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The need to reduce energy consumptions and to optimize the processes of energy production has pushed the technology towards
the implementation of hybrid systems for combined production of electric and thermal energies. In particular, recent researches
look with interest at the installation of hybrid system PV/T. To improve the energy performance of these systems, it is necessary to
know the operating temperature of the photovoltaic modules. The determination of the operating temperature T is a key parameter
for the assessment of the actual performance of photovoltaic panels. In the literature, it is possible to find different correlations that
evaluate the T, referring to standard test conditions and/or applying some theoretical simplifications/assumptions. Nevertheless, the
application of these different correlations, for the same conditions, does not lead to unequivocal results. In this work an alternative
method, based on the employment of artificial neural networks (ANNSs), was proposed to predict the operating temperature of a
PV module. This methodology does not require any simplification or physical assumptions. In the paper is described the ANN that
obtained the best performance: a multilayer perception network. The results have been compared with experimental monitored

data and with some of the most cited empirical correlations proposed by different authors.

1. Introduction

In the world energy scenario affected by the reduction of
fossil fuels supply used for the production of the electrical
and thermal energy, the potential offered by renewable energy
sources (RES), is strategic for the industrial countries [1].
The exploitation of RES has promoted several thermal and
electric technologies, improving the overall energy conver-
sion efficiency [2]. The development of PV systems and of
solar thermal technology is playing an important role in
the building integration, to cover the electricity and thermal
needs for the production of heat water and the internal
heating.

In recent years, several researches have led to the instal-
lation and the study of hybrid devices [3]: hybrid photo-
voltaic/thermal collector or hybrid (PV/T) system.

The temperature of PV module increases when it absorbs
solar radiation; this temperature raising provokes a decrease
in electrical conversion efficiency; a PV/T system is capable
of partially avoiding this undesirable effect. The hybrid

technologies permit to control the temperature system; the
presence of a water/air circulation system cools the PV mod-
ule helping to increase the electrical output, and furthermore
the hot water can be afterword exploited, improving the
overall efficiency of the whole system [4]. Furthermore, the
operating temperature of the PV modules has a significant
importance when used in building integrated photovoltaic
energy system (BIPV). Many authors have pointed out
how the operating cell temperature must be evaluated for
the optimal sizing of BIPV system [5-9]. The assessment
of T, can therefore give important results in terms of
indoor thermal quality in the sustainable building field,
especially in the application of BIPV as smart windows
[10].

For these reasons, the evaluation of the PV temperature
is essential to ensure high performances.

As described by Skoplaki and Palyvos in [11], many cor-
relations for predicting the electrical performance of a pho-
tovoltaic module have been proposed and used by different
authors. This report highlights the role of the temperature of
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FIGURE 1: Working point of a generic PV panel at constant irradiance (1000 W/m?) with varying temperature and electric load.

the silicon as the main parameter that affects the conversion
efficiency.

However, as better explained in the following, the equa-
tions that describe the energy balance of a PV system make
the determination of the operating temperature of a PV mod-
ule not simple. In fact, because of the different nature of the
variables present in the balance (physical, thermoelectrical,
and environmental) and the uneasy determination of many
key parameters (e.g., overall heat transfer coefficient and
optical properties), the evaluation of the cell temperature,
by using an empirical correlation, could lead to not reliable
results.

In this work, the authors explore the possibility to offer an
alternative method to assess the operating temperature of PV
devices by using adaptive techniques. Adaptive systems such
as ANN should allow predicting, in a fast and reliable way, the
temperature of the PV module by varying all the boundary
conditions. To validate the reliability of the proposed ANN,
two different modules were tested and the results were
compared with experimental monitored data.

2. The Cell Temperature of a PV Module

In general, the performance of a photovoltaic module is de-
fined according to the “peak power;” which identifies the max-
imum electric power supplied by a PV system when it receives
asolar irradiance of LkW/m” (G,q) at the cell temperature of
25°C (T ). These conditions are only nominal because the
solar irradiance has a variable intensity and the module is
subject to considerable temperature changes [12].

