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This paper presents an efficient and accurate Monte-Carlo approach to the problem of
estimating average node switching probabilities in sequential circuits, which are used in
average power estimation and reliability analysis of these circuits. Specific error bounds
for the proposed estimation method are given at a certain level of confidence. This
method is based on the analysis of paths in the State Transition Graph (STG) of the
circuit and is validated by both theoretical analysis as well as experimental results.
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INTRODUCTION

There has recently been much interest in the simulation of VLSI
circuits for the estimation of their average power dissipation and their
susceptibility to cumulative degradation phenomena such as electro-
migration and hot-carrier degradation. For the simulation of com-
binational circuits a number of methods have been introduced in
the past. Some of them approached the problem at the transistor
level and estimated the average current drawn by each individual gate
[1,2]. Others proposed a gate level simulation, using the average
switching activity in the circuit nodes as a measure of the average
power dissipation of the circuit [3-7]. Sequential circuits were
considered as a separate problem [8-10] as the combinational
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approaches were not readily extendable. However, the complexity of
the derived algorithms was high and no simulation results for large
sequential circuits were given. The major obstacle for extending the
average power (or current) estimation methods to sequential circuits
has been the estimation of the probability that a flip-flop output node
will go from the logic "1" state to logic "0" and vice-versa. This
probability is referred to as the output switching probability of the
flip-flop. Once the average switching probability can be estimated
properly for every flip-flop in a circuit, the problem of average power
dissipation reduces to estimating the average power of a combina-
tional circuit. Consider a sequential circuit with N flip-flops. The
circuit has 2TM possible states, which have distinct probabilities of
occurring. There are also 2TM possible transitions that may occur in
each clock cycle, which also have distinct probabilities of happening.
When the circuit moves from one state to the next, the flip-flops may
change state and consequently there will be a transition on their
output node. A first approach to the problem of computing flip-flop
output switching probability in sequential circuits was presented [8],
however, it did not take into consideration the correlation between the
flip-flop input lines and, thus, the obtained power estimation results
were not accurate. A comparison of several methods for estimating
the average switching probability of the flip-flop output nodes was
presented [9]. The first one was the exact method, through solving the
Chapman-Kolmogorov equations for discrete time Markov chains.
This involves the solution of a system of 2N equations, and, as it was
reported, this method was limited to circuits with fifteen flip-flops or
less. The second method was the "line-probability" method, which
included the solution of a system of non-linear equations and the use
of OBDDs to estimate required probabilities. The average power
estimates that were presented were very close to the ones obtained by
the exact Chapman-Kolmogorov methods for the circuits presented.
However, by ignoring the correlation between the outputs of the flip-
flops some error was introduced, which grew with the size of the
circuit. No error values were presented for the larger circuits and no
upper bound for the estimation error was given. On a per flip-flop
basis, the error in the estimation of the switching activity is much
larger and even for small circuits it can reach 100% or more. The per
flip-flop estimate is much more important than the overall power
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estimate because it identifies the parts of the circuit with high power
dissipation and allows for some power reducing intervention. Finally,
judging from the presented results, the "line-probability" method was
applicable to only small sequential circuits (the maximum gate count
of all the examples was 657). However, most circuits of industrial
interest are much larger than this. In this paper we describe a
computationally efficient method for obtaining the average switching
activity for synchronous sequential circuits with high accuracy by
using Monte-Carlo simulation at the logic gate level. The accuracy
obtained is to within 10% of the actual switching probability value for
a particular node at a 95% level of confidence or better. This is
achieved by introducing the notion of "paths" in the State Transition
Graph (STG) of the circuit, which efficiently scans the sample space
that has both the primary inputs and the initial state of the latches as
variables. This results in a two step approach, in which the average
switching probability being estimated along a single "path" in the first
step, and over several "paths" in the second. The validity of this
method has been explained theoretically and validated by experi-
mental results. The acceptable error can be set by the user at different
values and at different confidence levels, resulting in a different
number of required samples in each case. Another significant attribute
of this approach is that it can be efficiently applied to even the largest
benchmark circuits (ISCAS 89 [11]) and that it can be coupled with
any of the existing methods for estimating the average power
dissipation of combinational circuits either at the gate or at the
transistor level. As an example, the iProbe-c simulator [12] has been
used to estimate the average power dissipation of the ISCAS 89
benchmark circuits. The results presented have been geared towards
high accuracy rather than speed. Even so, the simulation times are in
the 30-minute range for even the largest circuits.

