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Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there
is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing
the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-
scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense
Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of
the brain network ROIs in previous studies.Then, we construct structural brain networks based on diffusion tensor imaging (DTI)
data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-
of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition,
we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free
gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local
graph properties. Our experimental results suggest that among the seven theoretical graphmodels compared in this study, STICKY
and SF-GD models have better performances in characterizing the structural human brain network.

1. Introduction

Thehuman brain is intrinsically organized into distinct large-
scale functional networks, and cognitive functions arise from
the dynamic interactions of distributed brain areas operat-
ing in these networks [1]. New advances in neuroimaging
techniques have shown the possibility of systematic exploring
the human brain formal complex network perspective. Graph
theory provides a theoretical framework in which the topo-
logical properties of the brain networks can be examined such
as centrality, clustering, efficiency, hierarchy, modularity,
robustness, small-worldness, and synchronizability [2], and
it can reveal important information about both the global
and local organizations of the human brain networks. The
improved characterization of brain networks achieved via
graph-theoretical methods provides not only parsimonious
accounts of normal cognitive processes [3], but also novel

insights into psychiatric and neurological disorders such as
Alzheimer’s disease [4, 5], multiple sclerosis [6], and atten-
tion-deficit disorder [7].

Many complex systems show remarkably similar macro-
scopic behaviors despite profound differences in the micro-
scopic details of the elements of each system or their mecha-
nisms of interaction [2]. In this paper, we focus on an impor-
tant issue that has not been adequately addressed before: what
graph models can best possibly describe the structures of
brain networks. In this way, the model provides a possible
explanation for a key challenge for systems neuroscience: how
to understand the complex network organization of the brain
on the basis of neuroimaging data [8]. For instance, previous
studies have demonstrated the small-worldness [9] and scale
free properties of human brain networks [10].

In brain network studies, the methods for identifying
regions of interest (ROIs), that is, the network nodes, can
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be generally classified into four categories. The first group
is manual labeling by experts based on experience and
domain knowledge. This method is widely used; however,
it may not be reproducible due to both intersubject and
intrasubject variations [11]. The second group is data-driven
methods, which clusters ROIs from the brain image itself
[12, 13]. However, it might be sensitive to the clustering
parameters used in many data-driven approaches. The third
group of methods identifies activated brain regions as ROIs
by task-based functional magnetic resonance imaging (task-
based fMRI), and it is regarded as the benchmark approach
for ROI identification. However, task-based fMRI itself has
limitations such as being time-consuming and expensive.
Additionally, different patternsmay be shown in group-based
activation maps from an individual’s activation map [14]. In
short, it remains quite challenging to accurately localize ROIs
for each individual by using standard analysis of task-based
fMRI data [15]. The last group methods are cortical parcella-
tion based on image/surface registration, whose limitations
have been comprehensively discussed in [16, 17].

In this paper, we apply our recently developed brain refer-
ence system, named Dense Individualized and Common
Connectivity-based Cortical Landmarks (DICCCOL) [18]
which discovers 358 consistent and corresponding ROIs
across subjects based on diffusion tensor imaging (DTI) data,
to localize the ROIs for each participated subject. DICCCOL
possess intrinsically established structural and functional
correspondences (universal), while their locations and sizes
are determined in each individual’s space (individualized).
With the identified brain ROIs, the structural brain network
is constructed for each subject based on the corresponding
DTI data. Then, through the large network analysis tool
GraphCrunch2 [19], we evaluate the fitness of seven popular
theoretical graph models for describing the real brain net-
work by measuring both the global and local graph prop-
erties of the constructed brain networks and compare them
with those graph models. The graph models are as follows:
(1) Erdős-Rényi random graph (ER) [20]; (2) Erdős-Rényi
random graph with the same degree distribution as the input
data (ER-DD) [19, 21]; (3) geometric random graph (GEO)
[22, 23]; (4) geometric gene duplication model (GEO-GD)
[24]; (5) scale-free Barabási-Albert preferential attachment
model (SF) [25]; (6) scale-free gene duplication model (SF-
GD) [26]; (7) stickiness-index-based model (STICKY) [27].
Those graph models will be explained in detail in Section 2.

