the sequence generated by their iterative algorithm converges
strongly to a solution of MVVI (16).

Theorem 4 (see [5, Theorem 3.2]). Let 𝑋 be a real smooth
Banach space. Let 𝑇, 𝐹 : 𝑋 → 𝐶𝐵(𝑋), and 𝐴 : 𝐷(𝐴) ⊂

𝑋 → 2
𝑋 be three multivalued mappings, let 𝑔 : 𝑋 → 𝐷(𝐴)

be a single-valued mapping, and let 𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋

be a single-valued continuous mapping satisfying the following
conditions:

(C1) 𝐴 ∘ 𝑔 : 𝑋 → 2
𝑋 is 𝑚-accretive and 𝐻-uniformly

continuous;
(C2) 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is𝐻-uniformly continuous;
(C3) 𝐹 : 𝑋 → 𝐶𝐵(𝑋) is𝐻-uniformly continuous;
(C4) the mapping 𝑥 󳨃→ 𝑁(𝑥, 𝑦) is 𝜙-strongly accretive and

𝜇-𝐻-Lipschitz with respect to the mapping 𝑇, where 𝜙 :

[0,∞) → [0,∞) is a strictly increasing function with
𝜙(0) = 0;

(C5) the mapping 𝑦 󳨃→ 𝑁(𝑥, 𝑦) is accretive and 𝜉-𝐻-
Lipschitz with respect to the mapping 𝐹.

For arbitrary 𝑥
0
∈ 𝐷(𝐴), define the sequence {𝑥

𝑛
} iteratively

by

𝑥
𝑛+1

= 𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
) , 𝑢
𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , (17)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩

≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥
𝑛+1

)) , 𝐴 (𝑔 (𝑥
𝑛
))) , ∀𝑛 ≥ 0,

(18)

for any 𝑤
𝑛
∈ 𝑇𝑥
𝑛
, 𝑘
𝑛
∈ 𝐹𝑥
𝑛
, and some 𝜀 > 0, where {𝜎

𝑛
} is a

positive real sequence such that lim
𝑛→∞

𝜎
𝑛
= 0,∑

∞

𝑛=0
𝜎
𝑛
= ∞.

Then, there exists 𝑑 > 0 such that, for 0 < 𝜎
𝑛
≤ 𝑑 and for all

𝑛 ≥ 0, {𝑥
𝑛
} converges strongly to 𝑥 ∈ Γ, and, for any 𝑤 ∈ 𝑇𝑥

and 𝑘 ∈ 𝐹𝑥, (𝑥, 𝑤, 𝑘) is a solution of the MVVI (16).

Let 𝐶 be a nonempty closed convex subset of a real
smooth Banach space𝑋 and letΠ

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let 𝑓 : 𝐶 → 𝐶 be a contraction
with coefficient 𝜌 ∈ (0, 1). Motivated and inspired by the
research going on this area, we introduceMann-type viscosity
approximation methods for finding solutions of the MVVI
(16) which are also common ones of finitely many variational
inequality problems and common fixed points of a countable
family of nonexpansive mappings. Here, the Mann-type
viscosity approximationmethods are based on theMann iter-
ation method and viscosity approximation method. We con-
sider and analyze Mann-type viscosity iterative algorithms
not only in the setting of uniformly convex and 2-uniformly
smooth Banach space but also in a uniformly convex Banach
space having a uniformlyGáteaux differentiable norm.Under
suitable assumptions, we derive some strong convergence
theorems. In addition, we also give some applications of
these theorems; for instance, we prove strong convergence
theorems for finding a common fixed point of a finite family
of 𝜂
𝑖
-strictly pseudocontractive mappings (𝑖 = 1, . . . , 𝑁) and

a countable family of nonexpansive mappings in uniformly
convex and 2-uniformly smooth Banach spaces. The results
presented in this paper improve, extend, supplement, and
develop the corresponding results announced in the earlier
and very recent literature; see, for example, [6–11].

2. Preliminaries

Let 𝑋 be a real Banach space with dual 𝑋∗. We denote by 𝐽
the normalized duality mapping from𝑋 to 2𝑋

∗

defined by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

} , (19)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing.Through-
out this paper, the single-valued normalized duality map is
still denoted by 𝐽. Unless otherwise stated, we assume that𝑋
is a smooth Banach space with dual𝑋∗.

A multivalued mapping 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 2
𝑋 is said to

be
(i) accretive, if

⟨𝑢 − V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 0, ∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦; (20)

(ii) 𝑚-accretive, if𝐴 is accretive and (𝐼 + 𝑟𝐴)(𝐷(𝐴)) = 𝑋,
for all 𝑟 > 0, where 𝐼 is the identity mapping;

(iii) 𝜁-inverse strongly accretive, if there exists a constant
𝜁 > 0 such that

⟨𝑢 − V, 𝐽 (𝑥 − 𝑦)⟩ ≥ 𝜁‖𝑢 − V‖2, ∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦; (21)

(iv) 𝜙-strongly accretive, if there exists a strictly increasing
continuous function 𝜙 : [0,∞) → [0,∞) with
𝜙(0) = 0 such that

⟨𝑢 − V, 𝐽 (𝑥 − 𝑦)⟩ ,

≥ 𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦;
(22)
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(v) 𝜙-expansive, if

‖𝑢 − V‖ ≥ 𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) , ∀𝑢 ∈ 𝐴𝑥, V ∈ 𝐴𝑦. (23)

It is easy to see that if 𝐴 is 𝜙-strongly accretive, then 𝐴 is
𝜙-expansive.

A mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is said to be 𝐻-uniformly
continuous, if for any given 𝜀 > 0, there exists a 𝛿 > 0 such
that whenever ‖𝑥 − 𝑦‖ < 𝛿 then𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀.

A mapping𝑁 : 𝑋 ×𝑋 → 𝑋 is 𝜙-strongly accretive, with
respect to 𝑇 : 𝑋 → 𝐶𝐵(𝑋), in the first argument if

⟨𝑁 (𝑢, 𝑧) − 𝑁 (V, 𝑧) , 𝐽 (𝑥 − 𝑦)⟩ ≥ 𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

∀𝑢 ∈ 𝑇𝑥, V ∈ 𝑇𝑦.
(24)

A mapping 𝑆 : 𝑋 → 2
𝑋 is called lower semicontinuous,

if 𝑆−1(𝑂) := {𝑥 ∈ 𝑋 : 𝑆𝑥 ∩ 𝑂 ̸= 0} is open in 𝑋 whenever
𝑂 ⊂ 𝑌 is open.

We list some propositions and lemmas that will be used
in the sequel.

Proposition 5 (see [12]). Let {𝜆
𝑛
} and {𝑏

𝑛
} be sequences of

nonnegative numbers and {𝛼
𝑛
} ⊂ (0, 1) a sequence satisfying

the conditions that {𝜆
𝑛
} is bounded, ∑∞

𝑛=0
𝛼
𝑛
= ∞, and 𝑏

𝑛
→

0, as 𝑛 → ∞. Let the recursive inequality

𝜆
2

𝑛+1
≤ 𝜆
2

𝑛
− 2𝛼
𝑛
𝜓 (𝜆
𝑛+1

) + 2𝛼
𝑛
𝑏
𝑛
𝜆
𝑛+1

, ∀𝑛 ≥ 0, (25)

be given where 𝜓 : [0,∞) → [0,∞) is a strictly increasing
function such that it is positive on (0,∞) and 𝜓(0) = 0. Then
𝜆
𝑛
→ 0, as 𝑛 → ∞.

Proposition6 (see [13]). Let𝑋 be a real smooth Banach space.
Let 𝑇, and 𝐹 : 𝑋 → 2

𝑋 be two multivalued mappings, and let
𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋 be a nonlinear mapping satisfying the
following conditions:

(i) the mapping 𝑥 󳨃→ 𝑁(𝑥, 𝑦) is 𝜙-strongly accretive with
respect to the mapping 𝑇;

(ii) the mapping 𝑦 󳨃→ 𝑁(𝑥, 𝑦) is accretive with respect to
the mapping 𝐹.

Then the mapping 𝑆 : 𝑋 → 2
𝑋 defined by 𝑆𝑥 = 𝑁(𝑇𝑥, 𝐹𝑥)

is 𝜙-strongly accretive.

Proposition 7 (see [14]). Let𝑋 be a real Banach space and let
𝑆 : 𝑋 → 2

𝑋

\ {0} be a lower semicontinuous and 𝜙-strongly
accretive mapping; then, for any 𝑥 ∈ 𝑋, 𝑆𝑥 is a one-point set;
that is, 𝑆 is a single-valued mapping.

Lemma 8 can be found in [15]. Lemma 9 is an immediate
consequence of the subdifferential inequality of the function
(1/2)‖ ⋅ ‖

2.

Lemma 8. Let {𝑠
𝑛
} be a sequence of nonnegative real numbers

satisfying

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝛽
𝑛
+ 𝛾
𝑛
, ∀𝑛 ≥ 0, (26)

where {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} satisfy the following conditions:

(i) {𝛼
𝑛
} ⊂ [0, 1] and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛽
𝑛
≤ 0;

(iii) 𝛾
𝑛
≥ 0, for all 𝑛 ≥ 0, and ∑∞

𝑛=0
𝛾
𝑛
< ∞.

Then lim sup
𝑛→∞

𝑠
𝑛
= 0.