Indeed, in actual conditions it is essential to evaluate
the operating condition under all possible circumstances of

solar irradiance G, cell temperature T,, wind speed W, air
temperature T, and electric load R;.

In Figure 1, it is possible to observe how the intersection
between the load line R; and IV curves identifies the
working point; with the same graphical method, it is possible
to identify the working point in terms of electric power;
the red circles identify the maximum power points. As it is
easy to understand, the T, is a key parameter that affects the
energy conversion efficiency of a PV module: increasing the
temperature decreases the delivered power.

In the literature, there are several available empirical cor-
relations that employ the PV module operating temperature,
as the expression proposed by Evans [13] that describes the
module’s efficiency # in correspondence to given values of the
T, and G as follows:

N = Href 1_X(TC_25)+810g10<G£)]’ (1)
ref
where 7, is the efficiency at standard test conditions (STC)
and the temperature coefficient y and the insolation coef-
ficient & have values of 0.004 K™' and 0.12, respectively, for
crystalline silicon modules [14]. Other authors [15-17], in-
stead, proposed the use of empirical constants, whose values
are only referred to as few models of PV panels.

The most common procedure to determine the cell tem-
perature T, consists in using the normal operating cell tem-
perature NOCT [18-20]. The value of this parameter is given
by the PV module manufacturer: T, is then dependent on the
air temperature T,;. and on the solar irradiance G according
to (2) as follows:

G
T, = Ty, + (Tyocr — 20) 300" )
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FIGURE 2: Energy balance in a PV system.

This very simple method yields satistying results only if
the PV modules are not roof integrated.

However, the NOCT approach estimates T, based only on
the passive behaviour of the PV, not taking into account at
the same time the actual weather variables and the electricity
production regimes of the PV module. This approach neglects
the fact that not all the absorbed solar irradiance is converted
into electricity: generally, only 15-18% is converted into
electricity; the remaining part of the insolation is transformed
into heat contributing to increase the temperature cell.

The heat transfer between the PV panel and the sur-
rounding environment is driven by a global heat transfer
coefficient, which describes the radiative and convective
exchange processes.

For these reasons, in this work after a simplified descrip-
tion of the energy balance of a PV, which highlights the
dependence of the operating temperature by some environ-
mental parameters and by the thermophysical properties of
a PV system, the authors underline how the determination
of T, using conventional calculation procedures is often
complex and difficult to solve. On the other hand, the use
of any empirical relationship, typically characterized by some
assumptions and simplifications, often affects the results.
In the following, the application of the ANN approach,
to predict the operating temperature of a PV module, is
proposed.

Recently, these methodologies have received attention
and increased their use very successfully in the implemen-
tation of MPP searching [21-30]. As previously mentioned,
this method does not need exact mathematical models, can
work with vague inputs, and can handle nonlinearities [31].

3. The Energy Balance of a PV Module

As already noted, the efficiency of a photovoltaic panel de-
pends mainly on the intensity of the solar irradiance and cell
temperature. Considering a generic PV system the energy
exchanges can be depicted by Figure 2.

In heat transfer analysis, some body can be observed
to behave as a “lamp” whose interior temperature remains
essentially uniform at all times during a heat transfer process.
The temperature of such bodies can be taken to be a function
of time only [32]. Applying this approach at the energy

balance of a photovoltaic panel, the lumped system analysis
permits describing the heat exchange as follows:

(P — Pye) dt = CAT + AU (T, - T,;,) dt, 3)
where P, is the electrical power product of the module
[W]; P, is the absorbed solar power [W]; C is the thermal
capacity of the PV system (glass, silicon, and plastic layers)
[J]; A is the surface of the panel [m?]; U is the global heat
exchange coefficient between the module and the surround-
ing environment [W/m?K]; t is the time [s].

