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Abstract

The extraction of human centered descriptions, matching
end users cognition, and specifically the detection and iden-
tification of events in videos is a particularly challenging
problem, due to the volume and diversity of both the auto-
matically extracted low-level features and the correspond-
ing high-level information conveyed. Numerous efforts have
begun, attempting to bridge the semantic gap between low-
level data and higher level descriptions, often resorting to
domain-specific learning-based approaches. In this paper
we present a novel, generally applicable approach, for hi-
erarchical semantic analysis of spatiotemporal video fea-
tures (trajectories) in order to localize and detect events of
interest. Dynamically changing trajectories are extracted
by processing the optical flow, based on its statistics. The
temporal evolution of the trajectories’ geometrical and spa-
tiotemporal characteristics forms the basis on which event
detection is performed. This is based on the exploitation of
prior knowledge, which provides the formal conceptualiza-
tion needed to enable the automatic inference of high level
event descriptions. Experimental results with a variety of
surveillance videos are presented to exemplify the usability
and effectiveness of the proposed system.

1. Introduction

The advances of signal processing, networking and hard-
ware have led to the widespread use of digital multime-
dia applications, not only in research or academic environ-
ments, but in all aspects of peoples’ daily lives. This has
led to an increased interest in higher level, content-based
approaches to the manipulation, processing, access and dis-
semination of digital data. Thus, the semantic analysis of
digital imagery, video, audio has attracted significant at-
tention. The processing of digital multimedia is focused
on extracting descriptions related to the end users’ percep-
tion of events, objects. However, this is a very challenging
problem, due to the sheer volume and diversity of digital

documentation that is available today, and to the variety of
high-level information conveyed in it. There have been ef-
forts to address the problem of “bridging the semantic gap”
between low-level features and higher level meanings, but
they often resort to domain-specific learning approaches,
which is necessary, due to the diversity of the available in-
formation. Nevertheless, efforts are under way to develop
more generally applicable methods, that can be applied with
small modifications to different cases of digital documenta-
tion.

This paper presents a novel method for the spatiotempo-
ral semantic analysis of low-level video features, in order
to localize and detect events of interest. Ontologies are de-
signed to allow the extraction of meaningful semantics from
the generic, machine-level processing of digital multimedia
data. Specifically, dynamically changing trajectories are ex-
tracted from the processing of the estimated optical flow’s
statistical characteristics. Trajectory information is accu-
mulated and the beginning or ending of events is detected
via changes in its spatiotemporal distribution. The geomet-
rical characteristics of the accumulated trajectory informa-
tion are related to concepts in the knowledge structures (on-
tologies) and thus high level information can be extracted
from the low-level processing. The data is processed in a
hierarchical manner, so that the various processing stages
are more generic and their combined use leads to a system
tailored to specific event detection. Thus, knowledge and
consequently derived descriptions, propagate along succes-
sively higher abstraction levels.

2. Ontology Design for Event Detection

The low-level features extracted from the frames, such as
object motion (flow fields), color and texture features, hold
significant information about the analysed content, but can-
not be directly used to identify the conveyed semantics, e.g.,
the events taking place. For this reason, we design ontolo-
gies [9], whose goal is to represent and capture the extracted
video data in a manner that is as generally applicable as pos-
sible, and at the same time useful for specific applications.



This leads us to design modular ontologies that combine the
temporal characteristics of the motions taking place, and
their spatial description. The appropriate combination of
different ontology modules leads to conclusions about the
type of event taking place. In the following we discuss the
kind of descriptive knowledge that can be extracted from
video and how it relates to higher level, domain specific se-
mantics. These observations form the basis for the design
of the employed ontologies.

2.1. Activity Areas, Trajectories and
Events

The video processing stage first leads to the determina-
tion of the frames at which events begin and end. This leads
to the extraction of the subsequence of interest to be pro-
cessed. The combination of this information with the ap-
pearance of areas of activity, motion information, and the
respective trajectories is mapped into knowledge structures,
leading to the detection of specific events.

