
Limiting Disclosure in Hippocratic Databases

Kristen LeFevre†∗ Rakesh Agrawal† Vuk Ercegovac∗ Raghu Ramakrishnan∗

Yirong Xu† David DeWitt∗

†IBM Almaden Research Center, San Jose, CA 95120
*University of Wisconsin, Madison, WI 53706

Abstract

We present a practical and efficient approach
to incorporating privacy policy enforcement
into an existing application and database en-
vironment, and we explore some of the se-
mantic tradeoffs introduced by enforcing these
privacy policy rules at cell-level granularity.
Through a comprehensive set of performance
experiments, we show that the cost of privacy
enforcement is small, and scalable to large
databases.

1 Introduction

The Lowell database research self-assessment of June
2003 points to data privacy as an important area for
future research [4]. One of the defining principles of
data privacy, limited disclosure [6], is based on the
premise that data subjects1 have control over who is
allowed to see their personal information and for what
purpose. For example, a patient entering a hospital
provides some information at the time of registration
with the understanding that this information may only
be used under certain circumstances; for example, the
billing office may use the patient’s address information
to process insurance claims, but the hospital may not
give patient address information to charities for the
purpose of solicitation without consent [1].

Increasingly, organizations want the ability to de-
fine a privacy policy that describes such agreements
with data subjects and to ensure that the policy is en-
forced with respect to all data access. Essentially, a

1We use the term data subject to mean the individual whose
private information is stored and managed by the database sys-
tem.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

privacy policy is comprised of a set of rules that de-
scribe to whom the data may be disclosed (the recip-
ients) and how the data may be used (the purposes).
Additional conditions may be specified to govern dis-
closure. For instance, a policy may specify that a par-
ticular data item may be disclosed, but only with “opt-
in” consent from the data subject, or that the data
item will be disclosed unless the subject has specif-
ically “opted out” of this default. The policy may
also specify more complex conditions; for example, a
patient’s medical history may only be seen by nurses
assigned to the same floor. While there is recent work
on defining languages for specifying privacy policies
(e.g. P3P [12], EPAL [7]), database mechanisms for
enforcing such policies have not been investigated.

An approach often taken is to enforce privacy poli-
cies at the application level [8]: First, the applica-
tion issues the query to the database and retrieves
the result. Then, the application scans the result-
ing records and filters prohibited information (for ex-
ample, by setting it to null). However, this ap-
proach leads to privacy leaks when applied at the cell
level. Consider a query involving a predicate over a
privacy-sensitive field: SELECT Name, Disease FROM
Patients WHERE Disease = "Hepatitis", and Bob,
who has hepatitis, and chose to disclose his name but
not his disease history. The query result contains
Bob’s record with the Disease value filtered out. Un-
fortunately, this allows anyone looking at the results
to conclude that Bob has hepatitis.2

1.1 Requirements for Limited Disclosure
Mechanisms

A solution to the limited disclosure problem should
ideally protect information according to the appropri-

2An alternative might retrieve all of the patient records, not
just those with a particular disease, and apply the privacy-
sensitive predicate in the application. However, this approach
leads to significant performance problems as much data must
be unnecessarily fetched from the database. Query execution is
more difficult yet when we consider more complicated queries,
such as those involving aggregates or joins, because we must ex-
tract a significant amount of data from the database, and then
perform a large amount of the query processing at the applica-
tion level.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205879452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ate policies with minimal privacy-checking overhead.
Further, given the time and expense required to mod-
ify existing application code, such a solution should
require minimal change to existing applications and
little reorganization of existing data.

It is particularly important that we manage disclo-
sure at a very fine granularity because privacy policies
can refer to “data items” at the level of an individual
cell in a relational table. Traditional databases provide
access control at the table level and use the view mech-
anism to restrict access to certain columns or rows of a
table. Some systems [19] now provide access control at
the row level, but this is still inadequate. Consider Al-
ice, who has opted to allow the hospital to release her
email address but not her phone number to charities.
Bob might choose to provide his phone number, but
not his address. Row-level enforcement must either fil-
ter information that should be permitted, or disclose
prohibited information.

1.2 Contributions and Paper Organization

Our principal contribution is a database mechanism,
introduced in Section 2, for enforcing privacy policies,
with the following features:
• Privacy policies can be stored and managed in the

database.
• A broad range of privacy policies expressible

in high-level privacy specification languages (e.g.
the privacy rules expressible in P3P, including
opt-in and opt-out choices, and more complex
conditions as seen in EPAL) can be enforced.

• Enforcing privacy policies does not require any
modification to existing database applications.

The power of our approach is based on two techni-
cal properties: first, it supports cell-level enforcement;
second, it allows full use of SQL query capabilities to
express conditions. In more detail, our contributions
are:
• We investigate the alternative semantics for lim-

ited disclosure in relational databases and present
two models of cell-level limited disclosure: table
semantics and query semantics, weighing the rel-
ative semantic and performance tradeoffs implicit
in the two models. (Section 3)

• We provide techniques for enforcing a broad class
of privacy policies by automatically modifying all
queries that access the database in a way that
ensures the desired disclosure semantics. Rather
than viewing the disclosure control problem as one
of checking against a list of privileges, we trans-
form it into a query modification problem. Thus,
our implementation automatically benefits from
years of experience in database query processing,
including parallelism. We examine several im-
plementation issues, including privacy meta-data
storage, query modification algorithms, and struc-
tures for storing conditions and individual choices.
(Section 4)

• An experimental evaluation of our techniques
shows that our approach has low overhead and
frequently speeds up queries by using privacy-
related restrictions as additional selection condi-
tions. The conventional wisdom has been that
cell-level access control is prohibitively expensive.
We provide extensive experiments comparing the
implementation alternatives that we present and
demonstrate that our implementation is scalable
to large databases. (Section 5)

Although the work presented here has been done
in the Hippocratic database setting [6], it has much
wider application. A growing range of applications
in content management, customer support, financial
analysis, and e-commerce require cell-level access con-
trol. In fact, many such applications might use privacy
policies in the dual role of access control policies.