Assume:

Py=10-G-A, (4)

P

ele

=1V, (5)

where 7 is the transmission coeflicient of the glass, « is the
absorption coefficient of the silicon, V' is the voltage [V], and
I is the current [A] produced by the panel. Generally, a PV
cellis represented as a current generator, connected in parallel
with a diode and two resistances R, and Ry, connected in
series and a parallel, respectively, and the I-V characteristic
can be described by the following equation:

: V+I1-R
I=1, -1, (e(v+1 R)/nT _ 1) - s )
sh

where I; is the photocurrent, I, is the diode saturation
current, and n is the ideality factors of the diode. Applying
the definition of the electric power as described in (5) and
considering the one diode approach, represented by (6), the

P,. can be stated as

P

€

. V+I-R
L=V {IL 1, (e(V+IR5)/nT B 1) B —s}
Rsh

2
Pele'Rs+V2)/V'TlT) I _ V- Pele : Rs
0 ————.

(
=V +V(1-e
t ( Rsh

7)

Knowing the electric power and the absorbed solar power
is possible to evaluate the thermal power that contributes to
heat the PV panel as follows:

Pthermal = (Psol - Pele) = [(T(X G- A) - (I . V)] . (8)

In this way (3) can be rewritten as

Pipermadt = Cdt + U (T, — T,) dt. 9)
Moreover,
ar dt
[U (T~ Ta) ~ Prema] € 1)
Assume:
(Tc - Tair) =9,

(11)

d(T,-T,,) = dT = d9.



If at the time dt we assume constant T,. , the C of the

air?

system, the coefficient U, and the quantity Py.ma» it is
possible to write
d (U9 - Pyerm U
( the al) = _Zdt, (12)
(US - Pthermal) C
integrating
UY - Pyerm U
In U8 = Permat) _ —=(t-t,). (13)
(US - Pthermal)() C

If the values of the thermophysical variables are known,
the expression of the temperature of the PVsystem is
T =T. + Pthermal
Cc alr U
P (14)
hermal \ | _-(U/C)A
+ (Tlt—A - Tair|t7A - t[e}ma ) e wrey .

As it is possible to observe, also in this simply lumped
parameters approach, the evaluation of the cell temperature
is not immediate and it strongly depends on the solar ir-
radiance and air temperature. Furthermore, the presence of
exponential terms and implicit expression of electric power
complicates the resolution procedure, not allowing the direct
mathematical calculation. In addition, the determination of
the global heat transfer coefficient U must be taken into
account.

Unfortunately, the case study of hot inclined rear surfaces
is still an open problem [33].

If we give up the idea of analytically solving the problem,
as previously described in Section 2, in the literature, it is
possible to find different correlations about the T, value
[11, 17, 34-37]. However, each correlation is characterised
by the same simplifications and/or assumptions that do not
represent the complexity of the PV energy balance accurately.

4. Definition of ANN

ANN s are computational intelligence architectures based on
emulating biological neural networks and have the capability
of “learning” the behavior of input data. The basic unit of
an ANN is a neuron. An artificial neuron (AN) acts in the
same way as a biological neuron; each has a set of inputs
and produces an output based on these inputs. A biological
neuron produces an output by comparing the sum of each
input to a threshold value; based on that comparison it
produces an output. In addition, it is able to vary the weight
of each input according to the priority of the input. The
inputs and outputs of a biological neuron are called synapses;
they may act as inputs to other neurons or as outputs. Thus,
the set of neurons and synapse creates an interconnected
network, which produces an output based on weights, sums,
and comparisons [22].

Generally, an artificial neural network consists of multiple
interconnected artificial neurons, arranged in several layers;
Figure 3 shows a schema of a typical arrangement of neurons
in an ANN.

The use of ANNs often makes it possible to identify
correlations between data that are very complex to assess.
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FIGURE 3: Generic schema of an ANN.

TaBLE 1: Datasheet of the Kyocera KC175GH-2 module.

Kyocera KC 175 GH-2

Maximum power P [W] 175
Maximum voltage Vip [V] 23.6
Maximum current Lop [A] 7.42
Open-circuit voltage Voc [V] 29.2
Short-circuit current I [A] 8.09
Thermal voltage coeflicient v [VIC] -0.109
Thermal current coeflicient p [mMA/°C] 3.18

TABLE 2: Datasheet of the Sanyo HIT 240 HDE-4 module.