The processing of the velocity vectors estimated via op-
tical flow leads to activity areas 3.3, which are binary masks
of the pixels that undergo a motion in the subsequence be-
ing processed. The shape of these masks can be very useful
for the determination of the events taking place. In surveil-
lance videos, there are many cases of people walking across
the area being examined, so the processing of their veloci-
ties leads to trajectories. Similarly, in other videos, such as
sports videos (tennis, ping pong, soccer), the balls being hit
lead to similar, linear or curved “narrow” trajectories. On
the other hand, areas of lateral player motion, in the case of
tennis for example, lead to activity areas with a different,
larger shape. In the case of surveillance videos, when peo-
ple stop moving towards a specific direction, but continue
moving locally, e.g. if they have stopped to walk, fight,
leave a package, fall down, there will be a larger, non-linear
activity area. Note that by “linear” we refer to an area of ac-
tivity that originates from a trajectory, and it can be strictly
linear, or a curved line.

These two shapes of activity areas, combined with the
time instants at which they appear, can immediately lead to
certain conclusions about the events taking place. If in the
tennis domain there is an activity area shaped like a linear
trajectory followed by a larger area, corresponding to lat-
eral motion, and it is followed by another linear trajectory,
the ontology maps these events to a successful return of the
tennis ball. The same can be applied for any sport involv-
ing hitting a ball. In the case of surveillance, the same time
sequence of activity areas leads to the conclusion that dur-
ing the central frame subsequence an event took place. This
event may be benign (people stopping to talk), or not, e.g. it
may indicate a fight. Then, further processing of the central
area of activity takes place, in order to arrive at more spe-

cific conclusions. If during these frames there is significant
motion (i.e. if the velocity vectors have high magnitudes),
the ontology maps this into a “high activity event”, which
indicates more danger than a “low activity event”. Indeed,
in the experiments 4.3 we extract such an area, where the
velocities during a fight are higher.

2.2. Ontology Deployment

Based on the aforementioned, we followed a modular
architecture and developed an ontology infrastructure that
couples the different types of knowledge encoded, namely
activity areas’ characteristics (focus is on trajectory related
features), spatiotemporal, and domain-specific information.
We stress that the main goal is the development of reusable
ontologies that can be effectively applied in different appli-
cations.

Regarding the trajectory related knowledge, the devel-
oped ontology has a rather simple, yet well-defined, struc-
ture that can be easily extended to accommodate more elab-
orate descriptions. For example, in the case of typhoon
movement studies, additional information about the trajec-
tory curve characteristic, such as variation rate, etc. would
be required, to obtain accurate behavioral descriptions. As
illustrated in Fig. 1, the main classes are theActivityArea,
Trajectory, Direction andMotion. Since in our current in-
vestigation, shape information is addressed in a quite coarse
granularity, theShapeclass has not been further special-
ized. The same holds for the other subclases of the so called
StaticFeatureclass, which encompasses visual characteris-
tics. In an application, where color and texture segmen-
tation and descriptors would be utilized, the extension of
the ontology with respective definitions would allow, addi-
tional functionalities, such as object detection that would
enrich the contextual knowledge leading to more complete
domain-specific descriptions.

The trajectory ontology constitutes a very raw, in terms
of end user cognition, semantic conceptualization. How-
ever, it allows to map the extracted video features into ma-
chine processable descriptions and make their semantics ex-
plicit. Following a similar rationale, an ontology module
has been developed to account for spatiotemporal aspects of
knowledge. Spatial and temporal information is of particu-
lar significance in video semantics extraction, as the spa-
tial and temporal dependencies and associations determine
largely the conveyed meaning. In the application domains
that we currently handle, i.e., tennis and surveillance video,
the temporal knowledge that is of particular interest is the
time sequence of the different actions, i.e., relations like
precedes, overlapsetc. Regarding spatial relations, current
focus is on topological aspects, e.g.,touchesanddistinct,
that allow the identification of events such as “people meet-
ing, standing for a while, and then walk away apart”. Direc-