Lemma 9. In a smooth Banach space 𝑋, there holds the
inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (27)

Lemma 10 (see [1]). Let𝐶 be a nonempty closed convex subset
of a smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶 and let 𝐴 be an accretive operator of
𝐶 into𝑋. Then, for all 𝜆 > 0,

VI (𝐶, 𝐴) = Fix (Π
𝐶
(𝐼 − 𝜆𝐴)) . (28)

Let 𝐷 be a subset of 𝐶 and let Π be a mapping of 𝐶 into
𝐷. Then Π is said to be sunny if

Π [Π (𝑥) + 𝑡 (𝑥 − Π (𝑥))] = Π (𝑥) , (29)

whenever Π(𝑥) + 𝑡(𝑥 − Π(𝑥)) ∈ 𝐶 for 𝑥 ∈ 𝐶 and 𝑡 ≥ 0. A
mapping Π of 𝐶 into itself is called a retraction if Π2 = Π. If
a mappingΠ of 𝐶 into itself is a retraction, thenΠ(𝑧) = 𝑧 for
every 𝑧 ∈ 𝑅(Π) where 𝑅(Π) is the range of Π. A subset 𝐷 of
𝐶 is called a sunny nonexpansive retract of 𝐶 if there exists a
sunny nonexpansive retraction from𝐶 onto𝐷.The following
lemma concerns the sunny nonexpansive retraction.

Lemma 11 (see [16]). Let𝐶 be a nonempty closed convex subset
of a real smooth Banach space 𝑋. Let 𝐷 be a nonempty subset
of 𝐶. Let Π be a retraction of 𝐶 onto 𝐷. Then the following are
equivalent:

(i) Π is sunny and nonexpansive;

(ii) ‖Π(𝑥) − Π(𝑦)‖2 ≤ ⟨𝑥 − 𝑦, 𝐽(Π(𝑥) − Π(𝑦))⟩, for all
𝑥, 𝑦 ∈ 𝐶;

(iii) ⟨𝑥 − Π(𝑥), 𝐽(𝑦 − Π(𝑥))⟩ ≤ 0, for all 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

It is well known that if 𝑋 = 𝐻 a Hilbert space, then
a sunny nonexpansive retraction Π

𝐶
is coincident with the

metric projection from 𝑋 onto 𝐶; that is, Π
𝐶

= 𝑃
𝐶
. If 𝐶

is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space 𝑋 and if 𝑇 : 𝐶 → 𝐶 is
a nonexpansive mapping with the fixed point set Fix(𝑇) ̸= 0,
then the set Fix(𝑇) is a sunny nonexpansive retract of 𝐶.

Lemma 12 (see [17]). Let 𝑋 be a uniformly convex Banach
space and 𝐵

𝑟
(0) := {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}, 𝑟 > 0. Then there

exists a continuous, strictly increasing, and convex function
𝜑 : [0,∞] → [0,∞], 𝜑(0) = 0 such that

󵄩󵄩󵄩󵄩𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧
󵄩󵄩󵄩󵄩

2

≤ 𝛼‖𝑥‖
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

+ 𝛾‖𝑧‖
2

− 𝛼𝛽𝜑 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) ,

(30)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐵
𝑟
(0) and all 𝛼, 𝛽, 𝛾 ∈ [0, 1]with 𝛼+𝛽+𝛾 = 1.
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Lemma 13 (see [18]). Let 𝐶 be a nonempty closed convex
subset of a Banach space 𝑋. Let 𝑆

0
, 𝑆
1
, . . . be a sequence of

mappings of𝐶 into itself. Suppose that∑∞
𝑛=1

sup{‖𝑆
𝑛
𝑥−𝑆
𝑛−1

𝑥‖ :

𝑥 ∈ 𝐶} < ∞. Then for each 𝑦 ∈ 𝐶, {𝑆
𝑛
𝑦} converges strongly

to some point of 𝐶. Moreover, let 𝑆 be a mapping of 𝐶 into
itself defined by 𝑆𝑦 = lim

𝑛→∞
𝑆
𝑛
𝑦 for all 𝑦 ∈ 𝐶. Then

lim
𝑛→∞

sup{‖𝑆𝑥 − 𝑆
𝑛
𝑥‖ : 𝑥 ∈ 𝐶} = 0.

Let 𝐶 be a nonempty closed convex subset of a Banach
space𝑋 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with
Fix(𝑇) ̸= 0. As previous, letΞ

𝐶
be the set of all contractions on

𝐶. For 𝑡 ∈ (0, 1) and 𝑓 ∈ Ξ
𝐶
, let 𝑥

𝑡
∈ 𝐶 be the unique fixed

point of the contraction 𝑥 󳨃→ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑇𝑥 on 𝐶; that is,

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
) + (1 − 𝑡) 𝑇𝑥

𝑡
. (31)

Lemma 14 (see [19]). Let 𝑋 be a uniformly smooth Banach
space or a reflexive and strictly convex Banach space with a
uniformly Gáteaux differentiable norm. Let 𝐶 be a nonempty
closed convex subset of 𝑋, let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping with Fix(𝑇) ̸= 0, and let 𝑓 ∈ Ξ

𝐶
. Then the net {𝑥

𝑡
}

defined by 𝑥
𝑡
= 𝑡𝑓(𝑥

𝑡
) + (1 − 𝑡)𝑇𝑥

𝑡
converges strongly to a

point in Fix(𝑇). If one defines a mapping𝑄 : Ξ
𝐶
→ Fix(𝑇) by

𝑄(𝑓) := 𝑠− lim
𝑡→0

𝑥
𝑡
, for all 𝑓 ∈ Ξ

𝐶
, then𝑄(𝑓) solves the VIP

as follows:

⟨(𝐼 − 𝑓)𝑄 (𝑓) , 𝐽 (𝑄 (𝑓) − 𝑝)⟩ ≤ 0,

∀𝑓 ∈ Ξ
𝐶
, 𝑝 ∈ Fix (𝑇) .

(32)

Lemma 15 (see [20]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝑋. Let {𝑇

𝑛
}
∞

𝑛=0

be a sequence of nonexpansive mappings on 𝐶. Suppose
⋂
∞

𝑛=0
Fix(𝑇
𝑛
) is nonempty. Let {𝜆

𝑛
} be a sequence of positive

numbers with ∑∞
𝑛=0

𝜆
𝑛
= 1. Then a mapping 𝑆 on 𝐶 defined by

𝑆𝑥 = ∑
∞

𝑛=0
𝜆
𝑛
𝑇
𝑛
𝑥 for 𝑥 ∈ 𝐶 is defined well and nonexpansive,

and Fix(𝑆) = ⋂
∞

𝑛=0
Fix(𝑇
𝑛
) holds.

Lemma 16 (see [21]). Given a number 𝑟 > 0. A real Banach
space 𝑋 is uniformly convex if and only if there exists a
continuous strictly increasing function 𝜑 : [0,∞) → [0,∞),
𝜑(0) = 0, such that

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑦
󵄩󵄩󵄩󵄩

2

≤ 𝜆‖𝑥‖
2

+ (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆) 𝜑 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) ,

(33)

for all 𝜆 ∈ [0, 1] and 𝑥, 𝑦 ∈ 𝑋 such that ‖𝑥‖ ≤ 𝑟 and ‖𝑦‖ ≤ 𝑟.

3. Mann-Type Viscosity Algorithms in
Uniformly Convex and 2-Uniformly
Smooth Banach Spaces

In this section, we introduce Mann-type viscosity iterative
algorithms in uniformly convex and 2-uniformly smooth
Banach spaces and show strong convergence theorems. We
will use the following useful lemma.

Lemma 17. Let𝐶 be a nonempty closed convex subset of a real
2-uniformly smooth Banach space 𝑋. Let 𝐴 : 𝐶 → 𝑋 be an
𝛼-inverse strongly accretive mapping. Then, one has
󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆𝐴) 𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 2𝜆 (𝜆𝜅
2

− 𝛼)
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶,

(34)

where 𝜆 > 0. In particular, if 0 < 𝜆 ≤ 𝛼/𝜅
2, then 𝐼 − 𝜆𝐴 is

nonexpansive.

Theorem 18. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space and let 𝐶 be a nonempty closed convex
subset of 𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π

𝐶
be a sunny

nonexpansive retraction from 𝑋 onto 𝐶. Let 𝑇, 𝐹 : 𝑋 →

𝐶𝐵(𝑋), and 𝐴 : 𝐶 → 2
𝐶 be three multivalued mappings,

let 𝑔 : 𝑋 → 𝐶 be a single-valued mapping, and let 𝑁(⋅, ⋅) :

𝑋 ×𝑋 → 𝐶 be a single-valued continuous mapping satisfying
conditions (C1)–(C5) in Theorem 4. Consider that

(C6) 𝑁(𝑇𝑥, 𝐹𝑥) + 𝐴(𝑔(𝑥)) : 𝑋 → 2
𝐶

\ {0} is 𝜁-inverse
strongly accretive with 𝜁 ≥ 𝜅

2.