THEORETICAL FOUNDATION

The circuit model that will be used in this paper is the one in Figure 1.
There are two distinct blocks, one containing the flip-flops (the
"sequential logic" part of the circuit) and the second containing
the logic gates that comprise the combinational part of the circuit. The
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FIGURE The sequential circuit model used.

nodes of interest are the ones termed "flip-flop output nodes" and the
analysis will focus on determining the accurate switching probabilities
for these nodes. We assume: (a) the circuit can be at any state after
power up with equal probability, (b) there are no glitches at the
outputs of the latches, and (c) all latches reach a steady state before
their next state is allowed to enter into the combinational logic part.
All of the above ai’e reasonable expectations from a well-designed
sequential circuit. Furthermore, the above assumptions permit the
estimation of the power dissipated by the latches separately from the
rest of the circuit (the combinational part) and limit the number of
times the output of a latch can switch in one clock cycle to at most
once. The latter is a critical part of the ensuing study.

Initial State Probability Analysis

A first and intuitive attempt to estimate the average switching
probability at the output of the latches would be to set the latches
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to some initial value and then to apply a number of random vectors to
the circuit’s primary inputs and observe the output state of the latches
for every clock cycle, counting the number of times the outputs went
from logic "1" to logic "0" and vice-versa and then dividing that
number with the total number of vectors applied, the same way as a
combinational circuit might be treated. This is, however, not enough
since the results are biased by the initial state of the circuit, before
simulation started. This makes the samples correlated and, thus, no
inference can be drawn from them. Furthermore, a very small and
connected part of the STG is sampled, which can in the general case
be not connected. Consequently, further analysis is required. By
observing the Boolean expressions for the value of the next state of the
latches, it can be deduced that they are a function of not only
the primary inputs but of the present state of the flip-flops as well.
Therefore, the space that needs to be searched by a random search
becomes much larger. However, a Monte-Carlo search is invariant
with the size of the input space, meaning that the number of inputs to
the scanned function does not affect the number of samples that
need to be taken. But even with that taken into consideration, it is
still impossible to generate the required input vectors because the
probability of the latches being at the present state is not known. Thus,
an experiment in which spanning of all variables occurs cannot be
created (i.e., assign a random state to the latches and the apply a
random input pattern) because it is heavily dependent on the prob-
abilities assigned to each state of the latches. The dependence on the
initial state probabilities could be alleviated if it can be proven that
the stochastic processes which describe the state of the flip-flops in the
time domain are stationary and ergodic. Fortunately, by applying
Borovkov’s theory of renovating events [13] we can prove that this is
true if the latches can be driven to a known state by a sequence of
input vectors, which is the definition of initializable circuits [14]. Let us
introduce some definitions at this point:

Palmprobabilityfor discrete-timeprocesses: In discrete time, the Palm
probability is just a conditional probability Ey[Z] E[ZlU0 1].
For the purposes of this analysis, the Palm probability reduces to

the probability of a sequence of input vectors occurring, as the
conditional probability is conditioned on the entire sample space.
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Compatible with the shift: A stochastic process that is compatible
with the shift, is a stationary process.
Initializable circuit: A circuit is initializable if and only if it can be
driven to a known state from any initial state, with a finite number
of input vectors.
Initializing sequence: A sequence ofinput vectors that drives a circuit
to a known state from every initial state.

Let a system be described by the stochastic recurrence:

wr+ h(Wrn,n) n=0,1, (1)

where n is the driving sequence. The theorem [13] we use is the
following:

THEOREM If there exists a sequence ofevents {An} compatible with the

shift and satisfying the condition P(Ao > 0), afunction go and an integer
m, such that, on An, Wnr qO(n,... ,n+m-1), for all YE Y, then there
exists a stationary sequence {Z o On}, solution ofexpression (1), and such
that, for all YE , the sequence converges with strong coupling to

{ZOO"}.