1.3 Related Work

The work in database access control can largely be
grouped into the areas of discretionary and mandatory
[21]. Discretionary access control allows a database
administrator to grant and revoke access privileges,
which typically refer to entire tables or views; option-
ally, the DBA may specify that others are authorized
to grant and revoke privileges [14]. Role-based access
control is an additional refinement which allows this
type of privilege to be granted not to an individual
user, but to the user’s group, or role [23].

The mandatory access control model involves a sin-
gle set of rules governing access to the entire system.
A well-known model of mandatory access control, the
Bell-LaPadula multilevel secure database, defines per-
missions in terms of objects, subjects, and classes [9].
Each object is a member of some class, for example
“Top Secret” or “Unclassified,” which typically form
a hierarchy. The model also allows for the possibil-
ity of polyinstantiation [18]. These formalizations are
further refined by [15, 16], and a schema decomposi-
tion allowing cell-level classification to be expressed as
row-level classification is described in [20].

To our knowledge, the only cell-level implementa-
tion of multi-level security was done by SRI in the
SeaView system [18], but its performance was never
published [3]. The idea of modifying queries for access
control was introduced in [24], and the idea of “re-
formulating” queries for security was also alluded to
by [25]. A query rewrite mechanism to control access
to federated XML user-profile data was used by [22].
Oracle’s Virtual Private Database product allows for
the definition of access control functions, which may
be data-driven, and which operate at the row level
through addition of predicates [19]. Some content-
management applications have enforced fine-grained
security by introducing an application layer that mod-
ifies queries with conditions that enforce access control
policies, e.g. [2, 17], but they are application-specific

in their design and do not extend a DBMS for general
use.

There has been extensive research in the area of
statistical databases motivated by the desire to pro-
vide statistical information (sum, count, etc.) without
compromising individual information (see surveys in
[5, 26]). It was also shown that we cannot provide high
quality statistics and, at the same time, prevent partial
disclosure of individual data. Our goal in this paper
is to provide database support that allows individual
queries to respect privacy policy rules and individual
subject choices, and we assume that additional mecha-
nisms such as query admission control and audit trails
[5] are in place to guard against the inference problem.
This paper also does not purport to address the use
of covert channels to leak information3, but assumes
that the appropriate security mechanisms are in place
to control such leaks [10].

2 System Overview

We have developed a database architecture for enforc-
ing limited disclosure as expressed by privacy policies.
The basic components are the following:
• Policy definition: Privacy policies are expressed

electronically and stored in the database where
they can be used to enforce limited disclosure.
Our prototype provides a policy “meta-language”
for defining privacy policy rules. Privacy policies
defined using P3P [12] or EPAL [7] may be trans-
lated into this meta-language and then stored
in the database, making our architecture policy-
language independent.

• Privacy meta-data: The rules and conditions
prescribed by the privacy policy are stored as pri-
vacy meta-data tables in the database. The struc-
tures for storing this information are described in
Section 4.1.

• Application context: Each query must be as-
sociated with a purpose and recipient. In our sys-
tem, this information is inferred based on the con-
text of the application issuing the query, which is
similar to the approach described in [19]. The
query interceptor infers the purpose and recipient
of the query based on context information stored
in an additional meta-data table.4

• Query modifier: SQL queries issued to the
database are intercepted and augmented to re-
flect the privacy policy rules regarding the pur-
pose and recipient issuing the query. The results

3For example, error messages generated during the evalua-
tion of privacy rules could become a covert channel for leaks.

4An alternative would extend the syntax of a SQL
query to include purpose and recipient information, for
example SELECT * FROM Patients FOR PURPOSE Solicitation
RECIPIENT External Charity. Because this method requires ex-
tensions to the query language and modification to existing ap-
plications, we elect to use application contexts, though the rest
of our implementation is compatible with either alternative.

Privacy
Meta-Data

Data
Tables

Choice
Data

Modify Query

Install Policy
(P3P or EPAL)

Issue Query
(SQL)

Individual
Choices

Application
Context

Policy Language
Translator

Modified Query

Figure 1: Implementation architecture overview

of this new query are returned to the issuer. Sev-
eral query modification algorithms are detailed in
Section 4.2.

• Disclosure model: The result of executing a
privacy-modified query will reflect one of two cell-
level limited disclosure models, as described in
Section 3.

2.1 Policy Meta-Language, Rules and Condi-
tions

A privacy policy will be considered to be
a set of rules of the form <data, purpose-
recipient pair, condition>. An example of such a
rule is <address, solicitation-charity, optin = yes>,
meaning that a data subject’s address can be released
to a charity organization for the purpose of solicita-
tion, provided the subject has explicitly consented to
this disclosure. A condition is any boolean predicate
that is expressible in SQL. Electronic privacy poli-
cies are programatically translated into this policy
“meta-language” before being deployed.