Our experimental results suggest that the SF-GD model
fits the real brain network the best in terms of global and
local graph properties. We also demonstrate that the real
brain network also has the STICKY property. In summary,
the SF-GD model, combined with its STICKY property, can
best describe graph properties of the real brain network
and also can indirectly describe the mechanism of structural
network from biological properties. Importantly, the results
are consistent across populations.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. DTI datasets for 104
healthy subjects including three age groups of adolescents

(28), young adults (53), and elderly normal brains (23) were
acquired on a 3T GE Signal magnetic resonance imaging
(MRI) scanner. Acquisition parameters for the scans were
as follows: 256 × 256 matrix, 3mm slice thickness, 240mm2
field of view (FOV), 50 slices, 15 diffusion weighted imaging
(DWI) volumes, and 𝐵 value = 1000. The preprocessing of
DTI data included brain skull removal, motion correction,
and eddy current correction [28]. After pre-processing, fiber
tracking was reconstructed via MEDINRIA [29]. Then, The
grey matter (GM)/white matter (WM) cortical surface was
reconstructed according to the brain tissue segmentation
map based on the DTI data [30].

2.2. Structural Brain Network Construction. The structural
brain network of each subject is represented as an unweighted
undirected graph 𝐺 = (𝑉, 𝐸) in which 𝑉 = {V

𝑖
, 𝑖 = 1, 2, 3, . . . ,

𝑁} is the set of nodes and 𝐸 = {𝑒
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑁} is the

set of edges, where𝑁 is the number of nodes in the network.
The nodes in 𝑉 are identified via DICCCOL system [18], and
the elements in 𝐸 are measured for each ROI pair indepen-
dently. Specifically, DICCCOL employs a novel data-driven
strategy to discover, from DTI datasets, dense and common
cortical landmarks [18]. The basic idea is that we optimize
the localizations of each DICCCOL landmark in individual
subjects by maximizing the groupwise consistency of
their white matter fiber connectivity patterns. We obtain 358
DICCCOLROIs for each subject and regard them as network
nodes.Whitematter fibers obtained via the deterministicDTI
tractography are projected onto the reconstructed cortical
surface and the number of fibers connecting the ROI pair
is used to measure the structural connectivity between the
ROI pairs. Thus, a structural connectivity matrix is obtained
for each subject. A predefined threshold 𝑇 is applied on
the connectivity matrix to remove the noise and errors in
fiber tracking. Note that 𝑇 is the same for all the subjects.
After thresholding the structural connectivity matrix, we
obtained the adjacency matrix 𝐴

𝑁×𝑁
for each subject. In

the adjacency matrix, two nodes V
𝑖
and V

𝑗
are connected

if 𝑎
𝑖𝑗
= 1; otherwise, 𝑎

𝑖𝑗
= 0. The self-loops are currently

ignored in the constructed structural brain networks.
Following the procedure described above, we constructed

structural brain networks for 28 adolescents, 53 adults and 23
elders. Figure 1 shows exemplar brain networks in different
groups.

2.3. Graph Models. In this study, we compared the topolog-
ical properties of the constructed structural brain networks
with those of 7 typical graph models via GraphCrunch2
[19], a tool for complex network analysis. GraphCrunch2
implements the following network models: (1) Erdős-Rényi
random graph model (ER): ER graph is generated by using
the Library of Efficient Data Types and Algorithms- (LEDA-)
based random graph generator [19]. ER graph can provide
a rigorous definition of what it means for a property to
hold for almost all graphs, or be used in the probabilistic
method to prove the existence of graphs satisfying various
properties [20]. (2) Erdős-Rényi random graph with the
same degree distribution as the input data (ER-DD): ER-
DD graph is generated by using the “stubs method” [19]. In
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(a) Adolescent (b) Adult (c) Elder

Figure 1: Examples of structural brain networks in different groups. (a) Adolescent group. (b) Adult group. (c) Elder group. The nodes are
represented by green spheres and the edges are represented by white lines. The constructed structural brain networks are overlaid on the
corresponding cortical surfaces reconstructed from DTI data.