Sanyo HIT 240 HDE-4

Maximum power P .« (W] 240
Maximum voltage Vip [V] 355
Maximum current Lo [A] 6.77
Open-circuit voltage Voc [V] 43.6
Short-circuit current I [A] 7.37
Thermal voltage coeflicient o [vrrCl -0.109
Thermal current coefficient p [MA/°C] 2.21

5. Experimental Setup

To apply a neural approach it is necessary to have a large
database of specific data that represents the analysed system.
For this reason, to build and to train a specific ANN, a specific
test facility situated on the roof of the Energy Department of
University of Palermo (38" 1070N, 13° 1220E) has been made
up. The experimental device was built up to permit to acquire
the thermoelectrical parameters of photovoltaic modules and
the weathers variables that define the energy balance of a PV
system. The test facility consists of two silicon panels (Kyocera
KC175GHT-2 and Sanyo HIT 240 HDE4) connected with a
precision resistance set (Figure 4). The technical data of the
two panels provided by the manufacture are shown in Tables
land 2.
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The measurements were performed with a data acquisi-
tion module National Instruments NIUSB-9221 and a Delta
Ohm pyranometer (mod. LPPYRA 02 AV) linked to an
Advantech ADAM 6024 module. A DavisVantage PRO 2
Plus weather station was used to collect the measurements
of air temperature and relative humidity, wind speed and
direction, horizontal global solar irradiance, and atmospheric
pressure. The temperature of the panels was measured using
some thermocouples (type T, copper-constantan) put in three
different points of each panel [34].

In this way, in addition to the weather data climate
collected by the weather station and the cell temperature
measured by the thermocouples, it was also possible to
measure and collect electric data related to the operation
panel: the power delivered, the short-circuit current Iy, and
the open-circuit voltage V.

6. Preliminarily Analysis of Data Collected

To correctly apply the neural approach, all data must be
subject to a preprocessing step that consists in a preliminary
analysis that permits to identify possible outliers, to remove
uncorrected values, to carry out a statistical analysis, and to
perform a correlation analysis. The analysis of the common
current-voltage curves given by manufactures at constant
temperature or constant solar irradiance does not allow a
correct evaluation of the thermoelectrical behaviour of a pho-
tovoltaic panel because, in actual conditions, the temperature
and the solar irradiance change simultaneously.

Indeed to predict the yield of a photovoltaic system, it
is essential to evaluate the operating condition under all
possible circumstances of solar irradiance, cell temperature,
wind speed W, air temperaturem and electric load R;,
when the photovoltaic elements are working and producing
electricity. To identify the operation regimes of the panel
as a function of electricity production regimes, the authors

have chosen to compare the operating voltage V with the
maximum power point voltage Vy,,.,, .anel fOr given solar irra-
diance and cell temperature (Figure 1). In this way, the ratio
V[ Vipp,panel €asily allows to identify the operating regimes of
the panel as follows:

(i) when the ratio between the working voltage V and
the voltage of maximum power V;,,, ..ne is less than
0.95, the I-V characteristic is almost horizontal, and
the power output is proportional to the incident
insolation;

(ii) when the ratio V/V ., .na is greater than 1.05, the
I-V characteristic of the panel decreases much more
rapidly and the influence of insolation becomes less
significant (saturation conditions);

(iii) the regimen identified by aratio 0.95 < V/V .., anel <
1.05, characterizes the state of a PV panel connected
to a maximum power point tracking system (MPPT)
in which the load dynamically adapts to generate the
maximum power.

The evaluation of the maximum voltage was carried out
by using the following correlations:

G

ref

(15)
Vinpp = b+ v, T,

where the constants a and b were determined by a logarith-
mic interpolation and applying the least squares technique
between the values of the power output at different solar
irradiance and by a linear interpolation and applying the least
squares technique at different temperature, respectively.