A conditional predicate may refer to the data table
T , in addition to any other data tables. By joining T
with other tables on primary key T.key, these condi-
tions can be made to depend on any attributes of the
“current” T row, and by referring to the context en-
vironment variable (which we denote $USERID) that
identifies the user issuing the current request, the con-
ditions can be made specific with respect to the cur-
rent user. For example, suppose we were to define a
condition to govern the disclosure of patient data to
hospital nurses such that, for treatment, nurses may
only see the medical histories of patients assigned to
the same floor. This condition can be expressed using
the following predicate:
EXISTS (SELECT NurseID

FROM Nurses
WHERE Patients.floor = Nurses.floor
AND $USERID = Nurses.NurseID)

Another example of data-driven conditions arises
when we consider defining disclosure based on
application-defined user groups. In this scenario,
the application owns some database table D(key, a1,
a2,. . .) storing application data. The application also
maintains a list of users U(uid) and groups G(gid), a

table mapping users to groups, M(uid, gid), and an ac-
cess control list A(key, ai, gid) associating each record
in D with a list of groups that have access to attribute
ai. Suppose one of the privacy policy rules allows dis-
closure of data attribute D.ai to purpose P and recip-
ient R only when the current user belongs to a group
which has been granted access to D.ai. Such a con-
dition is specified as a simple SQL predicate joining
tables M and A:
EXISTS

(SELECT gid
FROM M, A
WHERE M.gid = A.gid AND M.uid = $USERID
AND A.key = D.key AND A.ai)

A potential source of difficulty in translating from
a high-level policy specification into our meta specifi-
cations could be the gap in vocabulary. Policy speci-
fications are written in terms of an information model
that might use entity names that need translation into
the column and table names used in the meta specifica-
tion. However, the necessary mapping can be specified
using a GUI tool and then used in the translator from
the high-level specification into meta specification.

Another difficulty could be the difference in the ex-
pressive power of the the two condition languages and
the difference in the execution models. We investi-
gated this problem by experimenting with translating
conditions from P3P and EPAL into our condition lan-
guage. Writing the translator for P3P was straightfor-
ward. We could also translate most of EPAL, although
this translation was more challenging. The EPAL en-
gine evaluates rules sequentially, in the order they ap-
pear in the policy. Our policy language is set-oriented,
so we had to modify the execution semantics of EPAL
so that if two or more rules qualify, they are all fired to
allow access to data. Similarly, EPAL conditions sup-
port some operators and data types for which there
is no corresponding analog in SQL. However, not sup-
porting these constructs does not appear to be a limi-
tation in practice; we looked at several EPAL policies
and found easy translations for them into our policy
meta-language.

3 Limited Disclosure Models

We introduce two models of cell-level limited disclo-
sure enforcement: table semantics and query seman-
tics. The table semantics model conceptually defines a
view of each data table for each purpose-recipient pair,
based on the disclosure constraints specified in the pri-
vacy policy. These views combine to produce a coher-
ent relational database for each purpose-recipient pair,
independent of any queries, and queries are evaluated
against this database. In contrast, the query seman-
tics model takes the query into account when enforcing
disclosure. Both models mask prohibited values using
SQL’s null value.

Let a privacy policy consist of statements that in-
volve m purpose-recipient pairs P = <P1, P2, ..., Pm>.

In order to define the semantics of the limited disclo-
sure model, every data table T with n columns will
be (conceptually) extended with m ∗ n columns that
record disclosure conditions for the corresponding cell
for a given purpose-recipient pair.

We use the notation T [i], 1 ≤ i ≤ n, to refer to
the data columns of T . We use t[i, j], 1 ≤ i ≤ n, 1 ≤
j ≤ m, to refer to the column containing the disclo-
sure condition for data column i and purpose-recipient
pair j. For any set of columns S in a table T , “t[S]
nonenull” denotes that every column in S is non-null
in tuple t. We use eval(t[i, j]) to denote the boolean
result of evaluating the (predicate expressing the) con-
dition that controls disclosure of data column i in the
current row of T to purpose-recipient pair j. We say
that the cell in column i of the current row is prohib-
ited to purpose-recipient j (or simply prohibited) if the
value of eval(t[i, j]) is false.

3.1 Table Semantics Model

In the table semantics model, each purpose-recipient
pair Pj is assigned a view over each table in the
database, and prohibited cells are replaced with null
values. Also, if any column in the primary key of a
row is prohibited, then the entire row is prohibited.5
This model is formally defined as follows:

Definition 1: (Table Semantics) Let T be a
table with n data columns, and let K be the set of
columns that constitute the primary key of T . For a
given purpose-recipient pair Pj, the table T , seen as
TPj , is defined as follows:

{r|∃t ∈ T ∧ ∀i, 1 ≤ i ≤ n

(r[i] = t[i] if eval(t[i, j]) = true,

r[i] = null otherwise)
∧ r[K] nonenull}

Consider a table containing patient information, as
shown in Figure 2. The hospital allows patients to
choose on an opt-in basis if they want these categories
of information to be released to charities (recipient)
for solicitation (purpose). Figure 3 shows the choices
made by the patients. The resulting privacy-enforced
table of patients according to table semantics is shown
in Figure 4, assuming that P# is the primary key.

3.2 Query Semantics Model

With query semantics, prohibited data is removed
from a query’s result set based on the purpose-
recipient pair and the query itself. Here, we do not
aim to define a version of the underlying table for each

5A simpler cell-level enforcement model can be obtained
by dropping the null-restriction on the primary key, but the
privacy-enforced data tables will no longer be consistent with
the relational data model, which requires primary keys to be
non-null. We call this alternative strict cell-level semantics, but
we do not consider it further.