Strong coupling between {Xn} and {Zo On} implies that {Xn+k}n > 0

converges in variation to {Zo 0n}. Convergence in variation implies
convergence in distribution. For the analysis in this paper, expression
(1) is the definition of the next state of a sequential circuit, n is a
stationary and ergodic process as we have assumed that the circuit
inputs are driven by random bit patterns, the sequence {An} is an
initialization sequence, which due the random bit pattern applied has a
non-zero probability of occurring and drive the circuit to a certain
state independent from previous states (i.e., the WnY =qO(n,...,
n+m-1) condition is satisfied). All the above directly imply that, if the
sequential circuit is initializable (i.e., there exists a vector sequence that
can drive it to a known state irrespective of the present state), then the
random processes describing the state of every node in the circuit,
including the states of the latches, converges in distribution to a
stationary process. Furthermore, states that are separated by one or
more initializing sequences become independent, which means that the
node processes are also mean ergodic. Stationarity and ergodicity in
combinational circuits is a trivial subproblem of the initializable
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sequential circuits. In the case of a non-initializable sequential circuit,
no such convergence can be proven in the general case. Consequent-
ly, for the initializable circuits, the average switching probability
converges to an average value which is independent of the initial state
of the circuit and the pathwise average is equal to the time average due
to ergodicity. However, the number of samples required is not readily
available. By defining the notion of "paths" in the State Transition
Graph (STG) of the circuit, a new perspective appears. Instead of
running one long simulation with a given initial condition (time
average) that may take a long time to converge (dependent on the
unknown length of the initialization sequence), we sample through
simulations with different initial conditions (pathwise average). As the
process is stationary and ergodic, the initial state probability will not
bias the estimated average value and, thus, equiprobable initial states
can be safely used. In a more mathematical form, suppose that each
path is assigned probability Ppath,i and that the average to which all the
paths converge is t. Then, the average overall the paths would be:

N

P,path,av Ppath,i /, # (2)
i=l

since

N

i=1

A path is defined as a sequence of adjoining transitions in the STG. The
state from which the first transition in a path originates from is termed
the head ofthe path, while the state at which the last transition arrives to
is termed the tail of the path. In the random search that is proposed by
this paper the sampling is performed one path at a time. The transition
probability samples are the average transition probabilities calculated
by the analysis of a "random" path, a path in which the head is
randomly selected and so are the vectors applied to the primary inputs.
Since we have assumed that the latches can be driven to any state by the
proper reset sequence, we assign equal probability to all initial states.
A study on the effect of the path head assignment probabilities to the
calculated transition probabilities is presented, in which it is shown that
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considering all states originally equiprobable is a valid assumption.
The transition probability estimation is performed in two steps: (a)
estimation ofthe pathwise transition probabilities, and (b) estimation of
the overall transition probabilities.

Step 1 Average along one path A random path is created by first
randomly choosing a state as the head of the path and subsequently
applying random vectors to the circuit’s primary inputs. The transition
probabilities observed in this path, call it i, for the output of flip-flop j,
are given by the following expressions:

plhi
Total number of low- to- high transitions in path

Total number of clock transitions

Total number of high- to- low transitions in path
Total number of clock transitions

It must also be noted that plh0 and phl0 cannot exceed 0.5. Since the
following analysis is valid for both plhi and phl0, the symbol P0 will
refer to either of the two quantities. The number of vectors needed for
achieving a maximum error e with level of confidence (l-a) is:

N > (ta/2tT 2

\ r/e ]
(3/

where ta/2 is the Student-t coefficient for the level ofconfidence (l-a), cr is
the variance of Pij and r/its mean. It is useful to make here certain
remarks regarding the worst case conditions for N. The random
variable Pij follows the Bernoulli distribution. This means that r/= P0
and r2= Pi(1 -P0)" Based on this observation it can be deduced that as
r/---, 0, N becomes increasingly larger for constant e. This becomes a
problem when r/goes below 0.05 since the number of vectors required
for adequate approximation becomes prohibitively large. However, a
larger amount of error can be tolerated for low transition valued nodes
since they contribute little to the overall power dissipation. Further-
more, the error accumulated in this step is compensated for in the
second step of the estimation. Another way of expressing the observed
transition probability of node j on path is by the following expression:

r/0.,obs r//j + Eli(N) (4)
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where r/ij,obs is the observed average from the sample, r/ij is the true
path mean and Eli(N) is the error, which is a random variable with
zero mean and variance given as a function of N:

t0.05tr (5)tr/r 4x/

The maximum error observed is for tr 0.5 which is the maximum
variance that the random variable representing low to high or high to
low switching might attain.