brief, according to the degree distribution of the real-world
network being modeled, the number of “stubs” (to be filled
by edges) is assigned to each node in the model network.
After that, edges are created between randomly picked pairs
of nodes. At last, the number of “stubs” left available at
the corresponding “end-nodes” of the edge is decreased by
one [19, 21]. (3) Geometric random graph model (GEO):
in GEO graph, nodes correspond to uniformly randomly
distributed points in a metric space and if the corresponding
points are close enough in the metric space, according to
some distance norm, the edges are created between pairs
of nodes [22, 23]. (4) Geometric gene duplication model
(GEO-GD): GEO-GD graph is the extension of geometric
random graph, in which the principles of gene duplications
andmutations are incorporated [19]. Everymodel determines
the principle by which the network is grown from a small
seed network and adds new nodes intended to model gene
duplications and mutations [24]. (5) Scale-free Barabási-
Albert preferential attachment model (SF) [25]: the most
important characteristic in a scale-free network is the relative
commonness of vertices with a degree that greatly exceeds
the average.The highest-degree nodes are named “hubs.”The
scale-free property strongly correlates with the robustness of
network. The hierarchy allows for a fault-tolerant behavior
[26]. (6) Scale-free gene duplication model (SF-GD): SF-
GD model is an evolution of SF model. The tolerance of
SF-GD to damage is determined by the scale-free nature
of its multifractal distribution. However, they present novel
properties: multifractal features are inherited in a model
of growing networks [26]. (7) Stickiness-index-based model
(STICKY): STICKY graph is based on stickiness indices
that summarize node connectivities and the complexities
of normalized degree of nodes in networks. The stickiness
framework produces a convenient, parameter-free random
network [27].

According to the input structural brain network,
GraphCrunch2 repeatedly generates a number of instances
of the defined graph models and measures the global and
local graph properties that infer the similarity/dissimilarity

between the input graph and each of the generated model
graph instances. In our experiments, the number of repeat-
edly generated instances is 10. The global and local graph
properties implemented inGraphCrunch2will be introduced
in the next section.

2.4. Topological Properties of Graphs. We calculated both
global and local topological graph properties for the con-
structed structural brain networks and the 7 graph models.
Statistical analysis was conducted to explore which graph
model can best describe the constructed brain networks.
In this paper, the following global properties are examined:
(1) Pearson correlation coefficients between the degree dis-
tributions [31]; (2) average shortest path length difference
ratio; (3) average clustering coefficient difference ratio. The
local graph properties include the relative graphlet frequency
(RGF) distance [23] and the graphlet degree distribution
(GDD) agreement [32]. We briefly provide the definitions of
these measurements below.

2.4.1. Global Graph Properties. Define the degree 𝑘
𝑖
of a node

𝑖 as the number of neighbors it has in the network. The
topological property of a graph can be obtained in terms of
the degree distribution 𝑃(𝑘) [2]. The degree distribution is
one of indirect measures that reflect the network robustness
to insult [8]. We compute Pearson correlation coefficients
between the degree distributions of the graph model and
the real brain network as the similarities between them in
the aspect of degree distributions. Shortest path length plays
an important role in characterizing the internal structure of
a graph. Shortest path length of a node pair is defined as
the path between two nodes in a graph that the number
of its constituent edges is minimized. The average of the
shortest path length, also known as characteristic path length,
is the mean of the shortest paths over all node pairs [2] and
is the most widely used measure to functional integration
[8]. The clustering coefficient of node 𝑖 is defined as 𝐶

𝑖
=

2𝐸neighbor,𝑖/(𝑘𝑖(𝑘𝑖−1)), where𝐸neighbor,𝑖 is the number of edges
between neighbors of 𝑖. The average clustering coefficient 𝐶
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is the mean of 𝐶
𝑖
over all nodes [2]. In this paper, we use

average shortest path length difference ratio (PathDiff) and
average clustering coefficient difference ratio (ClustDiff) to
measure the difference between graph models and the real
brain networks:

PathDiff =
󵄨
󵄨
󵄨
󵄨
Pathmodel − Pathreal

󵄨
󵄨
󵄨
󵄨

Pathreal
× 100% (1)

ClustDiff =
󵄨
󵄨
󵄨
󵄨
𝐶model − 𝐶real

󵄨
󵄨
󵄨
󵄨

𝐶real
× 100%, (2)

where Pathmodel and Pathreal are the average of shortest path of
models and real brain networks, respectively and 𝐶model and
𝐶real are the average of clustering coefficient of models and
real brain networks, respectively. Smaller difference indicates
higher similarity between two networks.

2.4.2. Local Graph Properties. In addition to above global
properties, we also measured the local graph properties to
evaluate the fitness of the graph models to the real brain
networks. In this paper, the local graph properties include
RGF distance and GDD agreement.