Let 𝐴
𝑖
: 𝐶 → 𝑋 be an 𝛼

𝑖
-inverse strongly accretive

mapping for each 𝑖 = 1, . . . , 𝑁. Define the mapping 𝐺
𝑖
:

𝐶 → 𝐶 by 𝐺
𝑖
= Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
) for 𝑖 = 1, . . . , 𝑁, where

𝜆
𝑖
∈ (0, 𝛼

𝑖
/𝜅
2

) and 𝜅 is the 2-uniformly smooth constant of𝑋.
Let 𝐵 : 𝐶 → 𝐶 be the 𝐾-mapping generated by 𝐺

1
, . . . , 𝐺

𝑁

and 𝜌
1
, . . . , 𝜌

𝑁
, where 𝜌

𝑖
∈ (0, 1), for all 𝑖 = 1, . . . , 𝑁 − 1 and

𝜌
𝑁
∈ (0, 1]. Let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient

𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0
be a countable family of nonexpansive

mappings of 𝐶 into itself such that Δ := ⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Γ ∩

(∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)) ̸= 0. Suppose that {𝛼

𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
},

and {𝜖
𝑛
} are the sequences in [0, 1], 𝛼

𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1

and satisfy the following conditions:

(i) ∑∞
𝑛=1

(|𝛼
𝑛
−𝛼
𝑛−1

|+ |𝛽
𝑛
−𝛽
𝑛−1

|+ |𝛾
𝑛
−𝛾
𝑛−1

|+ |𝛿
𝑛
−𝛿
𝑛−1

|+

|𝜎
𝑛
− 𝜎
𝑛−1

| + |𝜖
𝑛
− 𝜖
𝑛−1

|) < ∞;
(ii) lim

𝑛→∞
𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(iii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(v) 0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1;

(vi) 0 < lim inf
𝑛→∞

𝜖
𝑛
≤ lim sup

𝑛→∞
𝜖
𝑛
< 1.

For arbitrary 𝑥
0
∈ 𝐶, define the sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜖
𝑛
[𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝜖
𝑛
) 𝑦
𝑛
, 𝑢
𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , ∀𝑛 ≥ 0,

(35)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥

𝑛+1
)) , 𝐴 (𝑔 (𝑥

𝑛
))) ,

∀𝑛 ≥ 0,

(36)

for any 𝑤
𝑛
∈ 𝑇𝑥

𝑛
, 𝑘
𝑛
∈ 𝐹𝑥

𝑛
, and some 𝜀 > 0. Assume

that ∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded subset
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𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ Δ, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Δ, (37)

and, for any 𝑤 ∈ 𝑇𝑞 and 𝑘 ∈ 𝐹𝑞, (𝑞, 𝑤, 𝑘) is a solution of the
MVVI (16).

Proof. First of all, by Lemma 17 we know that 𝐼 − 𝜆
𝑖
𝐴
𝑖
is

a nonexpansive mapping, where 𝜆
𝑖
∈ (0, 𝛼

𝑖
/𝜅
2

) for each
𝑖 = 1, . . . , 𝑁. Hence, from the nonexpansivity of Π

𝐶
, it

follows that 𝐺
𝑖
is a nonexpansive mapping for each 𝑖 =

1, . . . , 𝑁. Since 𝐵 : 𝐶 → 𝐶 is the 𝐾-mapping generated
by 𝐺
1
, . . . , 𝐺

𝑁
and 𝜌

1
, . . . , 𝜌

𝑁
, by Lemma 3, we deduce that

Fix(𝐵) = ∩
𝑁

𝑖=1
Fix(𝐺

𝑖
). Utilizing Lemma 10, and the definition

of 𝐺
𝑖
, we get Fix(𝐺

𝑖
) = VI(𝐶, 𝐴

𝑖
) for each 𝑖 = 1, . . . , 𝑁. Thus,

we have

Fix (𝐵) =
𝑁

⋂

𝑖=1

Fix (𝐺
𝑖
) =

𝑁

⋂

𝑖=1

VI (𝐶, 𝐴
𝑖
) . (38)

Now, let us show that for any V ∈ 𝐶, 𝜆 > 0, there exists a
point 𝑥 ∈ 𝐶 such that (𝑥, 𝑤, 𝑘) is a solution of the MVVI (15),
for any 𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. Indeed, following the argument
idea in the proof of Chidume et al. [5, Theorem 3.1], we put
𝑉𝑥 := 𝑁(𝑇𝑥, 𝐹𝑥) for all 𝑥 ∈ 𝑋. Then by Proposition 6,𝑉 is 𝜙-
strongly accretive. Since𝑇 and𝐹 are𝐻-uniformly continuous
and 𝑁(⋅, ⋅) is continuous, 𝑉𝑥 is continuous and hence lower
semicontinuous. Thus, by Proposition 7, 𝑉𝑥 is single-valued.
Moreover, since 𝑉 is 𝜙-strongly accretive and by assumption
𝐴 ∘ 𝑔 : 𝑋 → 2

𝐶 is𝑚-accretive, we have that 𝑉 + 𝜆𝐴 ∘ 𝑔 is an
𝑚-accretive and 𝜙-strongly accretive mapping, and hence by
Cioranescu [22, page 184], for any 𝑥 ∈ 𝑋, we have that (𝑉 +

𝜆𝐴∘𝑔)(𝑥) is closed and bounded.Therefore, byMorales [23],
𝑉+𝜆𝐴∘𝑔 is surjective. Hence, for any V ∈ 𝑋 and 𝜆 > 0, there
exists 𝑥 ∈ 𝐷(𝐴) = 𝐶 such that V ∈ 𝑉𝑥+𝜆𝐴(𝑔(𝑥)) = 𝑁(𝑤, 𝑘)+

𝜆𝐴(𝑔(𝑥)), where 𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. In addition, in terms
of Proposition 7, we know that 𝑉 + 𝜆𝐴 ∘ 𝑔 is a single-valued
mapping. Assume that𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥)) : 𝑋 → 𝐶 is 𝜁-
inverse strongly accretive with 𝜁 ≥ 𝜅

2. Then by Lemma 17, we
conclude that the mapping 𝑥 󳨃→ 𝑥 − (𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥)))

is nonexpansive.
Without loss of generality, we may assume that V = 0 and

𝜆 = 1. Let 𝑝 ∈ Δ and let 𝑟(≥ ‖𝑓(𝑝)−𝑝‖/(1−𝜌)) be sufficiently
large such that 𝑥

0
∈ 𝐵
𝑟
(𝑝) =: 𝐵. Then 𝑝 ∈ 𝐷(𝐴) = 𝐶 such

that 0 ∈ 𝑁(𝑤, 𝑘) + 𝐴 ∘ 𝑔(𝑝) for any 𝑤 ∈ 𝑇𝑝 and 𝑘 ∈ 𝐹𝑝.
Let𝑀 := sup{‖𝑢‖ : 𝑢 ∈ 𝑁(𝑤, 𝑘) + 𝐴(𝑔(𝑥)), 𝑥 ∈ 𝐵, 𝑤 ∈ 𝑇𝑥,
𝑘 ∈ 𝐹𝑥}. Then as 𝐴 ∘ 𝑔, 𝑇, and 𝐹 are𝐻-uniformly continuous
on 𝑋, for 𝜀

1
:= 𝜙(𝑟)/8(1 + 𝜀), 𝜀

2
:= 𝜙(𝑟)/8𝜇(1 + 𝜀), and 𝜀

3
:=

𝜙(𝑟)/8𝜉(1 + 𝜀), there exist 𝛿
1
, 𝛿
2
, 𝛿
3
> 0 such that for any

𝑥, 𝑦 ∈ 𝑋, ‖𝑥 − 𝑦‖ < 𝛿
1
, ‖𝑥 − 𝑦‖ < 𝛿

2
and ‖𝑥 − 𝑦‖ < 𝛿

3
imply

𝐻(𝐴 ∘ 𝑔(𝑥), 𝐴 ∘ 𝑔(𝑦)) < 𝜀
1
, 𝐻(𝑇𝑥, 𝑇𝑦) < 𝜀

2
and𝐻(𝐹𝑥, 𝐹𝑦) <

𝜀
3
, respectively.
Let us show that 𝑥

𝑛
∈ 𝐵 for all 𝑛 ≥ 0. We show this by

induction. First, 𝑥
0
∈ 𝐵 by construction. Assume that 𝑥

𝑛
∈ 𝐵.

We show that 𝑥
𝑛+1

∈ 𝐵. If possible we assume that 𝑥
𝑛+1

∉ 𝐵,
then ‖𝑥

𝑛+1
− 𝑝‖ > 𝑟. Further from (35) it follows that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑝) + 𝛽𝑛 (𝑥𝑛 − 𝑝)

+𝛾
𝑛
(𝐵𝑥
𝑛
− 𝑝) + 𝛿

𝑛
(𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(1 − 𝜌)

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
} ,

(39)

and hence

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

= ⟨𝜖
𝑛
[𝑥
𝑛
− 𝑝 − 𝜎

𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝜖
𝑛
) (𝑦
𝑛
− 𝑝) , 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

= ⟨𝜖
𝑛
(𝑥
𝑛
− 𝑝) + (1 − 𝜖

𝑛
) (𝑦
𝑛
− 𝑝) , 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

− 𝜖
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛼𝑛) (𝑦𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

− 𝜖
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ (𝜖
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝜖𝑛)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ (𝜖
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝜖𝑛)

max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
})

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − p󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

1 − 𝜌
}
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩
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≤
1

2
(max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

} +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

)

− 𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ ,

(40)

which immediately yields
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

− 2𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

= max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

− 2𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) + 𝑢
𝑛+1

, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

− 2𝛼
𝑛
𝜎
𝑛
⟨𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

− (𝑁 (𝑤
𝑛+1

, 𝑘
𝑛+1

) + 𝑢
𝑛+1

) , 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ .

(41)

Since 𝑁(⋅, ⋅) is 𝜙-strongly accretive with respect to 𝑇 and
𝐴(𝑔(⋅)) is accretive, we deduce from (41) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛+1

, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛+1
, 𝑘
𝑛
) − 𝑁 (𝑤

𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 .