Figure 1. Top level concept hierarchy.

tional relations could provide additional information for ex-
tracting more detailed video annotations, like “two people
meeting, the second was approaching the one from his left”,
which could be of interest for a number of applications, in-
cluding surveillance. As such, both topological and direc-
tional relations have been defined, although the exploitation
of directional ones is rather limited currently. We chose to
represent both types of relations as ontology properties, as
this matches better the intuitive semantics and avoids the
definition of rigid class definitions structures. This choice,
as will be detailed in the sequel affects as well the infer-
ence capabilities required, and necessitates the use of rules
as well, on top of the ontology definitions.

Having available the conceptualizations to precisely
define low-level and spatiotemporal knowledge, what is
needed are the domain specific semantic associations that
translate combinations and sequences of low-level and spa-
tiotemporal descriptions into meaningful domain interpre-
tations. To accomplish this we need to define domain spe-
cific ontologies, that provide more than the vocabulary to
describe salient the objects and relations. More specifically,
an interpretation oriented approach to ontology engineering
needs to be adopted. Taking for example the surveillance
video domain, the important events relate to activities such
as walking, standing still, running or sitting, people meet-
ing, the ending of such meetings, i.e., if the walk away to-
gether or split again, and so on. As such we first define
in the ontology all appropriate concepts and properties to
model such events (Fig. 1). In addition, axioms and rules
have been added to provide the necessary linking with the
low level representations though spatiotemporal relations.
For instance, theStandingPersonclass is defined as an ac-
tivity area having minor motion, while theWalkingPerson

class similarly but with medium motion values. We note
that the exact semantics of low and medium motion, are do-
main dependent, i.e., become concrete per domain. With the
above definitions available, theFallingPersonclass is de-
fined as the temporal subsequence of a walking or standing
person by an instance of an area undergone vertical move-
ment. To handle this kind oftrianglerelations, i.e., relations
between individuals that are connected through a common
individual, rules need to be introduced.

Following such modular, ontology-based representation,
allows to apply the same video analysis approach to dif-
ferent domains, requiring only for the provision of the re-
spective domain semantics, and not tedious re-training and
re-adjustment of parameters. It must be noted, that to avoid
issues raised by existing reasoners with respect to concrete
domains handling, the instantiation of the temporal rela-
tions that hold among the produced activity areas individ-
uals, is performed by analysis in the same way it populates
low level trajectory related concepts and properties.

3. Video Processing

A very characteristic low-level feature of surveillance
videos that can lead to useful conclusions about the events
possibly taking place in them is the motion detected in the
video. The proposed method is based on the distribution
of the optical flow between pairs of frames in a sequence.
When a pixel undergoes a displacement, there is a change in
its luminance, which is detected by optical flow estimation
methods. These methods are based on the assumption of
constant luminance, and as a consequence are sensitive to
illumination changes in a video sequence. Thus, there will
be optical flow estimates on pixels that have not actually
undergone motion, but whose luminance changes because
of camera measurement noise, or other sources of illumina-
tion variation. Naturally, there has been significant work on
the application of smoothness constraints on the flow esti-
mates, to ensure robustness against small illumination vari-
ations [4], [3]. In this work, the optical flow is estimated
using pyramidal techniques, a coarse-to-fine version of the
Lukas-Kanade algorithm is applied, in order to extract the
flow with accuracy, even for large displacements.

Our approach is based on the realistic assumption that
the non-zero optical flow estimates are caused by measure-
ment noise, which is approximated by a Gaussian distribu-
tion [2]. The distribution of each pixel’s flow is used for
two purposes. Its first use is for detecting frames that are
considered as “candidates” for the beginning of an event.
This is determined by the statistical processing of the flow
estimates accumulated over a subsequence of frames, as de-
tailed in Section 3.1. The spatial distribution of pixels that
undergo motion over each subsequence is determined by the
extraction of “activitiy areas”, a process that is detailed in



Section 3.3.