Graphlet degree distribution agreement (GDD agree-
ment) [32] is a similarity measure between topologies of
two networks based on graphlet degree vector distribu-
tions. GraphCrunch2 computes 2–5 nodes graphlets [19].
By calculating the fitness of each of the 73 GDDs of the
networks under comparison, GDD agreement contains 73
similarity constraints. High GDD agreement between two
networks indicates that they are similar [19]. In general, GDD
agreement is a local heuristic metric for measuring network
structure. It imposes 73 highly structured constraints, and
thus it increases the chances that two networks are truly
similar if they are similar with respect to this measure [32].

Relative graphlet frequency distance (RGF distance) [23]
is a measure that compares the frequencies of appearance of
all 2 to 5 node graphlets in two networks [19]. Since there are
30 possible graphlets on up to 5 nodes, RGF distance includes
30 similarity constraints by examining the fit of 30 graphlets
frequencies between two networks. The similarity between
two graphs only depends on the differences between relative
frequencies of graphlets. Smaller RGF distance indicates
higher similarity between networks [19].

3. Results and Discussion

3.1. Topological Graph Properties

3.1.1. Global Graph Properties. Figure 2(a) shows the Pearson
correlation coefficients between the degree distributions of
the constructed brain networks and the 7 graph models for
28 subjects in the adolescent group. Note that the ER-DD
model needs to be excluded because it has the same degree
distribution as the input graph. It is seen that the Pearson cor-
relation of degree distribution is approaching to 1. Figure 2(a)
indicates that the STICKY model and SF-GD model have a
high correlation with the real structural brain networks. The
difference ratio of average shortest path length and average
clustering coefficient are shown in Figures 2(b) and 2(c),

respectively. It is seen that the SF-GD and STICKY models
have lower average shortest path length difference ratio and
average clustering coefficient difference ratio.

In general, the comparison of global topological proper-
ties between real structural brain networks and the 7 graph
models demonstrates the superiority of SF-GD and STICKY
graphmodels in characterizing the structural brain networks.
SF-GD and STICKY graph models share common features,
namely, “inheritance” and “variance”: when the new nodes
are created, the son nodes inherit the connectivities of their
parent nodes (“duplication” and “stickiness”). Meanwhile, the
son nodes have new connectivities with other nodes which
are not linked with their parent nodes “divergence.” These
characteristics could indirectly describe the biologically
important properties of the mechanism of structural brain
network. In the process of brain development, the new neu-
rons are created and contain both functional and structural
features. In this way, the specific regions of the brain which
have specific function are formed, and the functions of these
regions are improved and enhanced, such as the visual associ-
ation area, motor speech area, and olfactory area. Meanwhile,
the new neurons brought additional connectivities with other
neurons in different regions; therefore, they enhanced the
cooperation and coordination ability of different regions in
human brain. The “stickiness” indicates that the important
neurons which have large degree in structural brain network
will maintain the original functional and structural features
during brain development. On the other hand, the SF-
GD network shares common features with other scale-free
networks, and its tolerance to damage is determined by the
scale-free nature of its multifractal distribution. Therefore,
it also means that, during development, the brain not only
maintains the functional integrity, but also is with increased
stability. The SF-GD model has the lowest average shortest
path length difference ratio indicates that “divergence” feature
enhanced the interactions among different regions during
brain development.

3.1.2. Local Graph Properties. The RGF distance and GDD
agreement of the 7 graph models, in comparison with the
real structural brain networks for the adolescent group with
28 subjects, are shown in Figures 3(a) and 3(b), respectively.
It is seen that the GEO-GD model has the lowest GDD
agreements when compared with the real brain networks,
and there is no significant difference among the rest of the
graph models. It is also shown that STICKY, SF, and SF-
GD graph models have lower RGF distance, indicating their
superior performance in characterizing the real structural
brain networks. It is notable that GraphCrunch2 only cal-
culates 2–5 nodes graphlets of the networks, as mentioned
previously. In real brain networks, the connectivity patterns
are complex and there exist graphlets with size over 5 nodes.
Nevertheless, the local graph properties of RGF distance and
GDD agreement demonstrate that STICKY, SF, and SF-GD
graph models have higher similarity to the real structural
brain networks, especially for the STICKY model. This result
reflects that the “stickiness” feature plays an important role
in brain development, and it might be the main reason that
brain maintains regional and group integrity.
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Figure 2: The global graph properties of 7 network models compared with real brain networks (28 subjects). (a) The Pearson correlation
coefficients between the degree distributions. Higher value means the graph model can describe the real brain network better. (b) Average
shortest path length difference ratio. (c) Average clustering coefficient difference ratio. Lower value means the graph model can describe the
real brain network better. The 𝑥-axis is subject index.