(42)

Again from (35), we have that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝜖
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝 − 𝜎𝑛 (𝑁 (𝑤
𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)
󵄩󵄩󵄩󵄩

+ (1 − 𝜖
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝜖
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜎𝑛
󵄩󵄩󵄩󵄩𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛

󵄩󵄩󵄩󵄩]

+ (1 − 𝜖
𝑛
)max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
}

≤ 𝜖
𝑛
[𝑟 + 𝜎

𝑛
𝑀] + (1 − 𝜖

𝑛
) 𝑟

≤ 2𝑟.

(43)

Also, from Proposition 7, 𝑉𝑥 = 𝑁(𝑇𝑥, 𝐹𝑥) is a single-valued
mapping; that is, for any 𝑘, 𝑘󸀠 ∈ 𝐹𝑥 and 𝑤,𝑤󸀠 ∈ 𝑇𝑥, we have
𝑁(𝑤, 𝑘) = 𝑁(𝑤, 𝑘

󸀠

) and 𝑁(𝑤, 𝑘) = 𝑁(𝑤
󸀠

, 𝑘). On the other
hand, it follows from Nadler [24] that, for 𝑘

𝑛+1
∈ 𝐹𝑥
𝑛+1

and
𝑤
𝑛+1

∈ 𝑇𝑥
𝑛+1

, there exist 𝑘󸀠
𝑛
∈ 𝐹𝑥
𝑛
and 𝑤󸀠

𝑛
∈ 𝑇𝑥
𝑛
such that

󵄩󵄩󵄩󵄩󵄩
𝑘
𝑛+1

− 𝑘
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩
≤ (1 + 𝜀)𝐻 (𝐹𝑥

𝑛+1
, 𝐹𝑥
𝑛
) , (44)

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑛+1

− 𝑤
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩
≤ (1 + 𝜀)𝐻 (𝑇𝑥

𝑛+1
, 𝑇𝑥
𝑛
) , (45)

respectively. Therefore, from (42) and (36), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

} − 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟

+ 2𝛼
𝑛
𝜎
𝑛
[
󵄩󵄩󵄩󵄩󵄩
𝑁 (𝑤
𝑛+1

, 𝑘
𝑛+1

) − 𝑁 (𝑤
𝑛+1

, 𝑘
󸀠

𝑛
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑁 (𝑤
𝑛+1

, 𝑘
𝑛
) − 𝑁 (𝑤

󸀠

𝑛
, 𝑘
𝑛
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩 ] 2𝑟

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

} − 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟

+ 2𝛼
𝑛
𝜎
𝑛
[𝜉 (1 + 𝜀)𝐻 (𝐹𝑥

𝑛+1
, 𝐹𝑥
𝑛
)

+ 𝜇 (1 + 𝜀)𝐻 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
)

+ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥
𝑛+1

)) , 𝐴 (𝑔 (𝑥
𝑛
)))] 2𝑟

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

} − 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟

+ 2𝛼
𝑛
𝜎
𝑛
[
𝜙 (𝑟)

8
+
𝜙 (𝑟)

8
+
𝜙 (𝑟)

8
] 2𝑟

= max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

− 2𝛼
𝑛
𝜎
𝑛
𝜙 (𝑟) 𝑟 + 𝛼

𝑛
𝜎
𝑛

3

2
𝜙 (𝑟) 𝑟

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑝) − 𝑝

1 − 𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

} .

(46)
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So, we get ‖𝑥
𝑛+1

− 𝑝‖ ≤ 𝑟, a contradiction. Therefore, {𝑥
𝑛
} is

bounded.
Let us show that lim

𝑛→∞
‖𝑥
𝑛
− 𝑥
𝑛+1

‖ = 0 and
lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

Indeed, we define 𝐺 : 𝐶 → 𝐶 by 𝐺𝑥 := 𝑥 − (𝑁(𝑇𝑥, 𝐹𝑥) +

𝐴(𝑔(𝑥))) for all 𝑥 ∈ 𝐶. Then, 𝐺 is a nonexpansive mapping
and the iterative scheme (35) can be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜖
𝑛
[(1 − 𝜎

𝑛
) 𝑥
𝑛
+ 𝜎
𝑛
𝐺𝑥
𝑛
]

+ (1 − 𝜖
𝑛
) 𝑦
𝑛
, ∀𝑛 ≥ 0.

(47)

Taking into account condition (iv), we may assume that
{𝛽
𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1). From (47), we can rewrite

𝑦
𝑛
by

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑧
𝑛
, (48)

where 𝑧
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
)/(1 − 𝛽

𝑛
). Now, we

have
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

) + 𝛾
𝑛+1

𝐵𝑥
𝑛+1

+ 𝛿
𝑛+1

𝑆
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛+1

− 𝛽
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛+1

− 𝛽
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛+1

+
𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛+1

−
𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛+1

− 𝛽
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛+1

−
𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝛽𝑛+1𝑥𝑛+1 − (𝑦𝑛 − 𝛽𝑛𝑥𝑛)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 − 𝛽
𝑛+1

−
1

1 − 𝛽
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝛽𝑛+1𝑥𝑛+1 − (𝑦𝑛 − 𝛽𝑛𝑥𝑛)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽𝑛
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛
) (1 − 𝛽

𝑛+1
)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝛼𝑛+1𝑓 (𝑥𝑛+1) + 𝛾𝑛+1𝐵𝑥𝑛+1 + 𝛿𝑛+1𝑆𝑛+1𝑥𝑛+1

− (𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽𝑛
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛
) (1 − 𝛽

𝑛+1
)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛+1

(𝛼
𝑛+1

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛+1) − 𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛+1

󵄩󵄩󵄩󵄩𝐵𝑥𝑛+1 − 𝐵𝑥𝑛
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛+1

󵄩󵄩󵄩󵄩𝑆𝑛+1𝑥𝑛+1 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛+1 − 𝛾𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝐵𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛿𝑛+1 − 𝛿𝑛
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩)

+

󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽𝑛
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛
) (1 − 𝛽

𝑛+1
)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛+1

[𝛼
𝑛+1

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛+1) − 𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩 + 𝛾𝑛+1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛+1

(
󵄩󵄩󵄩󵄩𝑆𝑛+1𝑥𝑛+1 − 𝑆𝑛+1𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛+1𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛾𝑛+1 − 𝛾𝑛
󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝐵𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛿𝑛+1 − 𝛿𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽𝑛
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛
) (1 − 𝛽

𝑛+1
)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛+1

[𝛼
𝑛+1

𝜌
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛾𝑛+1
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝛿
𝑛+1

(
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛+1𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛+1 − 𝛾𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝐵𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛿𝑛+1 − 𝛿𝑛
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽𝑛
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛
) (1 − 𝛽

𝑛+1
)

󵄩󵄩󵄩󵄩𝛼𝑛𝑓 (𝑥𝑛) + 𝛾𝑛𝐵𝑥𝑛 + 𝛿𝑛𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

=
1 − 𝛽
𝑛+1

− 𝛼
𝑛+1

(1 − 𝜌)

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+
𝛿
𝑛+1

1 − 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝑆𝑛+1𝑥𝑛 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

+
1

1 − 𝛽
𝑛+1

[
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛)
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛾𝑛+1 − 𝛾𝑛
󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝐵𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛿𝑛+1 − 𝛿𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽𝑛
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛
) (1 − 𝛽

𝑛+1
)

󵄩󵄩󵄩󵄩𝛼𝑛𝑓 (𝑥𝑛) + 𝛾𝑛𝐵𝑥𝑛 + 𝛿𝑛𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩
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≤ (1 −
𝛼
𝑛+1

(1 − 𝜌)

1 − 𝛽
𝑛+1

)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛+1𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

+𝑀
0
[
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽𝑛

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛾𝑛+1 − 𝛾𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛿𝑛+1 − 𝛿𝑛

󵄨󵄨󵄨󵄨] ,

(49)

where 1/(1 − 𝑏)2sup
𝑛≥0

{‖𝑓(𝑥
𝑛
)‖ + ‖𝐵𝑥

𝑛
‖ + ‖𝑆

𝑛
𝑥
𝑛
‖} ≤ 𝑀

0
for

some𝑀
0
> 0. By simple calculation, we have

𝑦
𝑛
− 𝑦
𝑛−1

= 𝛽
𝑛
(𝑥
𝑛
− 𝑥
𝑛−1

) + (𝛽
𝑛
− 𝛽
𝑛−1

)

× (𝑥
𝑛−1

− 𝑧
𝑛−1

) + (1 − 𝛽
𝑛
) (𝑧
𝑛
− 𝑧
𝑛−1

) .

(50)

So, from (49), we get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
) {(1 −

𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀
0
[
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨] }

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+𝑀
0
[
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨] .

(51)

Also, for convenience, we write

𝑥
𝑛+1

= 𝜖
𝑛
𝑧̂
𝑛
+ (1 − 𝜖

𝑛
) 𝑦
𝑛
,

𝑧̂
𝑛
= 𝜎
𝑛
𝐺𝑥
𝑛
+ (1 − 𝜎

𝑛
) 𝑥
𝑛
.

(52)

By simple calculation, we get

𝑥
𝑛+1

− 𝑥
𝑛
= 𝜖
𝑛
(𝑧̂
𝑛
− 𝑧̂
𝑛−1

) + (𝜖
𝑛
− 𝜖
𝑛−1

)

× (𝑧̂
𝑛−1

− 𝑦
𝑛−1

) + (1 − 𝜖
𝑛
) (𝑦
𝑛
− 𝑦
𝑛−1

) ,

𝑧̂
𝑛
− 𝑧̂
𝑛−1

= 𝜎
𝑛
(𝐺𝑥
𝑛
− 𝐺𝑥
𝑛−1

) + (𝜎
𝑛
− 𝜎
𝑛−1

)

× (𝐺𝑥
𝑛−1

− 𝑥
𝑛−1

) + (1 − 𝜎
𝑛
) (𝑥
𝑛
− 𝑥
𝑛−1

) .