P# Name Age Address Phone
1 Alice Adams 10 1 April Ave. 111-1111
2 Bob Blaney 20 2 Brooks Blvd. 222-2222
3 Carl Carson 30 3 Cricket Ct. 333-3333
4 David Daniels 40 4 Dogwood Dr. 444-4444

Figure 2: Full data table of patient information.

P# P# Name Age Address Phone
1

√ √ √ √ √
2 × × × × ×
3

√ × × √ √
4

√ √ × × ×
Figure 3: Patient choices for disclosure of informa-
tion to charities for solicitation.

P# Name Age Address Phone
1 Alice Adams 10 1 April Ave. 111-1111
3 - - 3 Cricket Ct. 333-3333
4 David Daniels - - -

Figure 4: Privacy-enforced table of patient informa-
tion, using table semantics.

Name Age
Alice Adams 10
- -
David Daniels -

Name Age
Alice Adams 10
David Daniels -

Figure 5: Comparing Table Semantics and Query
Semantics for a simple projection

purpose and recipient, so a row in the query result set
may include a null value for a column that is part of
the primary key in the underlying schema. The query
semantics model is defined as follows:

Definition 2: (Query Semantics) Consider a
query Q that is issued on behalf of some purpose-
recipient pair Pj and that refers to table T . Query
Semantics is enforced as follows:

1. Every table T in the FROM clause is replaced by
TPj , defined as follows:

{r|∃t ∈ T ∧ ∀i, 1 ≤ i ≤ n

(r[i] = t[i] if eval(t[i, j]) = true,

r[i] = null otherwise)}
2. Result tuples that are null in all columns of Q are

discarded.
For example, suppose we were to project the Name

and Age columns from the Patients table. Using query
semantics, the result of this query would be the table
on the right of Figure 5; using table semantics, we
would obtain the table on the left.

Note that in the query semantics model, differ-
ent project lists in otherwise identical queries might
yield different numbers of rows depending on the col-
umn(s) projected. This slight departure from the
norms of conventional SQL may result in substantial
performance gains, but the semantic tradeoff should
nonetheless be carefully considered.

3.3 Representing a Prohibited Value as Null

In SQL, null is a special value meant to denote “no
value” [11]. For this reason, it is intuitive to use null to

represent a prohibited value. Adopting the semantics
of SQL queries run against null values for prohibited
values is desirable for several reasons:

• Predicates applied to null values, such as X >
null, do not evaluate to true. Similarly, null
values do not join with other null values. Predi-
cates applied to privacy-enforced tables will thus
behave as though the prohibited cells were not
present.

• Null values do not affect computation of aggre-
gates, so an aggregate is actually computed based
only on the values available to the purpose and
recipient.

• Many applications are written to withstand nulls
in the query results. Such applications can
be privacy-enabled without requiring expensive
rewriting.

However, we also carry over the well-known seman-
tic anomalies inherent in the use of null values [11].
For example, the SQL expression AVG(Age) is not nec-
essarily equal to the expression SUM(Age)/COUNT(*).
One might expect that an expression such as SELECT *
FROM Patients WHERE Age > 50 OR Age <= 50 will
return all tuples in Patients, but it might not do so
in the presence of nulls.

Replacing prohibited values with nulls also makes
some practical assumptions. While it is not its
intended use, null may sometimes be used with
application-specific semantics. For example, an ap-
plication may treat a null value in the Phone column
as an indication that a patient has no phone; the use
of null for prohibited fields might conflict with such
usage. The alternative to using nulls is to introduce
a new special data value, prohibited, carrying special
semantics with regard to SQL queries, but such an ap-
proach would require substantial augmentation to the
query processing engine and add new semantic com-
plexities.

4 Implementation

This section details the implementation of the archi-
tecture introduced in Section 2. We first describe the
mechanisms used to store privacy meta-data, including
rules and conditions as implemented using the policy
meta-language. We then describe two algorithms for
modifying queries to incorporate privacy enforcement.
Finally, we describe an optimized implementation for
enforcing opt-in and opt-out choices.

4.1 Privacy Meta-Data: Rules and Conditions

The disclosure rules from an electronic privacy policy
are stored inside the database as the privacy meta-
data. These tables capture the purpose and recipient
information (Figure 6), as well as disclosure conditions
(Figure 7). When a purpose P , recipient R, and data
column D of table T appear in a row of the policy

RuleID Policy Purpose Recipient Table Column CondID
R1 P1 Insurance Billing Office Patients Phone -
R2 P1 Solicitation External Charity Patients Name C5
R3 P1 Solicitation External Charity Patients Phone C3
R4 P1 Treatment Hospital Nurses Patients Disease C1
R5 P1 Treatment Hospital Nurses LabResults Diagnosis C2
R6 P1 Solicitation External Charity Patients P# C4
R7 P2 Insurance Billing Office Patients Address -
R8 P2 Insurance Billing Office Patients Phone -

Figure 6: Policy Rules Table

CondID Predicate

C1
“EXISTS (SELECT NurseID FROM Nurses
WHERE Patients.floor = Nurses.floor AND $USERID = Nurses.NurseID)”

C2
“EXISTS (SELECT NurseID FROM Nurses, Patients
WHERE Patients.floor = Nurses.floor AND Patient.P# = LabResults.P#
AND $USERID = Nurses.NurseID)”