In summary, the results of global and local topological
properties indicate that the SF-GD and STICKY graphmodel
fit the brain network data better; that is, the SF-GD and
STICKY models have better performance in the description
of structural brain networks. Since SF-GD and STICKY are
not in conflict [27], we can also regard the stickiness as a
property of the real brain network.

3.2. SF-GD versus Sticky. The global and local topological
properties presented in the previous section indicate that
SF-GD and STICKY graph models have comparable per-
formance in describing the real structural brain networks.
In this section, we present a further comparison study
between SF-GD and STICKY by evaluating two topological
properties of complex graph which were not implemented in
GraphCrunch2, namely, (1) small-worldness [9]; (2) global
efficiency [2]. Small-worldness has been reported as one
of the most important properties of both the functional

and structural human brain networks in previous studies.
Small-worldness networks are defined as networks that are
significantly more clustered than random networks, yet have
approximately the same characteristic path length as random
networks. More generally, small-world networks should be
simultaneously highly integrated and segregated [33]. This
property is often analyzed by considering the fraction of
nodes in the network that have a particular number of
connections going into them. The average inverse shortest
path length is a related measure known as the global effi-
ciency. Some authors have claimed that the global efficiency
may be a superior measure of integration [34]. Unlike the
characteristic path length, the global efficiency can be more
meaningfully computed on disconnected networks. Zero
efficiency corresponds to infinite length of paths between
disconnected nodes [8]. Figure 4 shows the mean of small-
worldness and global efficiency in the adolescent group.
It indicates that the SF-GD model has lower discrepancy
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Figure 3: The local graph properties of 7 network models for 28 adolescents. The 𝑥-axis is subject index. (a) GDD-agreement. Higher value
indicates higher similarity. (b) RGF-distance. Higher value indicates lower similarity.
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Figure 4: The comparison of small-worldness and global efficiency between SF-GD, STICKY and the real brain networks. (a) Small-
worldness. (b) Global efficiency.

Table 1: Average RGF distance in different groups.

Nodes ER ERDD GEO GEOGD SF SFGD STICKY
Adolescent 3.13 ± 0.29 1.85 ± 0.21 1.39 ± 0.10 1.40 ± 0.09 1.05 ± 0.10 1.18 ± 0.18 0.95 ± 0.19

Adult 3.03 ± 0.29 1.80 ± 0.21 1.43 ± 0.10 1.45 ± 0.10 0.98 ± 0.11 1.07 ± 0.19 0.95 ± 0.18

Elderly 2.93 ± 0.22 1.79 ± 0.19 1.43 ± 0.09 1.47 ± 0.11 0.91 ± 0.10 0.98 ± 0.16 0.98 ± 0.17

Table 2: Average GDD agreement in different groups.

Nodes ER ERDD GEO GEOGD SF SFGD STICKY
Adolescent 0.71 ± 0.04 0.71 ± 0.04 0.69 ± 0.04 0.62 ± 0.02 0.71 ± 0.04 0.67 ± 0.04 0.68 ± 0.04

Adult 0.71 ± 0.04 0.71 ± 0.04 0.69 ± 0.04 0.62 ± 0.03 0.71 ± 0.04 0.67 ± 0.04 0.68 ± 0.04

Elderly 0.72 ± 0.06 0.71 ± 0.05 0.70 ± 0.05 0.61 ± 0.03 0.72 ± 0.06 0.66 ± 0.05 0.68 ± 0.05

Table 3: Average Pearson correlation coefficients of degree distributions in different groups.

Nodes ER ERDD GEO GEOGD SF SFGD STICKY
Adolescent 0.17 ± 0.20 0.97 ± 0.05 0.35 ± 0.10 0.27 ± 0.07 −0.04 ± 0.11 0.43 ± 0.08 0.52 ± 0.08

Adult 0.18 ± 0.17 0.98 ± 0.03 0.35 ± 0.10 0.25 ± 0.07 −0.08 ± 0.09 0.43 ± 0.09 0.51 ± 0.09

Elderly 0.16 ± 0.15 0.98 ± 0.05 0.35 ± 0.08 0.22 ± 0.04 −0.10 ± 0.09 0.43 ± 0.08 0.49 ± 0.08
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Table 4: Average shortest path length difference ratio in different groups.