In this case, the two couples of constants pertaining the
two modules have been evaluated using Tables 3 and 4 for the
Kyocera module and Tables 5 and 6 for the Sanyo module.
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TaBLE 3: Characteristic data values of Kyocera KC175GHT-2 at constant temperature (25°C) with varying solar irradiance.
Solar irradiance [W/m?]
1000 800 400 200 40
Py [W] 175.112 138.418 102.236 66.7111 32.1507 5.8841
Vmpp V] 23.6 23.3241 22.977 22.501 21.7091 19.9224
ImPP [A] 7.41999 5.93455 4.4495 2.9648 1.48098 0.295351

TaBLE 4: Characteristic data values of Kyocera KC175GHT-2 at
constant solar irradiance (1000 W/m?) with varying temperature.

Cell temperature ['C]

25 50 75
Py [W] 175.112 156.099 137.09
Vipp [V] 23.6 20.975 18.4243
Lopp [A] 7.41999 7.44215 7.44069

air G w Fae  Voc  Isc

FIGURE 5: Correlation analysis between operating temperature and
all input data for the Kyocera module.

For the Kyocera module, the mathematical interpolations
of the data collected in the previous tables permitted to
evaluate the following values: a = 1.1395 and b = 26.172.

For this last module, the mathematical interpolations of
the data collected in the previous tables permitted to evaluate
the following values: a = 1.7007 and b = 26.153.

In this way filtering the data for the operating regimen
represented by a ratio 0.95 < V/V ;.0 < 1.05, it was
possible to identify the data close to the maximum power
points. Filtering the data collected for both modules, two
datasets, indicated in Table 7, have been created; the 15% of
the filtered data will be used as a test dataset (not used for the
ANN training phase).

The correlation analysis for the two different PVmod-
ules (Figures 5 and 6) permits a first evaluation of the
mutual relationships between T, and all the other features.
The preliminary correlation analysis has identified a strong
correlation between T, and the solar irradiance G, the short-
circuit current I, the open-circuit voltage V¢, and the
electrical power P,.; on the other hand, it has identified a
moderate correlation with air temperature and wind speed.

A statistical analysis permitted to assess the maximum
(Max), mean (Mean), and minimum (Min) values and the
standard deviation (StDev) of all considered features (Tables
8and9).

air G w Isc Voo  Pae

FIGURE 6: Correlation analysis between operating temperature and
all input data for the Sanyo module.

7. Application of ANN

According to the type and nature of data that have been
collected from the experimental set, it was possible to choose
several topologies of neural networks. Different simulations
relating to several topologies of ANNs have been tested, but
in this work, only the best ANN will be described.

71. One Hidden Layer MLP. A multi-layer perception (MLP)
is a kind of ANN consisting of multiple layers of ANs in
which each layer is fully connected to the next one. Except
for the input ANs, each node is a neuron with a nonlinear
activation function. MLP utilizes a common supervised
learning technique for training the network. This topology
is one of the simplest available for ANNs; our MLP artificial
network is composed by: two input sources, two function
blocks, two weight layers, one hidden weight layer and one
error criterion block. In Figure 7 our one hidden layer MLP
topology is schematized to evaluate the cell temperature.
The input source represents all the available data that can
be used for training or testing; in this case it contains the total
vectors obtained after applying the filter (Table 7): 85% of the
total filtered vectors were used for the training phase and 15%
of the total filtered vectors were used for the testing phase.
The function blocks can be seen as nonlinear thresholds
for the propagation of the signals. They give the adaptive
system its nonlinear computing capabilities, and those used
in the following proposed network have a sigmoidal function.
The weights layer represents the long-term memory of the
system and is adjusted during the learning phase. Finally, the
error criterion is a block that takes two signals and compares
them according to a specific criterion; the signals terminate to
flow across the system. The training phase has been optimised
concerning the number of epochs to avoid overfitting.
In Table 10 are reported the number of epochs in order to
avoid the overfitting for the two different PV panels.
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TABLE 5: Calculated characteristic data values of Sanyo HIT240HDE-4 at constant temperature (25°C) with varying solar irradiance.

Solar irradiance [W/m?]