Step 2 Average over all paths The second step in the average
switching probability estimation algorithm is to average over all
paths, with the switching probability estimate of each path being one
sample. The setup of the problem seems to be the same as in the
first step. However, the samples in the first estimate could only take
the values 1 for a transition of the desired variety during that clock
cycle and 0 for all other conditions. In this case the random variable
can take any real value in the interval [0,0.5]. The approach for
estimating the number of paths required for a certain maximum
percentile error at a specific level of confidence is the same as in the
first step. However, due to the reduction of the range of the random
variable ([0,0.5] here versus [0,1] in step one), a reduced number of
vectors is needed to arrive at the same maximum error at an equal
confidence level. The analysis of the mean switching probability is
not complete yet. In addition to the error due to the sampling of the
switching probabilities of the paths, there is an additional term due
to the error in the estimation of the average switching probability for
each path (recall Eq. (4)). However, the average switching probability
for a node j is given as:

Pj,obs
rlz...dij,obs ij "- Eij S- ij E Eij (6)N N N N

In the analysis of the pathwise sample we have concentrated just on
the first term of the right hand expression in Eq. (6). The second term
is the error term that introduces additional error in our calcula-
tions. Since this term is a sum of zero-mean normal variables, its
contribution to the value of the estimated overall mean switching
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probability is zero. However, it contributes an additional absolute
error , which is bound by:

ta/2t:rF (7)

where O"E is given by Eq. (5). At this point there is a tradeoff to be
made between the speed of the simulation and the accuracy that can
be achieved. Table I shows the number of samples required to attain
a 10% maximum error at a 95% confidence level. The first column
of Table I presents a characteristic sample of average switching
probability values that can be encountered in a circuit. The range is
from 0.5, which is the maximum switching frequency for a flip-flop
output, to 0.01 which, means that the specific node switches once
every 100 clock cycles. It is important to stress here that an accurate
estimate for the high switching probability nodes is highly desirable,
while for nodes with low transition probability a rough estimate
should be sufficient since they contribute very little to the overall
power dissipation, a notion shared with other work in the area [6]. The
second column in the same table contains the number of vectors
required to get an estimate of 10% maximum error at 95% confidence
level, given that the path samples follow a Bernoulli distribution,
which describes the worst case scenario for this analysis. The
probability density function is derived by allowing the path mean
probabilities to have only two values: zero and 0.5. Thus, the
distribution can be created as in following example for a targeted
average switching p.robability of 0.1. In this case 20% of the sample
paths are assumed to have switching probabilities of 0.5 and the

TABLE Required vectors for 10% maximum error at a 95% level of confidence

Transition probability Bernoulli distribution Uniform distribution

0.01 18824 128
0.05 3458 128
0.10 1537 128
0.20 577 128
0.25 384 128
0.30 256 57
0.40 96 8
0.50
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remaining 80% zero switching probability. This kind of distribution,
given the continuous nature of the random variable describing the
path mean values is highly unlikely to occur. A still conservative, yet
more realistic distribution analysis is presented in the third column of
Table I. In this case a uniform distribution around the actual mean of
the switching probability is assumed for the path samples. This is still
very pessimistic, however, the number of the required vectors has been
reduced dramatically for the same level of confidence and maximum
error. It must be noted that for the actual circuits that were simulated,
the distribution of the pathwise switching probabilities was far better
than the uniform distribution described here, as the various paths
converged towards a common mean, as predicted by the ergodicity of
the processes. Table II describes the additional percentile error that is
introduced by the path average switching probability error, to the
overall switching probability estimate. As can be seen, the additional
error is very small and justifies the use of this pathwise approach as
convergence to the mean is faster.

