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The inhibitory activities (pIC
50
) of N2 andO6 substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors have

been successfully modeled using calculated molecular descriptors. Two linear (MLR) and nonlinear (ANN) methods were utilized
for construction ofmodels to predict the pIC

50
activities of those compounds.TheQSARmodels were validated by cross-validation

(leave-one-out) as well as application of the models for prediction of pIC
50

of external set compounds. Also, the models were
validated by calculation of statistical parameters and Y-randomization test. Two methods provided accurate predictions, although
more accurate results were obtained by ANNmodel.Themean-squared errors (MSEs) for validation and test sets ofMLR are 0.065,
0.069 and of ANN are 0.017 and 0.063, respectively.

1. Introduction

The cyclin-dependent kinases (CDKs) are a class of enzymes
which play a fundamental role in cell cycle regulation [1, 2].
Particularly as their name suggests CDKs activation partially
depends on the binding of another class of proteins named
cyclins, for example, cyclins of the D family complex with
CDK4 and CDK6 during G1 phase, cyclin E with CDK2 in
late G1, cyclin A with CDK2 in S phase, and cyclin B with
CDK1 (also known as cdc2) in late G2/M. Then, aberrant
CDK control and consequent loss of cell cycle check point
function have been directly linked to themolecular pathology
of cancer [3]. It is well known that phosphorylation in a
conserved threonine residue of the CDK subunit is required
for its complete activation. This task is performed by the
CDK activating kinase. These proteins properly regulate the
cell cycle progress and DNA synthesis only as an active
complex (T160pCDK/cyclin) [4]. Overall, the activity of the
CDK/cyclin complex can be depleted by at least two different
mechanisms that contain the phosphorylation of the CDK
subunit at the inhibitory sites or the binding of the specialized
natural inhibitors known as CDK inhibitors. In the first
mechanism, the amino acid residue Y15 and to a lesser extend

T14 (in CDK2) are phosphorylated by human Wee 1 Hu [5].
This inhibitory phosphorylation is independent of previous
cyclin binding [6]. The second mechanism involves the
binding of natural CDK inhibitors. Four major mammalian
CDK inhibitors have been discovered: P21 (CIP1/WAF190)
and P27 (KIP1) inactive CDK2 and CDK4 cyclin complexes
by binding to them.The two other inhibitors are P16INK4 and
P15INK4B that are specific for CDK4 and CDK6. They inhibit
the formation of the active cyclin complexes by binding
to the inactive CDK, and they can also bind to the active
complex [2, 7]. However, it has been shown that natural CDK
inhibitors are subexpressed in some carcinogenic cells, and
medicinal chemists have put some of their effort in the search
for new synthetic inhibitors to replace them [8–12]. Some
of them have entered in clinical field; for instance, flavopiri-
dol induces cell cycle arrest and tumor growth inhibition
[13].

The search for more potent and selective CDK inhibitors
is a daunting challenge due to the similarity of the ATP
binding site along the different CDK subtypes [14]. Accord-
ing to this, the development and use of new strategies to
overcome this problem are urgently needed. Nowadays, new
and exciting strategies have emerged and become available to
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find more potent and selective inhibitors, and they normally
use quantitative structure-activity relationships (QSARs)
derived from different computational calculation approaches
[15–19].

Quantitative structure-activity/property relationship
(QSAR/QSPR) was used for correlation of different activities
and properties to characteristics of molecular structures.
In recent years, several QSAR and QSPR models based on
both linear and nonlinear methods that aimed to predict
different activities and properties were used [20–30]. The
reliable prediction of inhibition of CDK2 has an important
role in medicinal researches. The ultimate role of the
different formulations of the QSAR theory is to suggest
mathematical models for estimating relevant endpoints of
interest, especially when these cannot be experimentally
determined for some reason. These studies simply rely on
the assumption that the structure of a compound determines
the related activity. The molecular structure is therefore
translated into the so-called molecular descriptors through
mathematical formulae obtained from several theories, such
as chemical graph theory, information theory, and quantum
mechanics [31, 32]. In this work, we carried out a QSAR
study by predicting the inhibitory activity of a set of N2
and O6 substituted guanine derivatives by using multiple
linear regression (MLR) and artificial neural network (ANN)
dealing with linearity and nonlinearity, respectively.