(53)

From (51) and (53), we deduce that

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑧̂𝑛−1
󵄩󵄩󵄩󵄩

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝐺𝑥𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1
󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝐺𝑥𝑛−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1
󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝐺𝑥𝑛−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝐺𝑥𝑛−1 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 ,

(54)

and hence
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

≤ 𝜖
𝑛

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑧̂𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜖𝑛 − 𝜖𝑛−1
󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝑧̂𝑛−1 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩 + (1 − 𝜖𝑛)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝜖
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝐺𝑥𝑛−1 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩]

+
󵄨󵄨󵄨󵄨𝜖𝑛 − 𝜖𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑧̂𝑛−1 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝜖
𝑛
) {(1 − 𝛼

𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀
0
[
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨]}

≤ [1 − (1 − 𝜖
𝑛
) 𝛼
𝑛
(1 − 𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝐺𝑥𝑛−1 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜖𝑛 − 𝜖𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑧̂𝑛−1 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀
0
[
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨]

≤ [1 − (1 − 𝜖
𝑛
) 𝛼
𝑛
(1 − 𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀
1
[
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜖𝑛 − 𝜖𝑛−1

󵄨󵄨󵄨󵄨] ,

(55)

where sup
𝑛≥1

{‖𝐺𝑥
𝑛−1

−𝑥
𝑛−1

‖ + ‖𝑧̂
𝑛−1

−𝑦
𝑛−1

‖ + ‖𝑥
𝑛−1

−𝑧
𝑛−1

‖ +

𝑀
0
} ≤ 𝑀

1
for some 𝑀

1
> 0. Utilizing Lemma 17, we

conclude from (55), conditions (i), (ii), and (vi), and the
assumption on {𝑆

𝑛
} that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 = 0. (56)
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Furthermore, utilizing Lemma 16, we obtain from (39) and
(47) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜖𝑛 [(1 − 𝜎𝑛) (𝑥𝑛 − 𝑝) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑝)]

+ (1 − 𝜖
𝑛
) (𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝜖
𝑛

󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑝) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑝)
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜖
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜖
𝑛
(1 − 𝜖

𝑛
)

× 𝜑 (
󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛)

󵄩󵄩󵄩󵄩)

≤ 𝜖
𝑛
[(1 − 𝜎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩) ]

+ (1 − 𝜖
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜖
𝑛
(1 − 𝜖

𝑛
)

× 𝜑 (
󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛)

󵄩󵄩󵄩󵄩)

≤ 𝜖
𝑛
[(1 − 𝜎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩) ]

+ (1 − 𝜖
𝑛
) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩]
2

− 𝜖
𝑛
(1 − 𝜖

𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛)

+𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑦
𝑛
)
󵄩󵄩󵄩󵄩)

= 𝜖
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩)]

+ (1 − 𝜖
𝑛
) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

× (2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩) ]

− 𝜖
𝑛
(1 − 𝜖

𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛)

+𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑦
𝑛
)
󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜖
𝑛
𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 (2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩)

− 𝜖
𝑛
(1 − 𝜖

𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛)

+𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑦
𝑛
)
󵄩󵄩󵄩󵄩) ,

(57)

which immediately yields

𝜖
𝑛
𝜎
𝑛
(1 − 𝜎

𝑛
) 𝜑
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩) + 𝜖𝑛 (1 − 𝜖𝑛)

× 𝜑 (
󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛)

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

× (2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 (2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩) .

(58)

So, from (56) and conditions (ii), (v), and (vi), we get

lim
𝑛→∞

𝜑
1
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩) = 0,

lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛)

󵄩󵄩󵄩󵄩) = 0,

(59)

which together with the properties of 𝜑 and 𝜑
1
implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛)
󵄩󵄩󵄩󵄩 = 0.

(60)

Note that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝑥𝑛 − 𝐺𝑥𝑛)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛)

󵄩󵄩󵄩󵄩 + 𝜎𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑦𝑛) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑦𝑛)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩 .

(61)

Hence, from (60), it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (62)

Let us show that lim
𝑛→∞

‖𝑥
𝑛
−𝐵𝑥
𝑛
‖ = 0 and lim

𝑛→∞
‖𝑥
𝑛
−

𝑆𝑥
𝑛
‖ = 0.
Indeed, from the definition of 𝑦

𝑛
, we can rewrite 𝑦

𝑛
by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝑒
𝑛
𝑧
󸀠

𝑛
,

(63)

where 𝑒
𝑛
= 𝛾
𝑛
+ 𝛿
𝑛
and 𝑧󸀠
𝑛
= (𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
)/(𝛾
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 12, from (63) we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝) + 𝑒

𝑛
(𝑧
󸀠

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2
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≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 −
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

) (𝐵𝑥
𝑛
− 𝑝) +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝑒
𝑛
((1 −

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩)

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) + 𝑒
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) ,

(64)

which implies that

𝛽
𝑛
𝑒
𝑛
𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 .

(65)

From (62) and conditions (ii), (iii), and (iv), we have

lim
𝑛→∞

𝜑
2
(
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0. (66)

From the properties of 𝜑
2
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (67)

By Lemma 16, we deduce from the definition of 𝑧
󸀠

𝑛
the

following

󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 −
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

) (𝐵𝑥
𝑛
− 𝑝) +

𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 −
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

)
󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

(1 −
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

)𝜑
3
(
󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

(1 −
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

)𝜑
3
(
󵄩󵄩󵄩󵄩B𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩) ,

(68)

which implies that

𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

(1 −
𝛿
𝑛

𝛿
𝑛
+ 𝛾
𝑛

)𝜑
3
(
󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑧
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩
.

(69)

From (67) and condition (iii), we have

lim
𝑛→∞

𝜑
3
(
󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩) = 0. (70)

From the properties of 𝜑
3
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (71)

From the definition of 𝑦
𝑛
, we can rewrite 𝑦

𝑛
by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ (𝛼
𝑛
+ 𝛿
𝑛
)
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝑑
𝑛
𝑧
󸀠󸀠

𝑛
,

(72)

where 𝑑
𝑛
= 𝛼
𝑛
+ 𝛿
𝑛
and 𝑧󸀠󸀠
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
)/(𝛼
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 12, from (72) and the convexity of ‖ ⋅ ‖2,
we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝛽
𝑛
(𝑥
𝑛
− 𝑝) + 𝛾

𝑛
(𝐵𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(𝑧
󸀠󸀠

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
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+ 𝑑
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑧
󸀠󸀠

𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩)

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩)

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑓 (𝑥
𝑛
) − 𝑝)

+(1 −
𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

) (𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛
[

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+(1 −
𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

]

− 𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩)

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩) ,

(73)

which implies that

𝛽
𝑛
𝛾
𝑛
𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝

󵄩󵄩󵄩󵄩

2

.

(74)

From (62), (74), and conditions (ii), (iii), and (iv), we have

lim
𝑛→∞

𝜑
4
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩) = 0. (75)

By the properties of 𝜑
4
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (76)

From (71), (76), and
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 , (77)

we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (78)

Observe that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 . (79)

Utilizing Lemma 13, we conclude from (78) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (80)

Define a mapping𝑊𝑥 = (1 − 𝜃
1
− 𝜃
2
)𝐵𝑥 + 𝜃

1
𝑆𝑥 + 𝜃

2
𝐺𝑥,

where 𝜃
1
, 𝜃
2
∈ (0, 1) are two constants with 𝜃

1
+ 𝜃
2
< 1. Then

by Lemma 15, we have Fix(𝑊) = Fix(𝐵)∩Fix(𝑆)∩Fix(𝐺) = Δ.
We observe that

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝜃1 − 𝜃2) (𝑥𝑛 − 𝐵𝑥𝑛)

+𝜃
1
(𝑥
𝑛
− 𝑆𝑥
𝑛
) + 𝜃
2
(𝑥
𝑛
− 𝐺𝑥
𝑛
)
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
1
− 𝜃
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝜃
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝜃2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 .

(81)

From (60), (76), and (80), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (82)

Now, we claim that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0, (83)

where 𝑞 = 𝑠 − lim
𝑡→0

𝑥
𝑡
with 𝑥

𝑡
being the fixed point of the

contraction

𝑥 󳨃󳨀→ 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑊𝑥. (84)

Then 𝑥
𝑡
solves the fixed point equation 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
) + (1 −

𝑡)𝑊𝑥
𝑡
. Thus we have

𝑥
𝑡
− 𝑥
𝑛
= (1 − 𝑡) (𝑊𝑥

𝑡
− 𝑥
𝑛
) + 𝑡 (𝑓 (𝑥

𝑡
) − 𝑥
𝑛
) . (85)

By Lemma 9, we conclude that

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝑡) (𝑊𝑥

𝑡
− 𝑥
𝑛
) + 𝑡 (𝑓 (𝑥

𝑡
) − 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑡)
2󵄩󵄩󵄩󵄩𝑊𝑥
𝑡
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩
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≤ (1 − 𝑡)
2

(
󵄩󵄩󵄩󵄩𝑊𝑥
𝑡
−𝑊𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)
2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

≤ (1 − 𝑡)
2

(
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)
2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

= (1 − 𝑡)
2

[
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑊𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

2

]

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

+ 2𝑡 ⟨𝑥
𝑡
− 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

= (1 − 2𝑡 + 𝑡
2

)
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

+ 𝑓
𝑛
(𝑡)

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩ + 2𝑡

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

,

(86)

where

𝑓
𝑛
(𝑡) = (1 − 𝑡)

2

(2
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥

𝑛

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(87)

It follows from (86) that

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤

𝑡

2

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

+
1

2𝑡
𝑓
𝑛
(𝑡) . (88)

Letting 𝑛 → ∞ in (88) and noticing (87), we derive

lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤

𝑡

2
𝑀
2
, (89)

where𝑀
2
> 0 is a constant such that ‖𝑥

𝑡
− 𝑥
𝑛
‖
2

≤ 𝑀
2
for all

𝑡 ∈ (0, 1) and 𝑛 ≥ 0. Taking 𝑡 → 0 in (89), we have

lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤ 0. (90)

On the other hand, we have

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

= ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ − ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

− ⟨𝑓 (𝑞) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩ + ⟨𝑓 (𝑞) − 𝑥

𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

− ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

= ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑥
𝑡
− 𝑞, 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑞) − 𝑓 (𝑥
𝑡
) , 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩ .

(91)

It follows that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

≤ lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+
󵄩󵄩󵄩󵄩𝑥𝑡 − q󵄩󵄩󵄩󵄩 lim sup

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑡
󵄩󵄩󵄩󵄩

+ 𝜌
󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑡

󵄩󵄩󵄩󵄩 lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑡
󵄩󵄩󵄩󵄩

+ lim sup
𝑛→∞

⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩ .

(92)

Taking into account that 𝑥
𝑡
→ 𝑞 as 𝑡 → 0, we have

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

= lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

≤ lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩ .

(93)

Since 𝑋 has a uniformly Fréchet differentiable norm, the
duality mapping 𝐽 is norm-to-norm uniformly continuous
on bounded subsets of 𝑋. Consequently, the two limits are
interchangeable and hence (83) holds. Noticing that 𝐽 is
norm-to-norm uniformly continuous on bounded subsets of
𝑋, we deduce from (62) that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

= lim sup
𝑛→∞

(⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)

+ ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑞)⟩)

= lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0.

(94)

Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Indeed,

utilizing Lemma 9, we obtain from (47) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑞)) + 𝛽𝑛 (𝑥𝑛 − 𝑞) + 𝛾𝑛 (𝐵𝑥𝑛 − 𝑞)

+𝛿
𝑛
(𝑆
𝑛
𝑥
𝑛
− 𝑞) + 𝛼

𝑛
(𝑓 (𝑞) − 𝑞)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑞)) + 𝛽𝑛 (𝑥𝑛 − 𝑞)

+𝛾
𝑛
(𝐵𝑥
𝑛
− 𝑞) + 𝛿

𝑛
(𝑆
𝑛
𝑥
𝑛
− 𝑞)

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑞)
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩
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≤ 𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩ ,

(95)

and hence

󵄩󵄩󵄩󵄩𝑥𝑛+1𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜖𝑛 [(1 − 𝜎𝑛) (𝑥𝑛 − 𝑞) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑞)]

+ (1 − 𝜖
𝑛
) (𝑦
𝑛
− 𝑞)

󵄩󵄩󵄩󵄩

2

≤ 𝜖
𝑛

󵄩󵄩󵄩󵄩(1 − 𝜎𝑛) (𝑥𝑛 − 𝑞) + 𝜎𝑛 (𝐺𝑥𝑛 − 𝑞)
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜖
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝜖
𝑛
[(1 − 𝜎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

] + (1 − 𝜖
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝜖
𝑛
[(1 − 𝜎

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

]

+ (1 − 𝜖
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

= 𝜖
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜖
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝜖
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜖
𝑛
)

× [(1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩]

= [1 − (1 − 𝜖
𝑛
) 𝛼
𝑛
(1 − 𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝜖
𝑛
) 𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

= [1 − (1 − 𝜖
𝑛
) 𝛼
𝑛
(1 − 𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜖
𝑛
) 𝛼
𝑛
(1 − 𝜌)

2 ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

1 − 𝜌
.

(96)

Applying Lemma 8 to (96), we conclude from conditions (ii)
and (vi) and (94) that 𝑥

𝑛
→ 𝑞 as 𝑛 → ∞. This completes

the proof.

Corollary 19. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space and let 𝐶 be a nonempty closed convex
subset of 𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π

𝐶
be a sunny

nonexpansive retraction from 𝑋 onto 𝐶. Let 𝑇, 𝐹 : 𝑋 →

𝐶𝐵(𝑋), and 𝐴 : 𝐶 → 2
𝐶 be three multivalued mappings,

let 𝑔 : 𝑋 → 𝐶 be a single-valued mapping, and let 𝑁(⋅, ⋅) :

𝑋 ×𝑋 → 𝐶 be a single-valued continuous mapping satisfying
conditions (C1)–(C5) in Theorem 4 and (C6) 𝑁(𝑇𝑥, 𝐹𝑥) +

𝐴(𝑔(𝑥)) : 𝑋 → 2
𝐶

\ {0} is 𝜁-inverse strongly accretive with
𝜁 ≥ 𝜅
2.

Let 𝑇
𝑖
: 𝐶 → 𝑋 be a 𝜂

𝑖
-strictly pseudocontractive

mapping for each 𝑖 = 1, . . . , 𝑁. Define the mapping𝐺
𝑖
: 𝐶 →

𝐶 by 𝐺
𝑖
= Π
𝐶
(𝐼 − 𝜆

𝑖
(𝐼 − 𝑇

𝑖
)) for 𝑖 = 1, . . . , 𝑁, where 𝜆

𝑖
∈

(0, 𝜂
𝑖
/𝜅
2

), and 𝜅 is the 2-uniformly smooth constant of𝑋. Let
𝐵 : 𝐶 → 𝐶 be the 𝐾-mapping generated by 𝐺

1
, . . . , 𝐺

𝑁
and

𝜌
1
, . . . , 𝜌

𝑁
, where 𝜌

𝑖
∈ (0, 1), for all 𝑖 = 1, . . . , 𝑁 − 1 and

𝜌
𝑁
∈ (0, 1]. Let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient

𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0
be a countable family of nonexpansive

mappings of 𝐶 into itself such that Δ := ⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Γ ∩

(∩
𝑁

𝑖=1
Fix(𝑇
𝑖
)) ̸= 0. Suppose that {𝛼

𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, and

{𝜖
𝑛
} are the sequences in [0, 1], 𝛼

𝑛
+𝛽
𝑛
+𝛾
𝑛
+𝛿
𝑛
= 1 and satisfy

the following conditions:

(i) ∑∞
𝑛=1

(|𝛼
𝑛
−𝛼
𝑛−1

|+ |𝛽
𝑛
−𝛽
𝑛−1

|+ |𝛾
𝑛
−𝛾
𝑛−1

|+ |𝛿
𝑛
−𝛿
𝑛−1

|+

|𝜎
𝑛
− 𝜎
𝑛−1

| + |𝜖
𝑛
− 𝜖
𝑛−1

|) < ∞;

(ii) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(iii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(v) 0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1;

(vi) 0 < lim inf
𝑛→∞

𝜖
𝑛
≤ lim sup

𝑛→∞
𝜖
𝑛
< 1.

For arbitrary 𝑥
0
∈ 𝐶, define the sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜖
𝑛
[𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝜖
𝑛
) 𝑦
𝑛
, 𝑢
𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , ∀𝑛 ≥ 0,

(97)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥

𝑛+1
)) , 𝐴 (𝑔 (𝑥

𝑛
))) ,

∀𝑛 ≥ 0,

(98)

for any 𝑤
𝑛
∈ 𝑇𝑥

𝑛
, 𝑘
𝑛
∈ 𝐹𝑥

𝑛
and some 𝜀 > 0. Assume

that ∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded subset

𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ Δ, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Δ, (99)

and, for any 𝑤 ∈ 𝑇𝑞 and 𝑘 ∈ 𝐹𝑞, (𝑞, 𝑤, 𝑘) is a solution of the
MVVI (16).

Proof. Since 𝑇
𝑖
is a 𝜂
𝑖
-strictly pseudocontractive mapping for

each 𝑖 = 1, . . . , 𝑁, it is known that 𝐴
𝑖
:= 𝐼 − 𝑇

𝑖
is 𝜂
𝑖
-inverse

strongly accretive for each 𝑖 = 1, . . . , 𝑁. In Theorem 18, we
put 𝐺

𝑖
= Π
𝐶
(𝐼 − 𝜆i𝐴 𝑖) for 𝑖 = 1, . . . , 𝑁, where 𝜆

𝑖
∈ (0, 𝜂

𝑖
/𝜅
2

).
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It is not hard to see that Fix(𝑇
𝑖
) = VI(𝐶, 𝐴

𝑖
). As a matter of

fact, we have, for 𝜆
𝑖
> 0,

𝑢 ∈ VI (𝐶, 𝐴
𝑖
)

⇐⇒ ⟨𝐴
𝑖
𝑢, 𝐽 (𝑦 − 𝑢)⟩ ≥ 0 ∀𝑦 ∈ 𝐶

⇐⇒ ⟨𝑢 − 𝜆
𝑖
𝐴
𝑖
𝑢 − 𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≥ 0 ∀𝑦 ∈ 𝐶

⇐⇒ 𝑢 = Π
𝐶
(𝑢 − 𝜆

𝑖
𝐴
𝑖
𝑢)

⇐⇒ 𝑢 = Π
𝐶
(𝑢 − 𝜆

𝑖
𝑢 + 𝜆
𝑖
𝑇
𝑖
𝑢)

⇐⇒ ⟨𝑢 − 𝜆
𝑖
𝑢 + 𝜆
𝑖
𝑇
𝑖
𝑢 − 𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≥ 0 ∀𝑦 ∈ 𝐶

⇐⇒ ⟨𝑢 − 𝑇
𝑖
𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≤ 0 ∀𝑦 ∈ 𝐶

⇐⇒ 𝑢 = 𝑇
𝑖
𝑢

⇐⇒ 𝑢 ∈ Fix (𝑇
𝑖
) .