C3
“EXISTS (SELECT Phone Choice FROM PatientChoices
WHERE Patients.P# = PatientChoices.P# AND PatientChoices.Phone Choice = 1)”

C4
“EXISTS (SELECT ID Choice FROM PatientChoices
WHERE Patients.P# = PatientChoices.P# AND PatientChoices.ID Choice = 1)”

C5
“EXISTS (SELECT Name Choice FROM PatientChoices
WHERE Patients.P# = PatientChoices.P# AND PatientChoices.Name Choice = 1)”

Figure 7: Conditions table

table, this denotes a rule, which indicates that D is
available to recipient R for purpose P . If this row con-
tains a condition, it means that (P , R) has access to
D, but with restrictions as indicated by the condition.
For example, the rules described in Figure 6 indicate
that, under policy P1, Phone information is always
provided to the billing office for the purpose of pro-
cessing insurance claims (Rule R1), but it is provided
to external charities for solicitation only conditionally,
on an opt-in or opt-out basis (Rule R3)

4.2 Query Modification

We have two algorithms for query modification
that are described in this section, one using case-
statements, and the other using outer-joins.

4.2.1 Case-Statement Modification

The first query modification algorithm augments in-
coming queries with case statements to enforce the
rules and conditions expressed in the privacy meta-
data. Consider, for example, a data table Patients,
containing an attribute Phone. Under the privacy
policy that is in place, the Phone attribute is made
available to charities for the purpose of solicitation on
an opt-in basis, as is the primary key, P#. Suppose
the query SELECT Phone FROM Patients is issued for
this recipient and purpose. Using the table semantics
model, this query can be rewritten to resolve the con-
dition as follows, where the choice condition on Phone
is used to perform cell-level enforcement, and the con-
dition on P# is used for record filtering:
SELECT
CASE WHEN EXISTS

(SELECT Phone Choice
FROM PatientChoices
WHERE Patients.P# = PatientChoices.P#
AND PatientChoices.Phone Choice = 1)

THEN Phone ELSE null END
FROM Patients

WHERE EXISTS
(SELECT ID Choice
FROM PatientChoices
WHERE Patients.P# = PatientChoices.P#
AND PatientChoices.ID Choice = 1)

The basic modification algorithm is given in Fig-
ure 8.6 Through a series of simple lookup queries to
the privacy meta-data tables, the algorithm resolves
the appropriate rules, and modifies the query appro-
priately. The given algorithm filters records in accor-
dance with the table semantics model, but the filtering
method for query semantics applies predicates simi-
larly.

An optimization not reflected in the above pseudo-
code is available when the original query includes a
predicate on an indexed column. Consider for exam-
ple the query SELECT Phone, Name FROM Patients
WHERE Phone = 222-2222 over a data table in which
there is an index on Phone and Name is non-indexed.
For simplicity, in this and subsequent query modifica-
tion examples we refer to the predicate implementing
condition “C3” for table Patients as C3, etc. We also
disregard row filtering and translate the query to:

SELECT Phone, Name
FROM (SELECT CASE WHEN C3

THEN Phone ELSE null END,
CASE WHEN C5
THEN Name ELSE null END
FROM Patients) AS q1(Phone, Name)

WHERE q1.Phone = 222-2222

This query cannot use the index on Phone because
the reference to Phone is embedded inside a case-
statement. We fix this problem by pulling the indexed
data attribute and the corresponding choice out to the
predicate, where the index can more easily be used,

6The query translation techniques are described to simplify
exposition, not in their optimized form. We assume that the
queries are further rewritten by the query optimizer.

Modify Query
Input: Query string Q to be modified, unique policy identifier PID, Purpose P , Recipient R
Output: Query string Q′, reflecting the privacy semantics of P and R under policy PID
Method: For each table t referenced by query Q, (1) replace the reference to t with a sub-query that reconciles the semantics
associated with each column in the table based on the policy and conditions, and (2) add a predicate that filters rows where at
least one attribute of the primary key is forbidden. GetPolicy and GetCondition are functions of PID, P , R, t, and column
c that query the privacy meta-data tables. GetPolicy resolves the privacy semantics of a column for the given purpose and
recipient, and returns a value of “allowed”, “prohibited”, or “condition.” GetCondition retrieves the appropriate conditional
predicate. Eval(condition, row) is a boolean function that evaluates a particular condition predicate over an individual row.
We use bracket <> notation to distinguish commands executed at query runtime from those executed at query modification
time.

Q′ = Q
for all Tables t referenced by Q do

C[] ← column list of t
for i = 0 to length of C do

if GetPolicy(PID, P, R, t, C[i]) = allowed then
C′[i] ← C[i]

else if GetPolicy(PID, P, R, t, C[i]) = prohibited then
C′[i] ← null

else
/* Replace with a column function that resolves the condition on a per-row basis */
condition ← GetCondition(PID, P, R, t, C[i])

C′[i] ← <if Eval(condition, row) then C[i]
else null endif>

end if
end for
K[] ← the primary key columns of t
/* Define a predicate function predicate to filter individual rows based on the semantics of the primary key attributes */

predicate ← <¬(∃k ∈ K such that Policy(PID, P, R, t, k) is forbidden) ∧
¬(∃k ∈ K such that ¬Eval(GetCondition(PID, P, R, t, k), row))>

Create selection subquery t′ with projection list C′; Append predicate function predicate to t′
Replace reference to t in Q′ with t′

end for
return Q′

Figure 8: Basic algorithm for modifying queries for privacy enforcement using table semantics.