2. Basic Theory

2.1. Multiple Linear Regression (MLR). The general goal of
multiple linear regression (MLR) is to model the relationship
between some independent variables and a dependent vari-
able by fitting a linear equation to observed data. Generally,
the multiple linear regression model is as the following
equation:

𝑦 = 𝑏
1
𝑥
1
+ 𝑏
2
𝑥
2
+ 𝑏
3
𝑥
3
⋅ ⋅ ⋅ 𝑏
𝑚
𝑥
𝑚
+ 𝜀, (1)

where 𝑛 is the number of independent variables, 𝑏
1
, . . . , 𝑏

𝑛
are

the regression coefficients, and 𝑦 is the dependent variable
[33].

2.2. Artificial Neural Network (ANN). ANNs have large
numbers of computational units connected in a vast parallel
construction. Neural networks do not need an obvious
formulation of the handled problem. They act as a means
to introduce scaled data to the network. The data from the
input layer (input neurons) propagate through the network
via interconnections. Scalar weights are specialized to each
connection. A remarkable aspect of the neural networks is
their learning step. In this step, the value of weights and biases
would be optimized based on a set of measured numerical
values (training set). More details about neural networks are
given in [34, 35].

3. Materials and Methods

3.1. Data. The experimental data used in the present study to
model IC

50
were taken from [36].Thewhole data set included

56 compounds, whose biological activities (pIC
50

values)
were determined for inhibition of CDK2. It is worthy to say
that pIC

50
values span a broad range from 4.11 to 7.22M. In

this work, the structure-activity model is generated by ANN
andMLR.Thenames of these compounds, their experimental
and calculated pIC

50
values by ANN and MLR methods, and

also their values using leave-one-out are shown in Table 1. As
can be seen, this set contains 56 inhibitory activity (pIC

50
)

data of CDK2s.The data set was split into training, validation,
and test sets to increase the network’s generalization. The
training set of 34 compounds, with pIC

50
values ranging from

4.11 to 7.22, was used to construct the model. The validation
set of 11 compounds, with pIC

50
values ranging from 4.19

to 6.62, was used to prevent overtraining/over fitting of the
ANNmodel. The test set of 11 compounds, with pIC

50
values

ranging from 4.19 to 6.96, was used as an external set to
evaluate the predictive ability of the model.

3.2. Descriptor Generation and Screening. The inhibitory
activation of compounds is related to some of their structural,
electronic, and geometric properties. The value of these
properties can be encoded quantitatively by numerical values
named molecular descriptors. These molecular parameters
are to be used to search for the best QSAR model of the
inhibitory activation.The 2D structures of themoleculeswere
drawn usingHyperchem8 software [37].Themolecular struc-
tures were optimized using the Polak-Ribiere algorithm until
the root-mean-square gradient was 0.001 kcalmol−1. The
resulting geometry was transferred into the Dragon program
package, and 1481 descriptorswere produced [38].Then, these
descriptors were given to SPSS 17 for statistical work [39]. It is
worth mentioning that in the first preselected analysis, some
descriptors were removed because many of them included
zero or other constant/near-constant values and did not
have enough information of structure. On the other hand,
to decrease the redundancy existing in the descriptor data
matrix, the correlation coefficient 𝑅 of the descriptors with
each other (Pearson’s correlation) was examined, and the
collinear descriptors (with 𝑅 > 0.9) were removed. By
doing so, 238 descriptors were remained. Then by using the
stepwise mode for regression, 14 models were given. With
considering some parameters such as 𝐹, 𝑡, 𝑅, and standard
error (SE), model number 14 containing 10 descriptors was
used as MLR model to predict of pIC

50
. These descrip-

tors are 3D-MoRSE-signal 20/unweighted (Mor20u), Geary
autocorrelation-lag 2/weighted by atomic Sanderson elec-
tronegativities (GATS2e),𝑅 autocorrelation of lag 5/weighted
by atomic polarizabilities (R5p), Moran autocorrelation-
lag 2/weighted by atomic Sanderson electronegativities
(MATS2e), mean topological charge index of order 6 (JGI6),
mean topological charge index of order 6 (JGI4), 𝑅 autocor-
relation of lag 5/weighted by atomic masses (R1m), leverage-
weighted autocorrelation of lag 0/weighted by atomic masses
(HATS0m), 3D-MoRSE-signal 20/weighted by atomic van
der Waals volumes (Mor06v), 1st component accessibility
directional WHIM index/weighted by atomic electrotopo-
logical states (E1s). The name, class, and meaning of these
descriptors are shown in Table 2.
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Table 1: The names of compounds, their experimental and calculated pIC50 values by ANN and MLR methods, and also their values were
calculated using leave-one-out.