Effect of the Assignment Probability of a Path
Head to the Estimate

A critical part of the average switching probability analysis of
sequential circuits is the assignment of the initial state probabilities,
the probabilities by which the heads of the paths are selected. Based on
the theoretical results equal probabilities for all the states in the circuit
were assumed. However, careful experimental analysis is required to
ascertain that this initial selection does not bias the result. In the path

TABLE II Additional error due to the error in the estimate of the pathwise average
(length of paths =400, number of paths 2000)

Transition probability Additional error (%)

0.01 5.37
0.05 1.07
0.10 0.54
0.20 0.27
0.25 0.21
0.30 0.18
0.40 0.13
0.50 0.11
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approach, the initial state of a path, the head, is the only state directly
influenced by the state probability assignment, while the rest of the
states in the path are influenced by the random vectors applied to the
primary inputs of the circuit. Thus, the state of the circuit, after
the application of the first random vector, is determined exclusively
by the circuit structure. Furthermore, the number of random input
vectors in a path is such that any bias induced by the uniform
probabilities assumed for path head states is minimized. This is true
for all sequential circuits in which the primary inputs can drive the flip-
flops to a known state (initializable circuits). However, there are
circuits in which the previous statement is not true (non-initializable
circuits). In the latter circuits, the uniform probability assumption for
the initial states is warranted as the flip-flops can be in any state after
power-up. In order to test this approach we simulated all of the
ISCAS89 benchmark circuits by the method proposed in this paper,
with the probability that a given flip-flop is at logic high value in the
head state of a path ranging from 0 to 1 in increments of 0.1. A notion
of convergence was also introduced: a switching probability value has
"converged" if the difference between the minimum and the maximum
values over all the runs was less than a preset threshold tconv. The
length of the paths was chosen as 1000, the number of the sampled
paths was 1000 as well, and teonv was set to 0.001. Table III shows the
number of nodes that converged and did not converge in the ISCAS89
benchmark circuits, along with and indication of whether the circuit is
initializable or not according to [14]. It is noteworthy that out of the 28
circuits in Table III (the rest of the circuits were simulated but they
were not covered by Wehbeh and Saab [14]), the 25 that converged
were also deemed initializable and the three that did not converge were
considered non-initializable by Wehbeh and Saab [14], exactly as
predicted by the theoretical analysis. A X2 test shows that there is
significant evidence to support that initializable circuits converge (i.e.,
there is no bias from the uniform selection probability of the initial
states) at a confidence level greater than 99.99%. This result conforms
with the hypothesis stated in the beginning of this section. In order to
explain how the path-averaging method, which is proposed in this
paper, can be extended to non-initializable circuits, the circuit of
Figure 2 is used.
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Ckt name’
TABLE III Analysis of the effect of the initial state probability

Flip-flops Converged Not converged Initializable

s27 3 3 0 Yes
s208 8 8 0 Yes
s208.1 8 5 3 No
s298 14 14 0 Yes
s344 15 15 0 Yes
s349 15 15 0 Yes
s382 21 21 0 Yes
s386 6 6 0 Yes
s400 21 21 0 Yes
s420 16 16 0 Yes
s420.1 16 5 11 No
s444 21 21 0 Yes
s510 6 6 0 Yes
s526 21 21 0 Yes
s526n 21 21 0 Yes
s641 19 19 0 Yes
s713 19 19 0 Yes
s820 5 5 0 Yes
s832 5 5 0 Yes
s838 32 32 0 Yes
s838.1 32 5 27 No
s953 29 29 0 Yes
s1196 18 18 0 Yes
1238 18 18 0 Yes
s1423 74 74 0 Yes
s1488 6 6 0 Yes
s1494 6 6 0 Yes
s35932 1728 1728 0 Yes