but the meaning of the query is still consistent with
the desired semantics7:
SELECT Phone, Name
FROM (SELECT Phone,

CASE WHEN C5 THEN Name ELSE null END,
FROM Patients) AS q1(Phone, Name)

WHERE q1.Phone = 222-2222 AND C3

4.2.2 Outer Join Modification

An alternative modification mechanism implements
the Table Semantics and Query Semantics enforcement
models using the left outer join and full outer join oper-
ators, respectively. Consider the query SELECT Phone
FROM Patients from the previous section. This query
can be rewritten as follows to reflect the table seman-
tics enforcement model:
SELECT Phone FROM
(SELECT P# FROM Patients WHERE C4) AS t1(P#)
LEFT OUTER JOIN

(SELECT P#, Phone
FROM Patients
WHERE C3) AS t2(P#, Phone)

ON t1.P# = t2.P#

7Thank you to Jerry Kiernan and Ramakrishnan Srikant for
pointing out this fix. Note that this optimization also requires
modification of the correlated sub-query in condition predicate
C3, and it necessitates a dynamic rewriting mechanism which
cannot be applied if we simply define a view for each purpose-
recipient pair.

The modification algorithm for table semantics is a
SQL implementation of the following relational alge-
bra expression; we omit pseudo-code. Consider some
query Q. Each table T referenced by Q contains some
columns, a1 . . . an. Let k represent the primary key of
T , and for simplicity assume that the primary key is
comprised of just one column. We replace Q’s refer-
ence to T with the following, where “n” denotes the
left outer join operator:
[σk=“Allowed”(Πk(T))] n$1=$1 [σa1=“Allowed”(Πk,a1 (T))]

n$1=$1 . . .n$1=$1 [σan=“Allowed”(Πk,an (T))]

We have a similar algorithm for query semantics.
Consider a query Q which projects a set of columns
from some set of tables. For each such table T , let
p1 . . . pn denote the columns of T projected by Q, and
let k be the primary key of T . Again assume the pri-
mary key contains just one column. We replace the
reference to T by Q with the following, where “×”
denotes the full outer join operator:
[σp1=“Allowed”(Πk,p1 (T))]×$1=$1 [σp2=“Allowed”(Πk,p2 (T))]

×$1=$1∨$3=$1 . . .×$1=$1∨$3=$1∨... [σan=“Allowed”(Πk,an (T))]

The SeaView system took a similar approach in con-
structing cell-level access control, recovering multilevel
relations from the underlying relations using the left
outer join and union operators [18].

4.3 Optimized Implementation of Opt-
In/Opt-Out Conditions

We have described how query modification can be used
to handle general data-driven conditions. In this sec-
tion, we describe how the database can provide high-
performance support for the important special class
of conditions that are expressed as simple opt-in or
opt-out choices.

There are several possible approaches to storing
choice values. The simplest approach, termed the
internal design, appends additional columns to the
data table (one per choice), where it stores the binary
choices (1 denotes consent). While this approach may
be satisfactory in some cases, it is preferable to avoid
schema modification when adding privacy support to
an existing database environment. For this reason, we
explore options for storing choice values externally, in
tables separate from the data tables.

The external multiple table design uses one table
per choice. The schema of each external choice table
consists of a foreign key that references table T . The
table Ci corresponding to choice i contains one row
for each row of T for which the data subject provided
consent for the ith choice. Thus, if the data table T
were extended with n choices to yield the table T ′,
table Ci = πkey(σchoicei=1(T ′)) for choice i.

These external choice tables can be used to enforce
limited disclosure using either the table semantics or
query semantics enforcement model. We describe in
detail only the implementation of table semantics, but
query semantics follows handily. Let VC refer to a view
of the choice tables corresponding to the columns in
table T . Let key choices refer to those that involve
a key column in T , and let non-key choices refer to
those that do not. A row of T is not visible unless the
subject has opted in for all key choices; therefore, the
corresponding choice tables are combined using joins
to produce the view VC . A non-key choice determines
whether the corresponding column is visible (assuming
that the row is visible according to the key choices).
This is enforced by using left-outer join to add each
non-key choice table to VC . VC is then joined with
T , and the following condition is tested by the modi-
fied query (using either modification algorithm): If the
choice field (generated from the outer join of the cor-
responding external table) has a value other than null,
then the condition is satisfied and the data returned;
otherwise the data is forbidden and replaced with null.

The definition of view VC is illustrated below for an
example data table T with a key column K, a choice
(C0) on this column, and choice C1 on non-key column
A. For the multiple external table design, VC is defined
as:
SELECT C0.key, C1.key
FROM C0 LEFT OUTER JOIN C1 ON C0.key = C1.key

Alternatively, the external single table design re-
places the multiple external tables with a single table

CC . This design essentially stores the choice columns
described for the internal design in a separate table
which can be joined with the data table. The schema
contains the key for data table T and n choice columns.
The basic query modification algorithm is similar to
that of the internal design, though the data and choice
tables must first be joined.

5 Performance Evaluation

We describe here the results of experiments study-
ing the performance of our architecture and of query
modification as a method of enforcing limited disclo-
sure. The primary focus of these experiments is to
measure the performance of enforcing unconditional
policy rules and those containing opt-in and opt-out
conditions, as these are by and large the most com-
mon cases. Our experiments are intended to address
the following key questions:
• Overhead of Privacy Enforcement What is

the overhead cost introduced by privacy checking?
We address this question through an experiment
that factors out the impact of choice selectivity,
incurring the cost of checking privacy semantics,
but gaining nothing from filtering prohibited tu-
ples from the result set.