No. Name pIC50 ANN MLR ANN
(LOO)

MLR
(LOO)

1 6-Propoxy-9H-purin-2-amine 4.17 4.22 4.0983 4.2054 4.4244
2 6-Butoxy-9H-purin-2-amine 4.32 4.26 4.3 4.3073 4.3991
3 6-Pentyloxy-9H-purin-2-amine 4.31 4.31 4.27 4.4568 4.3289
4 6-Isopropoxy-9H-purin-2-amine 4.12 4.25 4.5953 4.3075 4.0767
5 6-Sec-butoxy-9H-purin-2-amine 4.6 4.38 4.31 4.4773 4.4061
6 6-Isobutoxy-9H-purin-2-amine 4.38 4.54 4.1 4.6696 4.6664
7 6-(2-Methylbutoxy)-9H-purin-2-amin 4.82 4.69 4.93 4.7491 4.7295
8 6-(Isopenthyloxy)-9H-purin-2-amin 4.59 4.49 4.505 4.5325 4.4889
9 6-(Hex-5-enyloxy)-9H-purin-2-amine 4.33 4.28 4.4022 4.964 4.4241
10 6-((E)-Hex-3-enyloxy)-9H-purin-2-amin 4.16 4.09 4.4578 4.0104 4.0491
11 6-(Allyloxy)-9H-purin-2-amine 4.11 4.22 4.1781 4.3261 3.7617
12 6-(2-Methylallyloxy)-9H-purin-2-amin 4.46 4.43 4.33 4.4437 4.4786
13 6-(2-Methylenebutoxy)-9H-purin-2-amin 4.68 4.56 3.5157 4.842 4.8973
14 6-(3-Methyl-2-ethylenebutoxy)-9H-purin-amin 4.8 4.86 4.67 5.0957 4.8305
15 6-(Cyclopentyl methoxy)-9H-purin-2-amin 4.68 4.69 5.0611 4.9247 4.7728
16 6-(Cyclopentenyl methoxy)-9H-purin-2-amin 4.51 4.65 4.42 4.7164 4.6733
17 6-(Cyclohexelymethoxy)-9H-purin-2-amin 4.66 4.49 4.6965 4.4498 4.4222
18 6-((Cyclohex-3-enyl)methoxy)-9H-purin-2-amin 4.8 4.71 5.0266 4.773 4.8678
19 6-(2-Cyclohexylethoxy)-9H-purin-2-amin 4.36 4.55 4.48 4.4313 4.482
20 6-(Benzyloxy)-9H-purin-2-amine 4.46 4.5 4.5365 4.512 4.4843
21 6-(Phenethyloxy)-9H-purin-2-amine 4.19 4.13 4.28 4.2465 4.1987
22 6-(2,2-Diethoxypropoxy)-9H-purin-2-amin 4.7 4.64 4.1429 5.0631 4.7004
23 6-((2-Isopropyl-1,3-dioxolan-2-yl)methoxy)-9H-purin-2-amine 4.19 4.26 4.04 4.5904 4.259
24 6-(Cyclohexylmethoxy)9H-purin-2-amin 4.77 4.92 4.7561 4.4964 4.5035
25 6-(Cyclohexylmethoxy)-N-phenyl-9H- purin-2-amin 6.01 6.19 5.826 6.0775 5.9886
26 6-(Cyclohexylmethoxy)-N- methyl-9H-purin-2-amin 5.3 5.18 4.92 5.2791 5.2741
27 6-(Cyclohexylmethoxy)-N-ethyl-9H-purin-2-amin 5.55 5.78 5.6238 5.2692 5.26
28 N-(3-Chlorophenyl)-6-(cyclohexylmethoxy)-9H-purin-2-amine 5.64 5.41 5.76 5.4811 5.7077
29 N-(3-Bromophenyl)-6-(cyclohexylmethoxy)9H-purin-2-amine 5.17 5.34 4.947 5.4014 5.3896
30 (3-(6-(Cyclomethylmethoxy)9H-purin-2-ylamino)phenyl)methanol 6.4 6.48 6.4982 6.2763 6.317
31 6-(Cyclohexylmethoxy)-N-(3-methoxyphenyl)-9H-purin-2-amine 5.74 6.29 6.08 6.0901 6.0515
32 6-(Cyclohexylmethoxy)-N-(3-(methylthio)phenyl)-9H-purin-2-amine 5.77 5.96 5.9264 5.9645 5.9312
33 6-(Cyclohexylmethoxy)-N-(4-methoxyphenyl)-9H-purin-2-amine 6.19 6.37 5.99 5.7645 5.9589
34 6-(Cyclomethylmethoxy)N-(4-(methylsulfonyl)phenyl)-N,N-dimethyl-9H-purin-2-amine 6.19 6.37 5.99 5.7645 5.9589
35 6-(Cyclomethylmethoxy)-N-(4-(methylsulfonyl)phenyl)-9H-purin-2-amine 7.22 7.24 6.7582 6.773 6.9168
36 6-(Cyclohexylmethoxy)-N-(4-(methylsulfonyl)phenyl)-9H-purin-2-amine 7.00 7.07 6.8456 6.5432 6.6683
37 6-(Cyclohexylmethoxy)-N-(4-(ethyl sulfonyl)phenyl)-9H-purin-2-amine 6.68 6.82 6.67 6.4289 6.912
38 4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)benzamide 6.19 6.4 6.74 6.3105 6.5367
39 4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)-N-methylbenzamide 6.7 6.91 6.7797 6.4012 6.5837
40 4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)-N,N-dimethylbenzamide 6.7 6.5 6.4905 6.5163 6.6349
41 6-(Cyclohexylmethoxy)-N-(4-(prop-1-en-2-yl)phenyl)-9H-purin-2-amine 6.52 6.44 7.0214 6.416 6.5527
42 1-(4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)phenyl)ethanol 6.1 6.5 6.68 6.4374 6.4769
43 2-(4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)phenyl)acetonitril 6.52 6.36 6.3441 6.5529 6.453