3.1. Temporal Event Localization

As explained in the previous section, the optical flow es-
timated over a video sequence is often noisy, due to vary-
ing luminance values. Thus, the inter-frame flow estimates
at each pixel can originate from that pixel’s velocity, and
noise, or only from noise. This leads to the following two
cases for the distribution of the flow of each pixelr̄:

H0 : r̄ ∼ fstatic(r̄)
H1 : r̄ ∼ factive(r̄),

(1)

wherefstatic(r̄) is the distribution over time of pixels that
do not actually undergo motion, and∼ factive(r̄) is the dis-
tribution of “active” pixels.

In practice, the noise sources during the imaging process
are unknown, sofstatic is unknown a priori. Similarly, the
diversity of the possible motions a pixel can undergo over
a subsequence, even in the same video, does not allow the
prior modeling offactive. Nevertheless, it is realistic to as-
sume that the flow estimates caused by illumination varia-
tions have a lower variance than the actual optical flow that
is caused by pixel motion. The changes in the luminance
of pixels that undergo motion are going to be higher, on
average, than the luminance changes caused only by noise.
Larger illumination variations will create outliers in the flow
values (including the noisy flow values), which appear as
heavier tails in the resulting data distributions.

This was verified experimentally as well. The empirical
distribution for a pixel that did not undergo any motion was
compared against the distribution of a moving pixel over the
video sequence. The resulting histograms, shown in Fig. 2
on a logarithmic scale, demonstrate that, indeed, the flow
for active pixels has heavier tails than the flow for static pix-
els. This essentially means that the optical flow for active
pixels will contain more significant variations than the noisy
flow estimates of pixels that are actually static. It should be
noted that Fig. 2 has been produced by first estimating the
area of active pixels in a video, using the method detailed
in the section that follows (Sec. 3.3). The flow for all pix-
els in the activity area, over all video frames, is extracted.
The empirical “temporal distribution” of each pixel’s flow
(i.e. the way its values vary during the video sequence) is
estimated, and the average of all pixels’ flow distributions
is evaluated. This is considered to be the empirical approx-
imation tofactive. Similarly, the temporal flow distribution
for the background pixels is extracted, and averaged, in or-
der to estimate the average static pixel flow distribution, i.e.
fstatic.

Empirical Likelihood Sequential Hypothesis Testing
The heavy tailed nature of the activity area’s pixels’ dis-

tribution is used in order to detect the time instants (frames)

Figure 2. Optical Flow distribution for static
and active areas.

at which an event begins. Initially the activity and static
areas are separated, as described in Section 3.3, using all
frames of the video sequence. This procedure separates ac-
tive and static pixels, but does not indicate at which time
instants each activity begins. For this purpose, we first accu-
mulate ten video frames and estimate the empirical optical
flow distributions for the activity and static areas. After-
wards, video frames are sequentially processed, i.e. their
flow is estimated, and this new estimate is matched against
the previously estimated probability distributions. In the ex-
periments, the frame counting begins after frame10, as the
actual event time-detection begins then.

Sincefstatic andfactive are empirically estimated, they
are non-parametric (they are not considered to be modeled
by a known parameter-dependent distribution, in order to
ensure the generality of the proposed method). Thus, we de-
termine if each new random variable (optical flow estimate)
belongs to a different distribution than previously, based on
the experimentally determined probability distributions for
the two frame subsequences being examined. The solution
to this problem leads to the determination of the frames at
which an event begins or ends, and can be addressed us-
ing empirical likelihood tests [5], [6]. The difference be-
tween the experimentally evaluated distributions can be de-
tected based on Kolmogorov-Smirnov testing [1], where the
“known” distribution is considered to be the empirical dis-
tribution of the previous subsequence.