1000 800 600 400 200 40
Py [W] 240.335 189.975 140.323 91.5759 44.1493 8.08932
Viopp [V] 35.4998 35.0848 34.5641 33.8511 32.6691 30.0095
Lopp [A] 6.77004 5.41475 4.0598 2.70526 1.35141 0.269559

Tair » W, Pye, S
G Isc, Voc

Weights
layer

T.

air>

w, Pele >
G, Isc, Voc

Input
source
(testing)

<Z
P

=3

Weights
layer

T,, ANN
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o

{Tc, experimental| ¢—

Weights
layer

FIGURE 7: Schema of one hidden layer MLP topology for the cell temperature evaluation.

TaBLE 6: Calculated characteristic data values of Sanyo HIT240-
HDE-4 at constant solar irradiance (1000 W/m?) with varying
temperature.

Cell temperature [°C]

25 50 75
Pmpp [W] 240.335 222.492 204.759
Vmpp [V] 35.4998 32.7991 30.1697
ImpP [A] 6.77004 6.78349 6.78691
TABLE 7: Datasheet and dataset vectors.

Kyocera panel Sanyo panel
Original datasheet vectors 3832 2310
Filtered dataset vectors 333 205
Test dataset vectors 50 31

After the training, for each ANN the postprocessing
phase evaluates the mean error (ME) and the mean absolute
error (MAE) that represents the quantity used to measure
how close forecasts or predictions are to the eventual out-
come. Furthermore, the standard deviation (StDev) that
shows how much variation or “dispersion” exists from the
average (mean, or expected value) was evaluated.

Figures 8 and 9 show the ME distribution for the Kyocera
and Sanyo modules, respectively, in terms of cell temperature.

Figures 10 and 11 show the MAE distribution for the
Kyocera and Sanyo modules, respectively, in terms of cell
temperature.

In Table 11 the values of ME, MAE, and StDv of T, case,
for the two different PV panels are reported.

Furthermore, the confidence plot that gives an estimated
range of values, which is likely to include the calculated cell

Frequency
S N B N ®

FIGURE 8: Error distribution over 50 vectors of T, with one hidden
layer MLP topology for the Kyocera module.

Frequency
(= S AN

FIGURE 9: Error distribution over 31 vectors of T, with one hidden
layer MLP topology for the Sanyo module.

Frequency
S N s O

01 02 03 04 05 06 07 08 09
T. (°C)

FIGURE 10: Absolute error distribution over 50 vectors of T, with one
hidden layer MLP topology for the Kyosera module.
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TABLE 8: Statistics evaluation of Kyocera panel.

T, ['C] P [W] G [W/m’] W [m/s] Iic [A] Voc [V]
Max 2727 165.56 1078.20 7.20 8.73 30.24
Min 9.90 22.17 126.41 0.00 1.01 26.50
Mean 19.57 110.21 729.30 2.32 5.91 28.13
StDev 2.39 48.35 293.22 1.231 2.38 0.74
Sample 333 333 333 333 333 333

TABLE 9: Statistics evaluation of Sanyo panel.

T, ['C] P [W] G [W/m?*] W [m/s] I [A] Voc [V]
Max 30.93 222.27 1044.33 5.23 3.84 64.44
Min 17.87 23.14 129.89 0.00 0.48 62.11
Mean 25.83 156.63 725.44 2.509 2.77 63.75
StDev 1.89 58.25 259.68 114 0.95 0.47
Sample 205 205 205 205 205 205

TaBLE 10: Number of epochs and learning time.

Kyocera panel Sanyo panel

Learning time [s] 6.00 1.56
Epochs 3.326 1.542
8 s Saaasantes
56 e
[
= ) A
0 N 1 |
0.1 0.2 0.3 0.4 0.5 0.6 0.7
T. (°0)

FIGURE 11: Absolute error distribution over 31 vectors of T. with one
hidden layer MLP topology for the Sanyo module.

temperature with a probability of 95% was evaluated. Due to
the physics of the analyzed problem, the confidence plot was
evaluated only for daylight hours neglecting the temperature
trend during the night. In Figure 12 the confidence plot of
T, for the Kyocera module is +0.23°C, and in Figure 13 the
confidence plot of T, for the Sanyo module is +0.74°C.