• Scalability We test the scalability of our modi-
fication mechanism in terms of database size and
application selectivity. We vary both the percent-
age of users who elect to share their data for a
particular purpose and recipient (choice selectiv-
ity)8, and the percentage of the records selected
by an issued query (application selectivity).

• Impact of Filtering In both the table and query
semantics models, there are cases where tuples are
filtered entirely from the result set of a query. We
perform an experiment to show the performance
gain due to this filtering.

• Choice Storage We compare the performance of
the internal, external single, and external multiple
choice table designs for storing choices.

• Enforcement Model We describe the perfor-
mance implications of choosing between Table Se-
mantics and Query Semantics models.

• Modification Algorithm We compare the per-
formance of the case-statement and outer join
modification algorithms for different opt-in and
opt-out scenarios.

There are several distinct sources of performance
cost in our architecture. There is some cost incurred by
rewriting queries, but this cost is small, and constant
in the number of columns. Moreover, this step is likely

8Except where otherwise noted, our experiments use cell-
level enforcement, but make the simplifying assumption that
access to all columns in the data table is based on a single opt-
in/opt-out choice. This means that every record is either fully
visible or fully invisible; however, for the case-statement rewrite
mechanism we still perform cell-level enforcement by evaluating
a case statement over each column.

Column Description
Unique2 (int) Primary key, Sequential order
Unique1 (int) Candidate key, random order
Onepercent (int) Values 0-99, random order
Tenpercent (int) Values 0-9, random order
Twentypercent (int) Values 0-4, random order
Fiftypercent (int) Values 0-1, random order
stringu1 (32-byte str) Unique character string
stringu2 (32-byte str) Unique character string
Choice 0 (int) Values 0-1 (1% = 1), indexed
Choice 1 (int) Values 0-1 (10% = 1), indexed
Choice 2 (int) Values 0-1 (50% = 1), indexed
Choice 3 (int) Values 0-1 (90% = 1), indexed
Choice 4 (int) Values 0-1 (100% = 1), indexed

Figure 9: Benchmark dataset and choice columns.

circumvented altogether for pre-compiled queries. For
these reasons, we focus on the cost of query execution.

5.1 Experimental Setup

We evaluate performance using the synthetically-
generated dataset described in Figure 9, which is based
on the Wisconsin Benchmark [13]. All experiments
were run using DB2 UDB 8.1. The operating sys-
tem was Microsoft Windows 2000 Server, Service Pack
4. The hardware consisted of a dual-processor 1.8Ghz
AMD machine with two GB of memory and four 80
GB IDE Western Digital hard drives. The data was
spread across two of the disks. The buffer pool size
was set to 50MB, the pre-fetch size was set to 64KB,
and the level of optimization was set to 5. All other
DB2 default settings were used.

To measure the cost of executing queries, we used
the DB2batch utility. Each query was run 6 to 11
times, flushing the buffer pool, query cache, and sys-
tem memory between unique queries. The results be-
low give the average warm performance numbers for
each query. With 95% confidence, the margin of error
for the reported numbers is less than ±5%.

5.2 Experimental Results and Analysis

5.2.1 Overhead and Scalability

Our first set of experiments measures the overhead cost
of performing privacy enforcement and the scalability
of our algorithms to large databases. To measure this
cost, we consider simple queries that select all records
from the data table. We report the results for our table
semantics enforcement model, but the trends are sim-
ilar for query semantics. We consider the worst case
scenario, where the choice selectivity is 100%. Here we
incur all the cost of privacy processing, but we do not
see the performance gains of filtering. The application
selectivity was kept fixed at 100%.

Figure 10 shows the overhead cost of executing
queries modified for privacy enforcement over tables
containing 1, 5, 10, and 15 million records. The graph
shows the total execution time for unmodified “SELECT
*” queries, as well as queries modified to incorporate
choices stored using the internal and external multiple
approaches. The queries incorporating internal choices

Figure 10: Scalability and performance of modified
and unmodified queries, choice selectivity = 100% and
application selectivity = 100%. CPU time is the bot-
tom portion of each bar, and the full bar represents
the total query execution time.

Figure 11: Comparing original and modified queries (5
million records, application selectivity = 100%)

incur the overhead of processing the additional case
statement for each cell, and the external also incurs
the cost of joining with the choice table. Note that
the join is performed quickly as both the data and
choice tables are clustered on the join key.

Because the figures show the warm numbers, the
queries over the smaller tables can largely be processed
from the buffer pool and system memory. In the case
of the 15 million-record table, however, the query pro-
cessing becomes I/O-bound. Thus, in the case of the
former, the cost is dominated by the CPU time spent
processing the case statements, whereas in the latter,
the cost is dominated by I/O. Here the relative cost of
performing privacy checking is reduced as the database
size grows. We observe an increase in elapsed time for
the external strategy and the 15 million-record table
because of the extra I/O cost of reading the indexes
on the data and choice tables.

Overall, the overhead cost of privacy-checking is
small, particularly for the internal choice storage de-
sign. Because the cost of privacy-checking is largely
CPU-based, privacy enforcement scales well to larger
queries in which I/O dominates the cost.