If the pixel was in a static area in the previous subse-
quence, and it is know assigned to an activity area, the frame
being examined is a candidate for the start of an event. In or-
der to ensure the robustness of the proposed method, we as-
sign a frame as the beginning of an event if this new assign-



Table Tennis, frame 4

(a)

Optical Flow, frames 3−4

(b)
Optical Flow, frames 86−87

(c)

Activity Area for table tennis, frames 1−100

(d)

Figure 3. Table Tennis. (a) Frame 4. Optical
flow between frames: (b) 3− 4. (c) 86− 87. (d)
Activity Area for all frames.

ment remains valid over five frames. Experiments showed
that this is a reasonable assumption. Similarly, if a pixel
from an activity area is matched to a static in the frame be-
ing examined, this indicates that the activity in that pixel has
stopped. Thus, the spatiotemporal localization of events is
achieved, since the frames at which activities begin and end
are estimated, simultaneously with the pixels at which they
occur.

3.2. Spatial Event Localization

In the previous section we described the method for de-
termining the temporal locations of events, i.e. at which
frames an event begins and at which frames it ends. In
order to find the spatial location of the moving objects in
the video sequence, we estimate the optical flow between
pairs of frames, using the Lukas Kanade algorithm. Since
it is based on the constant illumination assumption, opti-
cal flow suffers from inaccuracies introduced by illumina-
tion changes that are not introduced by object motions (e.g.
lighting changes, measurement noise). Although the Lukas
Kanade method is more robust to these inaccuracies than
other methods, the flow estimates are still noisy. Also, their
values are higher near motion boundaries, and negligible
in smooth areas of moving objects. For a video of a per-

son playing table tennis, shown in Fig. 3(a), the flow esti-
mates between two characteristic pairs of frames, shown in
Fig. 3(b)-(c), indeed contain significant values only at the
moving object boundaries.

We take advantage of the velocity estimates’ noise, to ex-
tract binary activity masks in each video sequence, with the
pixels that undergo displacements during several (if not all)
frames. Since we have many samples of this noise (it affects
the flow estimates over all frame pixels, over many frames),
we approximate it by a Gaussian distribution. Thus, find-
ing moving pixels is reduced to testing if the accumulated
velocity estimates follow a Gaussian distribution. For a ran-
dom variabley, the classical measure of non-gaussianity is
the estimation of its fourth order cumulant, also known as
the kurtosis:kurt(y) = E{y4} − 3(E{y2})2. The fourth
order moment of Gaussian random variables is given by
E{y4} = 3(E{y2})2, so ideally the kurtosis of a Gaus-
sian random variable should be equal to zero. Motivated
by this, we accumulate the flow estimatesv for each pixel,
over the frames of the subsequence under examination, and
characterize each pixel according to:

{
r̄ ∈ action area if E{v4} = 3(E{v2})2
r̄ ∈ background if E{v4} 6= 3(E{v2})2. (2)

We then estimate the kurtosis of each pixel’s flow estimates
over the frames being examined. Since the Gaussian model
is only an approximation, we do not expect the kurtosis to
be zero, but we do expect it to be significantly higher at
pixels that have undergone motion. We consider that pix-
els whose flow has kurtosis above10% of the mean kurtosis
have been displaced. These pixels form an “activity area”.
In Fig. 3(d) we show the activity area extracted by process-
ing all the video frames of the tennis sequence. Obviously,
the activity area not only correctly localizes the pixels that
undergo motion, but it also has a shape that is very charac-
teristic of the event taking place. Consequently, it can be
used in combination with the ontology designed in Sec. 2,
for the extraction of semantics, such as event detection and
characterization, from the video sequence.