44 N-(4-(2-(4-Methylpiperazin-1-yl)ethylsulfonyl)pheyl)-6-(cyclohexylmethoxy)-9H-purin-
2-amine 6.92 7.05 6.8082 6.9098 6.8732

45 N-(4-(2-(Piperidin-1-yl)ethylsulfonyl)phenyl)-6-(cyclohexylmethoxy)-9H-purin-2-amine 6.47 6.61 6.66 6.6328 6.652
46 N-(4-(2-Thiomorpholinoethylsulfonyl)phenyl)-6-(cyclohexylmethoxy)-9H-purin-2-amine 6.27 6.41 7.347 5.983 6.1249
47 N-(4-(2-(Diethylamino)ethylsulfonyl)phenyl)-6-(cylohexylmethoxy)-9H-purin-2-amine 6.35 6.38 6.3132 6.7114 6.613
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Table 1: Continued.

No. Name pIC50 ANN MLR ANN
(LOO)

MLR
(LOO)

48 N-(4-(2-(4-Isopropylpiperazin-1-yl)ethylsulfonyl)phenyl)-6-(cyclohexylmethoxy)-9H-purin-
2-amine 6.47 6.4 6.8005 6.8036 6.6025

49 2-(4-(2-(4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)phenylsulfonyl)ethyl)piperazin-
1-yl)ethanol 6.59 6.63 6.59 6.7072 6.8705

50 2-(1-(2-(4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)phenylsulfonyl)ethyl)piperidin-
4-yl)ethanol 6.62 6.53 6.36 6.6902 6.6265

51 2-(2-(4-(2-(4-(6-(Cyclohexylmethoxy)-9H-purin-2-ylamino)
phenylsulfonyl)ethyl)piperazin-1-yl)ethoxy)ethanol 6.51 6.44 6.5378 6.4673 6.636

52 N-(4-(2-(4-(Ethylpiperazin-1-yl)ethylsulfonyl)phenyl)-6-(cyclohexylmethoxy)-9H-purin-
2-amine 6.59 6.72 6.6713 6.7344 6.4404

53 1-(4-(2-(4-(6-(Cyclohexylmethoxy)-9H-purin-2-yl amino)
phenylsulfonyl)ethyl)piperazin-1-yl)ethanone 6.64 6.67 6.2815 6.6566 6.6462