(100)

Accordingly, we conclude that Δ := ⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Γ ∩

(∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)) = ⋂

∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Γ∩ (∩

𝑁

𝑖=1
Fix(𝑇
𝑖
)). Therefore,

the desired result follows fromTheorem 18.

Remark 20. Theorem 18 improves, extends, supplements, and
develops [5, Theorem 3.2] and [25, Theorem 3.1] in the
following aspects.

(i) Kangtunyakarn’s problem of finding a point of Fix(𝑆)∩
Fix(𝑉) ∩ (∩

𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)) (see [25, Theorem 1.1]) is extended

to develop our problem of finding a point of⋂∞
𝑖=0

Fix(𝑆
𝑖
)∩Γ∩

(∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)) inTheorem 18 because𝐵

𝐴
:= 𝑆((1−𝛼)𝐼+𝛼𝑉)

is nonexpansive with 𝛼 ∈ (0, 𝜂/𝜅
2

) and Fix(𝐵
𝐴
) = Fix(𝑆) ∩

Fix(𝑉) (see [25, Lemma 2.12]). It is clear that the problem
of finding a point of ⋂∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Γ ∩ (∩

𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)) in

Theorem 18 ismore general andmore subtle than the problem
of finding a point of Γ in [5, Theorem 3.2].

(ii) The iterative scheme in [25, Theorem 3.1] is extended
to develop the iterative scheme (35) of Theorem 18 by virtue
of the iterative schemes of [5, Theorem 3.2]. The iterative
scheme (35) of Theorem 18 is more advantageous and more
flexible than the iterative scheme of [10,Theorem 3.2] because
it can be applied to solving three problems (i.e., MVVI (16), a
finite family of VIPs, and the fixed point problem of {𝑆

𝑛
}) and

involves several parameter sequences {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
},

{𝜎
𝑛
}, and {𝜖

𝑛
}.

(iii) Theorem 18 extends and generalizes [5, Theorems
3.2] to the setting of a countable family of nonexpansive
mappings and a finite family of VIPs. In the meantime,
Theorem 18 extends and generalizes Kangtunyakarn [25,
Theorem 3.1] to the setting of the MVVI (16).

(iv) The iterative scheme (35) in Theorem 18 is very
different fromevery one in [5,Theorem3.2] and [25,Theorem
3.1] because every iterative scheme in [25, Theorem 3.1] and
[5,Theorem 3.2] is one-step iterative scheme and the iterative
scheme (35) inTheorem 18 is the combination of two iterative
schemes in [25, Theorem 3.1] and [5, Theorem 3.2].

(v) No boundedness condition on the ranges 𝑅(𝐼 −

𝑁(𝑇(⋅), 𝐹(⋅))) and 𝑅(𝐴(𝑔(⋅))) is imposed inTheorems 18 .

4. Mann-Type Viscosity Algorithms in
a Uniformly Convex Banach Space Having
a Uniformly Gáteaux Differentiable Norm

In this section, we introduce Mann-type viscosity iterative
algorithms in a uniformly convex Banach space having a
uniformly Gáteaux differentiable norm and show strong
convergence theorems. First, we give the following useful
lemma.

Lemma 21. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋 and let 𝐴 : 𝐶 → 𝑋 be a 𝜉-strictly
pseudocontractive and ]-strongly accretive mapping with 𝜉 +

] ≥ 1. Then, for 𝜆 ∈ (0, 1], one has

󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆𝐴) 𝑦
󵄩󵄩󵄩󵄩

≤ {√
1 − ]

𝜉
+ (1 − 𝜆) (1 +

1

𝜉
)}

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶.

(101)

In particular, if 1 − (𝜉/(1 + 𝜉))(1 − √(1 − ])/𝜉) ≤ 𝜆 ≤ 1, then
𝐼 − 𝜆𝐴 is nonexpansive.

Theorem 22. Let 𝑋 be a nonempty closed convex subset of a
uniformly convex Banach spacewhich has a uniformlyGáteaux
differentiable norm and let 𝐶 be a nonempty closed convex
subset of 𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶. Let Π

𝐶
be a sunny

nonexpansive retraction from 𝑋 onto 𝐶. Let 𝑇, 𝐹 : 𝑋 →

𝐶𝐵(𝑋), and 𝐴 : 𝐶 → 2
𝐶 be three multivalued mappings,

let 𝑔 : 𝑋 → 𝐶 be a single-valued mapping, and let 𝑁(⋅, ⋅) :

𝑋 ×𝑋 → 𝐶 be a single-valued continuous mapping satisfying
conditions (C1)–(C5) in Theorem 4. Consider that

(H6) 𝑁(𝑇𝑥, 𝐹𝑥) + 𝐴(𝑔(𝑥)) : 𝑋 → 𝐶 is 𝜉
0
-strictly

pseudocontractive and ]
0
-strongly accretive with 𝜉

0
+ ]
0
≥ 1.

Let 𝐴
𝑖
: 𝐶 → 𝑋 be 𝜉

𝑖
-strictly pseudocontractive and

]
𝑖
-strongly accretive with 𝜉

𝑖
+ ]
𝑖
≥ 1 for each 𝑖 = 1, . . . , 𝑁.

Define the mapping 𝐺
𝑖
: 𝐶 → 𝐶 by 𝐺

𝑖
= Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)

where 1 − (𝜉
𝑖
/(1 + 𝜉

𝑖
))(1 − √(1 − ]

𝑖
)/𝜉
𝑖
) ≤ 𝜆

𝑖
≤ 1 for

each 𝑖 = 1, . . . , 𝑁. Let 𝐵 : 𝐶 → 𝐶 be the 𝐾-mapping
generated by 𝐺

1
, . . . , 𝐺

𝑁
and 𝜌

1
, . . . , 𝜌

𝑁
, where 𝜌

𝑖
∈ (0, 1),

for all 𝑖 = 1, . . . , 𝑁 − 1 and 𝜌
𝑁

∈ (0, 1]. Let 𝑓 : 𝐶 → 𝐶

be a contraction with coefficient 𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0
be a

countable family of nonexpansive mappings of 𝐶 into itself
such that Δ := ⋂

∞

𝑖=0
Fix(𝑆
𝑖
)∩Γ∩(∩

𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)) ̸= 0. Suppose

that {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, and {𝜖

𝑛
} are the sequences in

[0, 1], 𝛼
𝑛
+𝛽
𝑛
+𝛾
𝑛
+𝛿
𝑛
= 1 and satisfy the following conditions:

(i) ∑∞
𝑛=1

(|𝛼
𝑛
−𝛼
𝑛−1

|+ |𝛽
𝑛
−𝛽
𝑛−1

|+ |𝛾
𝑛
−𝛾
𝑛−1

|+ |𝛿
𝑛
−𝛿
𝑛−1

|+

|𝜎
𝑛
− 𝜎
𝑛−1

| + |𝜖
𝑛
− 𝜖
𝑛−1

|) < ∞;

(ii) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(iii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);
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(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(v) 0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1;

(vi) 0 < lim inf
𝑛→∞

𝜖
𝑛
≤ lim sup

𝑛→∞
𝜖
𝑛
< 1.

For arbitrary 𝑥
0
∈ 𝐶, define the sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜖
𝑛
[𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝜖
𝑛
) 𝑦
𝑛
, 𝑢
𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , ∀𝑛 ≥ 0,

(102)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥

𝑛+1
)) , 𝐴 (𝑔 (𝑥

𝑛
))) ,

∀𝑛 ≥ 0,

(103)

for any 𝑤
𝑛
∈ 𝑇𝑥

𝑛
, 𝑘
𝑛
∈ 𝐹𝑥

𝑛
, and some 𝜀 > 0. Assume

that ∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded subset

𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ Δ, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Δ, (104)

and, for any 𝑤 ∈ 𝑇𝑞 and 𝑘 ∈ 𝐹𝑞, (𝑞, 𝑤, 𝑘) is a solution of the
MVVI (16).

Proof. First of all, by Lemma 21, we know that 𝐼 − 𝜆
𝑖
𝐴
𝑖

is a nonexpansive mapping, where 1 − (𝜉
𝑖
/(1 + 𝜉

𝑖
))(1 −

√(1 − ]
𝑖
)/𝜉
𝑖
) ≤ 𝜆

𝑖
≤ 1 for each 𝑖 = 1, . . . , 𝑁. Hence, from

the nonexpansivity ofΠ
𝐶
, it follows that𝐺

𝑖
is a nonexpansive

mapping for each 𝑖 = 1, . . . , 𝑁. Since 𝐵 : 𝐶 → 𝐶 is
the 𝐾-mapping generated by 𝐺

1
, . . . , 𝐺

𝑁
and 𝜌

1
, . . . , 𝜌

𝑁
, by

Lemma 3, we deduce that Fix(𝐵) = ∩
𝑁

𝑖=1
Fix(𝐺

𝑖
). Utilizing

Lemma 10 and the definition of𝐺
𝑖
, we get Fix(𝐺

𝑖
) = VI(𝐶, 𝐴

𝑖
)

for each 𝑖 = 1, . . . , 𝑁. Thus, we have

Fix (𝐵) =
𝑁

⋂

𝑖=1

Fix (𝐺
𝑖
) =

𝑁

⋂

𝑖=1

VI (𝐶, 𝐴
𝑖
) . (105)

Repeating the same arguments as those in the proof of
Theorem 18, we can prove that for any V ∈ 𝐶, 𝜆 > 0, there
exists a point 𝑥 ∈ 𝐶 such that (𝑥, 𝑤, 𝑘) is a solution of the
MVVI (15), for any𝑤 ∈ 𝑇𝑥 and 𝑘 ∈ 𝐹𝑥. In addition, in terms
of Proposition 7, we know that 𝑉 + 𝜆𝐴 ∘ 𝑔 is a single-valued
mapping due to the fact that𝑉+𝜆𝐴∘𝑔 is 𝜙-strongly accretive.
Assume that 𝑁(𝑇𝑥, 𝐹𝑥) + 𝐴(𝑔(𝑥)) : 𝑋 → 𝐶 is 𝜉

0
-strictly

pseudocontractive and ]
0
-strongly accretive with 𝜉

0
+ ]
0
≥ 1.