3.3. Activity Area Shape Extraction

As explained above, the activity areas for the subse-
quences of interest in the video contain shapes and curves,
that are indicative of the event taking place, and can be
used in combination with appropriately designed knowl-
edge structures (Sec. 2), for semantic event detection. In
order to describe the shapes of the activity area in a man-
ner compliant with the requirements of currently used stan-
dards, namely MPEG-7 [8], we use a Region Shape De-
scriptor [7] that consists of35 quantized coefficients of the
area’s Angular-Radial Transform (ART). This descriptor is



Activity Area for table tennis, frames 1−10

(a)

Activity Area for table tennis, frames 10−30

(b)

Activity Area for table tennis, frames 30−40

(c)
Activity Area for table tennis, frames 41−50

(d)

Activity Area for table tennis, frames 50−60

(e)

Activity Area for table tennis, frames 61−80

(f)
Activity Area for table tennis, frames 80−90

(g)

Figure 4. Activity Areas for Table Tennis with
player motion with and without ball trajecto-
ries.

particularly well suited for the shapes of the extracted bi-
nary activity areas, as it allows the shape of the object to be
a single region, a set of regions, or even contain holes. The
ART descriptor also has the advantages of being invariant to
rotation, scale and position, and is generally robust to noise
along an object’s contour. The resulting feature vectors for
each region is a number of normalized coefficients, and the
comparison between such descriptors is simply uses theL1

distance between them [10].

In the experiments, we estimate the mean absoluteL1

distances between the shape descriptors of areas that cor-
respond to similar and to different activity areas and, con-
sequently, events. The experimental results verify that, in-
deed, these descriptors allow us to discriminate between dif-
ferent regions of activity and, thus, classify detected events.

4. Experiments

Experiments were conducted with different real video
sequences, where events of interest take place. The se-
quences concern a variety of contexts, such as surveillance,
sports, traffic, but the same method is applied to all of them,
successfully extracting the relevant event features.

Frame 30

(a)

Activity Area for tennis, frames 1−6

(b)
Activity Area for tennis, frames 7−16

(c)

Activity Area for tennis, frames 17−20

(d)
Activity Area for tennis, frames 20−27

(e)

Figure 5. Tennis. (a) Frame 4. Optical flow
between frames: (b) 3 − 4. (c) 86 − 87. (d)
Activity Area for all frames.

4.1. Table Tennis Trajectory Analysis

Experiments were conducted with a video of a person
playing table tennis. The activities of interest are deter-
mined by the motions of the ball and the player. The times
(frames) at which events begin and end are extracted by
comparing the empirically estimated probability densities
for frame subsequences. This leads to a temporal segmenta-
tion of the video sequence, which we have divided into sub-
sequences of interest, i.e. sets of frames during which dif-
ferent activity occurs in different frame pixels. The frames
separating the subsequences of interest are frames10, 30,
40, 50, 60, 80.

Binary masks of the activity areas corresponding to each
time segment between these frames are then extracted.
Their shapes are characteristic of the activity taking place in
the video, as seen in Fig. 4. The activity area corresponding
to a ball’s trajectory is a curved line, and is often extracted
along with a mask corresponding to the player’s silhouette.



Fight sequence, frame 120

(a)

Fight sequence, frame 170

(b)
Activity Area for fight, frames 1−63

(c)

Activity Area for fight, frames 64−75

(d)
Activity Area for fight, frames 75−120

(e)

Activity Area for fight, frames 120−140

(f)
Activity Area for fight, frames 140−160

(g)

Activity Area for fight, frames 161−190

(h)

Figure 6. Fight sequence. (a) Frame 120. (b)
Frame 170. (c) - (h) Activity Areas.

This is because the player is moving as the ball is arriving,
or right after he has hit it. In this case there is only one sub-
sequences where there is no ball motion, but only the player
moving laterally, shown in Fig. 4(b). The activity area from
those frames is larger activity area, and does not contain any
curved trajectories. The shape characteristics of the activity
areas are extracted following the region shape extractor of
the MPEG-7 standard, as a vector of35 normalized ART
coefficients.

For sake of comparison, we estimate the absoluteL1 dis-
tance between the shape descriptor of the first activity area
(a trajectory) with the other five activity areas. The resulting
distances are given by:

[0.5714, 0.2286, 0.4823, 0.0011, 0.5532, 0.1429].