54 N-(4-(2-(4-(2-(Methoxyethyl)piperazin-1-yl)ethylsulfonyl)phenyl)-6-(cyclohexylmethoxy)-
9H-purin-2-amine 6.54 6.47 6.8 6.0738 6.6812

55 N-(4-(2-(Pyrrolidin-1-1yl)ethylsulfonyl)phhenyl)-6-(cyclohexylmethoxy)-9H-purin-2-amine 6.74 6.89 6.8736 6.5724 6.6375
56 6-(Cyclohexylethoxy)-9H-purin 6.96 6.56 6.96 6.8179 6.5037

Table 2: Descriptors were selected for construction of model.

No. Symbol Class Meaning
1 Mor20u 3D-MoRSE 3D-MoRSE-signal 20/unweighted
2 GATS2e 2D autocorrelation Geary autocorrelation-lag 2/weighted by atomic Sanderson electronegativities
3 R5p GETAWAY 𝑅 autocorrelation of lag 5/weighted by atomic polarizabilities
4 MATS2e 2D autocorrelation Moran autocorrelation-lag 2/weighted by atomic Sanderson electronegativities
5 JGI6 Galvez topol. Charge Mean topological charge index of order 6
6 JGI4 Galvez topol. Charge Mean topological charge index of order 4
7 R1m GETAWAY 𝑅 autocorrelation of lag 5/weighted by atomic masses
8 HATS0m GETAWAY Leverage-weighted autocorrelation of lag 0/weighted by atomic masses
9 Mor06v 3D-MoRSE 3D-MoRSE-signal 20/weighted by atomic van der Waals volumes
10 E1s WHIM 1st component accessibility directional WHIM index/weighted by atomic electrotopological states

Table 3: Correlation matrix for the selected descriptors.

Mor20u GATS2e R5p MATS2e JGI6 JGI4 R1m HATS0m Mor06v E1s
Mor20u 1
GATS2e 0.12 1
R5p 0.121 0.163 1
MATS2e −0.58 −0.599 0.088 1
JGI6 0.614 0.117 −0.22 −0.528 1
JGI4 −0.459 0.304 0.106 0.199 −0.102 1
R1m 0.226 −0.225 0.238 0.097 0.248 −0.043 1
HATS0m −0.452 −0.079 0.157 0.333 0.126 0.148 0.419 1
Mor06v 0.601 −0.045 −0.141 −0.512 0.558 −0.462 0.332 −0.138 1

E1s 0.354 −0.195 −0.017 −0.24 0.352 −0.205 0.373 −0.112 0.431 1

The correlation matrix for the selected 10 descriptors
presented in the model is shown in Table 3. These results
show there is not any correlation between the selected
descriptors.

4. Results and Discussion

The prediction ability of QSAR/QSPR models is affected by
two factors: one is the descriptors, which should carry enough
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Table 4: The training settings for the ANN model.

No. of descriptors Training fcn. Transfer fcn. No. of nodes in hidden layers No. of epochs MSE
10 Levenberg- Log sigmoid 4 5 0.0171
10 Bayesian Log sigmoid 6 5 0.0186
6 Levenberg- Tan sigmoid 7 3 0.0285
10 Bayesian Tan sigmoid 3 4 0.0218

Table 5: Comparison of the statistical parameters obtained from ANN and MLR models.

Parameter Test set (𝑁 = 11) Validation set (𝑁 = 11)
MLR ANN MLR ANN

MAE (%) 13.43 13.29 13.82 10.405
MSE 0.069 0.063 0.065 0.0171
PRESS 0.1394 0.1333 0.1349 0.0693
SEP 0.964 0.956 0.936 0.982
𝑅
2 0.8122 0.7422 0.5518 0.4181

RMAE 3.607 3.433 3.68 2.221

information of molecular structure for the interpretation
of the activity/property. The other is the modeling method
employed [20]. The number of descriptors available for
QSAR/QSPR studies is often so large that it is difficult to
obtain a model including all of them. Therefore, identifying
important descriptors certainly plays an important role in
QSAR/QSPR.