Then by Lemma 21, we conclude that the mapping 𝑥 󳨃→ 𝑥 −

(𝑁(𝑇𝑥, 𝐹𝑥) + 𝜆𝐴(𝑔(𝑥))) is nonexpansive.

Without loss of generality, we may assume that V = 0 and
𝜆 = 1. Let 𝑝 ∈ Δ and let 𝑟(≥ ‖𝑓(𝑝)−𝑝‖/(1−𝜌)) be sufficiently
large such that 𝑥

0
∈ 𝐵
𝑟
(𝑝) =: 𝐵. Observe that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩) + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
} .

(106)

Utilizing (106) and repeating the same arguments as those in
the proof of Theorem 18, we can derive 𝑥

𝑛
∈ 𝐵 for all 𝑛 ≥ 0.

Hence {𝑥
𝑛
} is bounded.

Let us show that lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+1

‖ = 0 and
lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

Indeed, we define 𝐺 : 𝐶 → 𝐶 by 𝐺𝑥 := 𝑥 − (𝑁(𝑇𝑥, 𝐹𝑥) +

𝐴(𝑔(𝑥))) for all 𝑥 ∈ 𝐶. Then, 𝐺 is a nonexpansive mapping
and the iterative scheme (102) can be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜖
𝑛
[(1 − 𝜎

𝑛
) 𝑥
𝑛
+ 𝜎
𝑛
𝐺𝑥
𝑛
] + (1 − 𝜖

𝑛
) 𝑦
𝑛
,

∀𝑛 ≥ 0.

(107)

Repeating the same arguments as those of (56), (60), (62),
(76), and (80) in the proof of Theorem 18, we can obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0, (108)

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛
󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 = 0.

(109)

Define a mapping𝑊𝑥 = (1 − 𝜃
1
− 𝜃
2
)𝐵𝑥 + 𝜃

1
𝑆𝑥 + 𝜃

2
𝐺𝑥,

where 𝜃
1
, 𝜃
2
∈ (0, 1) are two constants with 𝜃

1
+ 𝜃
2
< 1.

Then by Lemma 15, we have that Fix(𝑊) = Fix(𝐵) ∩ Fix(𝑆) ∩
Fix(𝐺) = Δ. We observe that

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝜃1 − 𝜃2) (𝑥𝑛 − B𝑥

𝑛
)

+ 𝜃
1
(𝑥
𝑛
− 𝑆𝑥
𝑛
) + 𝜃
2
(𝑥
𝑛
− 𝐺𝑥
𝑛
)
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
1
− 𝜃
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝜃
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝜃2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 .

(110)

From (109), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (111)
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Now, we claim that
lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0, (112)

where 𝑞 = 𝑠 − lim
𝑡→0

𝑥
𝑡
with 𝑥

𝑡
being the fixed point of the

contraction

𝑥 󳨃󳨀→ 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑊𝑥. (113)

Then 𝑥
𝑡
solves the fixed point equation 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
) + (1 −

𝑡)𝑊𝑥
𝑡
. Repeating the same arguments as those of (93) in the

proof of Theorem 18, we can deduce that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

= lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

≤ lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩ .

(114)

Since 𝑋 has a uniformly Gáteaux differentiable norm, the
duality mapping 𝐽 is norm-to-weak ∗ uniformly continuous
on bounded subsets of 𝑋. Consequently, the two limits are
interchangeable and hence (112) holds. Noticing that 𝐽 is
norm-to-weak ∗ uniformly continuous on bounded subsets
of𝑋, we conclude from (108) that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

= lim sup
𝑛→∞

(⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

+ ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑞)⟩)

= lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0.

(115)

Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Indeed,

repeating the same arguments as those (96) in the proof of
Theorem 18, we can deduce from (107) that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ [1 − (1 − 𝜖
𝑛
) 𝛼
𝑛
(1 − 𝜌)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜖
𝑛
) 𝛼
𝑛
(1 − 𝜌)

2 ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

1 − 𝜌
.

(116)

Applying Lemma 8 to (116), we infer from conditions (ii) and
(vi) and (115) that 𝑥

𝑛
→ 𝑞 as 𝑛 → ∞. This completes the

proof.

Corollary 23. Let 𝑋 be a uniformly convex Banach space
which has a uniformly Gáteaux differentiable norm and let
𝐶 be a nonempty closed convex subset of 𝑋 such that 𝐶 ±

𝐶 ⊂ 𝐶. Let Π
𝐶
be a sunny nonexpansive retraction from 𝑋

onto 𝐶. Let 𝑇, 𝐹 : 𝑋 → 𝐶𝐵(𝑋), and 𝐴 : 𝐶 → 2
𝐶 be

three multivalued mappings, let 𝑔 : 𝑋 → 𝐶 be a single-
valued mapping, and let 𝑁(⋅, ⋅) : 𝑋 × 𝑋 → 𝐶 be a single-
valued continuous mapping satisfying conditions (C1)–(C5) in
Theorem 4 and (H6) 𝑁(𝑇𝑥, 𝐹𝑥) + 𝐴(𝑔(𝑥)) : 𝑋 → 𝐶 is 𝜉

0
-

strictly pseudocontractive and ]
0
-strongly accretive with 𝜉

0
+

]
0
≥ 1.

For each 𝑖 = 1, . . . , 𝑁, let 𝑇
𝑖
: 𝐶 → 𝐶 be a self-mapping

such that 𝐼 − 𝑇
𝑖
: 𝐶 → 𝑋 is 𝜉

𝑖
-strictly pseudocontractive

and ]
𝑖
-strongly accretive with 𝜉

𝑖
+ ]
𝑖
≥ 1. Define the mapping

𝐺
𝑖
: 𝐶 → 𝐶 by 𝐺

𝑖
= (1 − 𝜆

𝑖
)𝐼 + 𝜆

𝑖
𝑇
𝑖
where 1 − (𝜉

𝑖
/(1 +

𝜉
𝑖
))(1 − √(1 − ]

𝑖
)/𝜉
𝑖
) ≤ 𝜆

𝑖
≤ 1 for each 𝑖 = 1, . . . , 𝑁. Let

𝐵 : 𝐶 → 𝐶 be the 𝐾-mapping generated by 𝐺
1
, . . . , 𝐺

𝑁

and 𝜌
1
, . . . , 𝜌

𝑁
, where 𝜌

𝑖
∈ (0, 1), for all 𝑖 = 1, . . . , 𝑁 − 1 and

𝜌
𝑁
∈ (0, 1]. Let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient

𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0
be a countable family of nonexpansive

mappings of 𝐶 into itself such that Δ := ⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Γ ∩

(∩
𝑁

𝑖=1
Fix(𝑇
𝑖
)) ̸= 0. Suppose that {𝛼

𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
}, {𝜎
𝑛
}, and

{𝜖
𝑛
} are the sequences in [0, 1], 𝛼

𝑛
+𝛽
𝑛
+𝛾
𝑛
+𝛿
𝑛
= 1 and satisfy

the following conditions:

(i) ∑∞
𝑛=1

(|𝛼
𝑛
−𝛼
𝑛−1

|+ |𝛽
𝑛
−𝛽
𝑛−1

|+ |𝛾
𝑛
−𝛾
𝑛−1

|+ |𝛿
𝑛
−𝛿
𝑛−1

|+

|𝜎
𝑛
− 𝜎
𝑛−1

| + |𝜖
𝑛
− 𝜖
𝑛−1

|) < ∞;
(ii) lim

𝑛→∞
𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(iii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(v) 0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1;

(vi) 0 < lim inf
𝑛→∞

𝜖
𝑛
≤ lim sup

𝑛→∞
𝜖
𝑛
< 1.

For arbitrary 𝑥
0
∈ 𝐶, define the sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜖
𝑛
[𝑥
𝑛
− 𝜎
𝑛
(𝑁 (𝑤

𝑛
, 𝑘
𝑛
) + 𝑢
𝑛
)]

+ (1 − 𝜖
𝑛
) 𝑦
𝑛
, 𝑢
𝑛
∈ 𝐴 (𝑔 (𝑥

𝑛
)) , ∀𝑛 ≥ 0,

(117)

where {𝑢
𝑛
} is defined by

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀)𝐻 (𝐴 (𝑔 (𝑥

𝑛+1
)) , 𝐴 (𝑔 (𝑥

𝑛
))) ,

∀𝑛 ≥ 0,

(118)

for any 𝑤
𝑛
∈ 𝑇𝑥

𝑛
, 𝑘
𝑛
∈ 𝐹𝑥

𝑛
, and some 𝜀 > 0. Assume

that ∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded subset

𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ Δ, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Δ (119)

and, for any 𝑤 ∈ 𝑇𝑞 and 𝑘 ∈ 𝐹𝑞, (𝑞, 𝑤, 𝑘) is a solution of the
MVVI (16).
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