We see that, indeed, the descriptors for the activity areas of
Fig. 4(b), (d), (f) are quite different from those correspond-
ing to ball trajectories. Consequently, they can be consid-
ered as a reliable feature for the discrimination between ball
trajectories and player lateral motion, and used to extract
higher level information, to be used as input in the knowl-
edge structure.

4.2. Tennis Trajectory Analysis

This experiment concerns a similar video, with a girl
playing tennis. As before, the frames between which events
are expected to take place are detected, and in this case are
frames6 and20. Fig. 5(a) shows a frame of the video under
examination and Figs. 5(b)-(d) the activity areas. As before,
there are activity areas corresponding to the ball’s trajectory
and some player motion, and an area corresponding only to
the player’s lateral movement. The shape descriptors are
extracted and their comparison leads to the following abso-
lute meanL1 differences between the shape descriptors of
the first activity area, and the other three:

[0.1143, 0.0571, 0.2000].

As expected, the activity area of Fig. 5(c), where there is no
ball trajectory, is the closest to the first activity area.

4.3. Surveillance Event Detection: People
Walking and Fighting

Event detection is particularly important in surveillance
applications, as the behavior of individuals walking, run-
ning, stopping, meeting may be indicative of suspicious ac-
tivity. For this reason, we analyzed a surveillance video,
where two people are fighting, and when one of them falls
down, the other runs away (Fig. 6(a), (b)). It should be
noted that these are benchmark videos, taken from the
PETS-CAVIAR dataset. The temporal event localization



is achieved using flow statistics over the video sequence
(Sec. 3.1). The sequence is divided into segments by frames
63, 75, 120, 140 and160. The resulting activity areas are
shown in Fig. 6(c) - (h). The first160 frames correspond to
the case where the people are fighting. Although these ac-
tivity areas have a similar shape, they occur at different spa-
tial locations in the video frames. Since the time instants
at which events begin and end are detected based on the
change in the pixels’ statistical distributions (regardless of
their spatial location), when the fight takes place in different
areas, it corresponds to different events. After frame161,
one person starts running away (so again, different pixels
are “activated”), leading to an activity area with a differ-
ent shape. We extract the six MPEG-7 region shape de-
scriptors for these six regions and find their absolute mean
L1 distance between the area of Fig. 6(a) with the areas of
Figs. 6(b)-(h):

[0.0571, 0.1714, 0.482, 0.1712, 0.8]

. Indeed, the activity areas of Fig. 6(b), (c), (e) have a small
difference from that of Fig. 6(a), where the two people are
fighting. The activity area of Fig. 6(d), where one person
falls has a larger difference from the first activity area, since
it consists of two different active regions (introduced by the
motions of one person leaving and one person falling). Fi-
nally, the activity area corresponding to the person running
away has the highest distance, as its shape is the most dif-
ferent.

Once the activity areas are extracted and compared, as
described above, they can be used in combination with the
video frames in order to localize the events of interest.
Thus, we mask video frames corresponding to the begin-
ning or end of events, using the respective binary activity
areas. As Fig. 7 shows, this leads to the correct localization
of events of interest, namely the fight, one person falling,
the other person waving, and the other person running away.

5. Conclusions

This paper presents a novel method for the spatiotem-
poral semantic analysis of low-level video features. On-
tologies are utilised to allow the extraction of meaningful
semantics from the generic, machine-level processing of
digital multimedia data. Specifically, dynamically chang-
ing trajectories are extracted from the processing of the es-
timated optical flow’s statistical characteristics. The geo-
metrical characteristics of the accumulated trajectory infor-
mation are related to concepts in the knowledge structures,
which provide the formal conceptualization needed to en-
able the automatic inference of high level descriptions. The
data is processed in a hierarchical manner, so that the vari-
ous processing stages are more generic and their combined
use leads to a system tailored to specific event detection.

Fight Localization, frame 65

(a)

Fight Localization, frame 120

(b)
Fight Localization, frame 130

(c)

Fight Localization, frame 170

(d)

Figure 7. Fight event localization.
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