Descriptors should represent the maximum information
in activity variations, and collinearity among them must
be kept to a minimum. As can be seen from the corre-
lation matrix (Table 3), there is no significant correlation
between the selected descriptors. In the present work, these
descriptors were used for construction of both linear and
nonlinear models. The following linear model was obtained
by the training set compounds and 10 selected molecular
descriptors:

pIC
50
= 11.746 + 0.684 Mor20u − 2.228 GATS2e − 18.175

R5p − 5.114 MATS2e + 65.07 JGI6 − 40.405 JGI4 + 2.155 R1m
− 4.434 HATS om − 0.149 Mor06v − 0.715 E1s.

This model was then used to predict the validation and
test sets of data. Then, artificial neural network (ANN)
was used to make a nonlinear model to calculate the
inhibitory activities (pIC

50
) of the compounds. To do so, a

3-layer feedforward network with backpropagation pattern
was used in which mean squared error (MSE) was applied
as the performance function. The MLR selected descriptors
were used as the input layer of the network. To have a
strong network, 5 parameters were optimized.The optimized
parameters are (1) the number of descriptors (between 2 and
10), (2) the number of nodes in the hidden layer, (3) the
transfer function (including log sigmoid and tan sigmoid), (4)
training function (includingBayesian regulation (trainbr) and
Levenberg-Marquardt (trainlm)), and finally (5) number of
epochs. Table 4 shows the training settings of the optimized
network. It should be noted that the training of the network
for the prediction of pIC

50
was interrupted when the MSE of

the validation set started to increase, to avoid overfitting.
According to Table 4, a network with a Levenberg-

Marquardt training function and log-sigmoid transfer func-
tion with 10 descriptors (the same MLR descriptors) has the

least MSE value (0.0171). In order to evaluate the predictive
ability of the linear and nonlinear models and to compare
them, we employed the percentage of mean absolute error
(MAE), mean squared error (MSE), predictive residual sum
of squares (PRESSs), standard error of prediction (SEP),
determination coefficient (𝑅2), percentage of relative error
prediction (REP (%)), and relative mean absolute error
(RMAE). These statistical parameters for MLR and ANN are
listed in Table 5.

As can be seen from Table 5, all the error parameters’
values of ANN for both test and validation sets are smaller
than those ofMLR.This is believed to be due to the nonlinear
capabilities of the ANNmodel.

The used statistical parameters are defined as:

𝑅
2
= 1 −

∑
𝑛

𝑖=1
(𝑦pred − 𝑦obs)

2

∑
𝑛

𝑖=1
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2
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∑
𝑛
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2

𝑛
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∑
𝑛
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2

∑
𝑛

𝑖=1
(𝑦obs)

2
,

MAE (%) = 100
𝑛
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,
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Table 6: 𝑅2 values of the test set after several Y-randomization tests.

Iteration 𝑅
2 test set

1 0.29
2 0.02
3 0.00
4 0.09
5 0.00
6 0.00
7 0.46
8 0.01
9 0.13
10 0.01
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Figure 1: Plot of the predicted values versus the experimental ones
for the validation set.

where 𝑦
𝑖
is the experimental value, 𝑦

𝑖
is the predicted value,

𝑦 is the mean value, and 𝑛 is the number of compounds.
To avoid chance correlation and to guarantee the net-

work’s predictability power, Y-randomization test was carried
out. The results of several repetition of this test are shown in
Table 6. The low values of 𝑅2 show that there is no chance
correlation in the developed model.

Figures 1 and 2 show plots of the predicted values versus
experimental ones of ANN and MLR models for validation
and test sets. The obtained results show the superiority
of ANN model than MLR to predict of pIC

50
of these

compounds. The ANN and MLR residuals of leave-one-
out are plotted against the experimental values in Figure 3.
The symmetric distribution of residuals at both sides of the
zero line indicates that no systematic error exists in the
development of the MLR and ANNmodels.

5. Conclusion

From the analysis of the obtained results, we can conclude
that (1) the proposed models can sufficiently represent
structure-activity relationship of the compounds. (2) By com-
parison of results from the MLR and ANN, the performance
of the ANN model is clearly better than that of MLR, which
indicates that nonlinear model can simulate the relationship
between the structures of the compounds and their activities
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Figure 2: Plot of the predicted values versus the experimental ones
for the test set.
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Figure 3: Plot of the ANN and MLR residuals of leave-one-out
versus experimental values.

more accurately. (3) The calculated statistical parameters of
thesemodels reveal the superiority ofANNoverMLRmodel.
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