in

#1
out

nput

in
out

#2

clock

FIGURE 2 Example of a non-initializable circuit.
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It is obvious that flip-flop #1 cannot be driven by the primary
inputs. In fact, it retains the value it has after power-up throughout
the run. Consequently, the switching probability of its output node is
zero. If we examine flip-flop #2, we see that if flip-flop #1 is at logic
"0", then flip-flop #2 is set at logic "1" and it cannot switch, no
matter what the primary input is. If on the other hand, flip-flop #1 is
at logic "0", then flip-flop #2 switches in accordance with the primary
input. Thus, for the two different initial conditions the output node of
flip-flop #2 has a switching probability of zero and 0.5 (which is
assumed to be the switching probability of the primary input). As it
was assumed, flip-flop #1 is at "0" with probability 0.5 after power-
up. This means that the average switching probability at the out-
put of flip-flop #2 is 0.25, since there are only two distinct cases.
However, there is a theoretical issue behind this phenomenon. As
predicted by the theoretical analysis, the non-initializable circuit of
Figure 2 produces non-ergodic processes at the output of flip-flop
#2. Thus, we cannot get rid of the initial probability influence
and accurately predict the average switching probability based on one
single path. Multiple paths are required under the very logical
assumption that the circuit can beat any state after power-up with
equal probability. Therefore, the path averaging approach can handle
non-initializable circuits as well, such as some of the larger ISCAS89
benchmarks (s9234, s13207 etc.) Finally, the same argument can be
used for circuits with very long initialization sequences that lead to
disjoint parts of the STG, and in which convergence is extremely
slow.

EXPERIMENTAL RESULTS

The approach described in this paper has been applied to the ISCAS89
benchmark circuits with the path length set to 400 and the path
number set to 2000 in order to achieve his accuracy even for very low
switching probabilities. With this setup, the switching probability of
a node, which has an actual switching probability of 0.01, can be
estimated to within 5% at 95% confidence level.
The results of this estimation along with the combinational part of

the circuits were then analyzed by the iProbe-c simulator [12] to
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estimate the average power dissipation. The runtimes for both the
switching probability estimation program and the average power
simulator are shown in Table IV. Figure 3 shows a histogram of the
average switching probabilities for s1423, a characteristic initializable
circuit compared with the histogram of s13207.1, which is not ini-
tializable. The power estimates have been omitted since they are
implementation dependent.

TABLE IV Simulation times for the sequential and the combinational parts

Ckt name Flip-flops Sequential simulation Combinational simulation

s27 3 38.3 0.1
s208 8 100.8 0.3
s208.1 8 98.4 0.3
s298 14 34.1 0.4
s344 15 93.0 0.7
s349 15 92.7 0.7
s382 21 36.3 0.6
s386 6 72.4 1.1
s400 21 45.5 0.6
s420 16 185.5 0.9
s420.1 16 177.5 0:9
s444 21 37.0 0.7
sS10 6 189.8 0.9
s526 21 38.1 0.9
s526n 21 38.2 0.8
s641 19 351.6 3.1
s713 19 350.3 4.1
s820 5 183.9 1.8
s832 5 184.8 1.9
s838 32 345.6 2.9
s838.1 32 345.0 2.8
s953 29 173.5 1.9
1196 18 160.3 3.8
s1238 18 157.2 4.2
s1423 74 199.3 10.4
s1488 6 107.6 7.1
s1494 6 106.4 7.2
s5378 179 481.3 11.8
s9234 228 456.0 69.0
s9234.1 211 630.9 74.5
s13207 669 775.1 102.5
13207.1 638 1073.9 109.0
s15850 597 808.5 185.0
s15850.1 534 1261.0 202.4
s35932 1728 1468.5 778.5
s38417 1636 1914.7 854.3
s38584 1452 1383.4 847.4
s38584.1 1426 1656.6 890.8



84 G.I. STAMOULIS

FIGURE 3 The average switching probabilities for s13207.1 (top) and s1423 (bottom).

CONCLUSIONS

In this paper we have presented a method for the accurate estimation of
the average switching probability of flip-flop outputs in a general
sequential circuit along with its error bounds. The theoretical
foundation and the experimental validation have been presented. This
approach introduces the notion of paths in the state transition graph of
the sequential circuit and employs them in a Monte-Carlo logic
simulation approach to estimate the average switching probability.
Furthermore, the possible bias on the results by the initial state selection
has been alleviated, as shown by theoretical and experimental results, in
initializable circuits and special guidelines are set forth for non-
initializable ones. It should be noted that this approach achieved
high accuracy in relatively little time and with a very small memory
overhead.
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