In these figures the range of the confidence plot was
indicated by the red (high) and blue (low) lines, while the
measured data are indicated by the black line and those
obtained from the ANN by the purple line. As it is possible
to see the output data coincide perfectly with the desired data
with a very narrow confidence band.

8. Results and Discussion

Based on analysis of the results obtained, it is clear as
the proposed ANN approach for evaluating the operating
temperature gives very good performances, characterized by
an extremely narrow confidence band that does not exceed
+0.7366°C. This methodology is characterised by a great

Sample
—— Output — Low
—— High — Desired

FIGURE 12: Confidence plot of calculated output versus T, measured
data for the Kyocera module.

42 By oy 1 Lo o e NS T PR
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Sample
—— Output — Low
—— High — Desired

F1Gure 13: Confidence plot of calculated output versus T. measured
data for the Sanyo module.

flexibility and reliability providing excellent results for any
kind of modules: monocrystalline and/or polycrystalline.
Furthermore, this approach does not consider any simplifica-
tions nor assumptions; finally, the learning time is very short.

To validate the ANN methodology, a comparison
between ANN results and the T, calculated with some of the
most cited empirical correlations was carried out extracting
the MAE values.
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TABLE 11: Mean error and mean absolute error of the one hidden layer MLP topology.
Kyosera module Sanyo module
T [°C] StDv (T) T[C] StDv (T')

ME -0.21 0.22 -0.06 0.16
MAE 0.23 0.20 0.11 0.13

TABLE 12: Mean absolute error results for different T, correlations.
Correlation Mean absolute error [C] Note

Kyocera Sanyo
ANN 0.23 0.11 MLP topology
Servant 4.62 4.01 a=0.0138, f=0.031, y =0.042, W = 1m/s
Duffie and Beckman 16.36 14.38 7o /U taken as a constant
Hove 16.09 16.32 To/U determined experimentally

In this work were chosen the following correlations.
Servant Correlation (see [35])
T, =Ty +aG(1+pT,) (1 -yW)(1-1.0537), (16)

where «, 3, and y are the constants, defined by the model of
the author.

Duffie-Beckman Correlation (see [36-38])

T, =Tair+G<T—a><1— i),
U T™

where # is the efficiency and ta/U is defined constant by the
model of the authors.

17)

Hove Correlation (see [39])

G —
r o 4 Gla=n)

(18)
c a U

>

where 77 is the efficiency and 7a/U is determined experimen-
tally.

The results shown in Table 12 were obtained by applying
the previous correlations at the same modules (Kyocera and
Sanyo) for the same data set (filtered data) and calculating
the mean absolute error between the measured data and the
calculated data.

9. Conclusion

In this paper, an artificial neural network approach has been
proposed to determine the operative temperature of PV
modules. As previously described, the energy balance of a
generic PV system, because of the different natures of the
parameters (thermoelectric, environmental, and physical)
and the complex mathematical formulation, is not easy to
solve. Different authors proposed several empirical correla-
tions which should permit obtaining directly the PV module
operating temperature, developed from common geometries
and weather conditions. Generally, if the correlations are
in implicit form, an iteration procedure is necessary for

the calculation; if the correlations are in explicit form, very
often they are referred only to references conditions or
sometime they use same constant values. In any case, these
assumptions and simplifications could affect the reliability of
the results. The application of the ANN approach, instead,
represents a simple and fast solution to correctly evaluate
the operative regimen of a PV module by varying all the
boundary conditions.

In this work the authors proposed a one hidden layer MLP
to determine the T, of a generic PV panel. The ANN has
been tested and trained with experimental data consisting of
air temperature, wind speed, solar irradiance, power output,
open-circuit voltage, short-circuit current, and cell tempera-
ture. The results obtained of the ANN issued a reliable tool
to forecast the cell temperature of the PV panel. Comparing
the performances of this network with those of some of the
most cited empirical correlations, the ANN results present
a significant lower MAE. Furthermore, the very short time
requested for the training phase suggests that the ANN could
be integrated in a software for run-time evaluation of the cell
temperature.
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