Nodes ER ERDD GEO GEOGD SF SFGD STICKY
Adolescent 0.13 ± 0.02 0.13 ± 0.02 0.19 ± 0.02 0.30 ± 0.02 0.12 ± 0.02 0.06 ± 0.02 0.09 ± 0.01

Adult 0.13 ± 0.02 0.12 ± 0.02 0.19 ± 0.03 0.30 ± 0.03 0.12 ± 0.02 0.06 ± 0.02 0.09 ± 0.02

Elderly 0.12 ± 0.01 0.12 ± 0.01 0.20 ± 0.02 0.31 ± 0.03 0.10 ± 0.01 0.05 ± 0.02 0.08 ± 0.01

Table 5: Average clustering coefficient difference ratio in different groups.

Nodes ER ERDD GEO GEOGD SF SFGD STICKY
Adolescent 0.74 ± 0.03 0.53 ± 0.05 0.33 ± 0.06 0.33 ± 0.06 0.57 ± 0.04 0.38 ± 0.07 0.52 ± 0.05

Adult 0.73 ± 0.03 0.52 ± 0.05 0.38 ± 0.05 0.37 ± 0.05 0.55 ± 0.03 0.34 ± 0.07 0.51 ± 0.05

Elderly 0.72 ± 0.02 0.53 ± 0.04 0.40 ± 0.05 0.39 ± 0.05 0.54 ± 0.03 0.32 ± 0.03 0.52 ± 0.04

compared with the real brain networks in both small-
worldness and global efficiency. This result to some extent
demonstrates that SF-GD graph model is relatively more
suitable in characterizing the human brain networks than
STICKY graph model.

3.3. Topological Graph Properties across Groups. As a repro-
ducibility study, we compared the topological properties of
the brain networks across three different groups (adolescents,
adults, and elders). The results are shown in Tables 1, 2, 3, 4,
and 5. The trend is almost the same and the difference across
the three groups is relatively small. It is also seen that the
SF-GD model has higher correlation coefficients of degree
distributions, lower average shortest path length difference
ratio, and average clustering coefficient difference ratio in
all the three groups. It indicates that SF-GD model is the
most similar network to the real structural brain networks.
The STICKY model also has higher similarity to real brain
networks in terms of GDD agreement and RGF distance.

4. Conclusion

In this paper, we compared the global and local graph prop-
erties, as well as the topological properties of structural
human brain networks to 7 representative graph models. The
objective is to explore which graph model can best describe
structural human brain networks.

Our experimental results demonstrated that SF-GD
graph model in general has the best performance in charac-
terizing the structural networks of the human brain, followed
by STICKY graph model. SF-GD graph model is based on
the hypothesis of evolution by duplications and divergence
of the genes which produce proteins [26]. It reproduces
the topological properties of the protein-protein interaction
networks (PIN) with noticeable accuracy. Our experimental
results also showed that the STICKY model has high GDD
agreement, high Pearson correlation coefficients of the degree
distributions, and low RGF distance and average shortest
path length difference ratio when compared with SF-GD
graphmodel.The STICKYmodel was also widely used in the
investigation of protein-protein interaction networks, and the
stickiness index can essentially capture the abundance and
popularity of binding domains on a protein.

Since SF-GD and STICKY are not in conflict [27], we
can also regard the stickiness as a property of the real brain
network. In SF-GD model, networks revolute by duplication
of nodes, and as a node is duplicated, it inherits most of the
neighbors (interactions) of its parent nodes but gains some
new neighbors as well [26]. Combined with stickiness index,
a duplicated node would inherit its parents’ stickiness index
along with many of the parents’ neighbors, and it would gain
new neighbors in proportion to its inherited stickiness index
and stickiness indices of the nodes already in the network
[27]. The characteristics of “duplication,” “divergence,” and
“stickiness” may explain the mechanism of structural brain
network from biologically important properties shaped by
natural selection. The “duplication” and “stickiness” make
sure that the new neurons are created and contain both the
functional and structural features. On the other hand, the
“divergence” ensures that the new neurons have new connec-
tivities with other neurons in different regions in order to
enhance the cooperation and coordination ability of different
regions in the human brain. This provides explanation why
both STICKY and SF-GD models are suitable for describing
the human brain networks; that is, the human brain networks
are similar to SF-GDmodel and have STICKY property at the
same time.
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