5.2.2 Impact of Record Filtering

In cases with choice selectivity less than 100%, queries
modified to reflect the table semantics or query se-

Figure 12: Comparing the internal and external mul-
tiple strategies (5 million records table)

mantics enforcement model perform significantly bet-
ter that the original queries. Because the choice values
are indexed, these queries avoid reading tuples that
are filtered from the result set. Figure 11 compares
the performance of original and rewritten queries over
a table containing five million records. In our experi-
ment, the queries with choice selectivity 1% and 10%
used the index on the choice column; the others did
not. The performance gain is considerable when the
choice selectivity is 1% or 10%.

5.2.3 Comparing Choice Storage Methods

There are a number of performance issues to consider
when choosing a choice storage design. In particu-
lar, when using an external design, it is necessary to
join the data table with the choice table when process-
ing a query. Using our original experimental dataset,
we found that the internal approach performed bet-
ter than the external multiple approach (Figure 12).
However, on further investigation, we found that the
cost of performing this join may be offset when the
number of choice columns stored internally is large. In
addition to database design considerations, this perfor-
mance trade-off should be considered when choosing a
choice storage design.

To measure this performance trade-off, we ran ex-
periments varying the number of choices stored. The
number of choices stored is distinct from the number
of choices enforced because choices might be stored for
a number of different purpose-recipient pairs, but all
of these choices are not necessarily enforced for each
query. Figure 13 compares the performance of queries
enforcing a single choice modified using the internal
and external multiple storage strategies. The appli-
cation selectivity was held constant at 100%. In the
case where the total number of stored choices is small,
the internal strategy performs slightly better than the
external strategy. However, as the number of stored
choices grows, the internal strategy widens the data
table, causing performance to suffer. The external ap-
proach performs similarly to an internal table of width
50. (This is equivalent to our standard benchmark
data table, plus 42 choice columns appended inter-
nally.) For the tables of one hundred columns and with

Figure 13: Comparing storage strategies for varying
number of choice columns (5 million records, applica-
tion selectivity = 100%)

Figure 14: Comparing external multiple and external
single for multiple choices (5 million records, applica-
tion selectivity = 100%)

the internal strategy the queries become I/O bound
and perform poorly in comparison.9

As the number of choices stored increases, perfor-
mance of the internal strategy deteriorates. On the
other hand, as the number of choices enforced in-
creases, the number of joins required for the external
multiple strategy grows, causing performance to suf-
fer. In this case, we can substitute the external sin-
gle strategy to obtain better performance. Figure 14
shows the results of an experiment varying the number
of choices enforced; the number of stored choices was
held constant at five. This represents a tradeoff be-
cause the choice table will likely contain more records
than a single choice table from the external multiple
design, and like the internal design, the single external
table could potentially be wide. To partially address
this concern, it is possible to create several external
choice tables, grouped by choice values.

5.2.4 Performance Differences Among En-
forcement Models

As we saw in Section 5.2.2, record filtering can have
a significant impact on performance. For this rea-
son, there is a clear performance distinction between

9It is also possible to encode choices as a bit vector in one
(or a small number of) columns. We do not consider this option
because in our implementation the necessary bitwise operations
precluded the use of an index on the choice values.

Figure 15: Comparing modification algorithms for a
“sparse” choice space (internal choice storage, 5 mil-
lion records, application selectivity = 100%)

the table semantics and query semantics enforcement
models. In the table semantics model, a tuple is not
filtered from the result set if the primary key is not
prohibited, although all of the non-key columns might
have been prohibited. Assume that the key columns
of a table have independent privacy rules and that the
primary key columns are allowed if any of the non-key
columns of the record is allowed. In this case, it is con-
venient to think of the independent choice selectivities
for all of the columns in the table combining to form
the effective choice selectivity. If the table contains x
columns, the effective selectivity can be determined by
1−∏x

i=1(1− si), where si is the choice selectivity cor-
responding to column i. Thus fewer rows are filtered
as the number of columns in the table increases.

In the query semantics model, the effective choice
selectivity is determined by the selectivities of only
those columns projected by the query. In many situa-
tions, therefore, using the query semantics model will
likely lead to substantial performance gain.

5.2.5 Comparing Modification Algorithms

In most situations, our case-statement modification al-
gorithm outperforms the outer-join algorithm. How-
ever, there are some situations where outer join does
better, particularly when the space of choice values
is “sparse”, meaning few data subjects have provided
consent for a particular column, but many of the
records must still be fetched because of other data
columns. In this case, the outer join algorithm is able
to make use of the index over the “sparse” choice col-
umn. Thus, it avoids processing a case-statement over
each of these cells.

Figure 15 shows the performance of the outer join
algorithm compared to case-statements over a table
with the following privacy semantics: Unique2 can be
unconditionally disclosed, but the rest of the columns
are provided based on some choice, the selectivities of
which are shown in the graph.

5.2.6 Summary of Performance Results

Through our experiments, we found that in general
the cost of privacy checking is small and CPU inten-
sive. For large I/O bound queries, the relative cost is
minimal, so the cost of privacy enforcement scales well.
Both semantic models, Table Semantics and Query Se-
mantics, filter records from the result set in addition to
performing cell-level enforcement. This filtering leads
to substantial performance gains when the choice se-
lectivity is small. We expect that in many situations,
the query semantics model would filter more records
than would the table semantics model, and for this rea-
son, we expect that it would generally show superior
performance.

There is a performance tradeoff to be considered
when choosing between the internal, external multi-
ple, and external single choice storage designs. When
the number of stored choices is high, the performance
of the internal design suffers because of an increase in
I/O due to the increase in the width of the records.
When the number of choices enforced is high, the per-
formance of external multiple suffers because of the
number of required joins. Frequently, the external sin-
gle design serves as an effective compromise.

Finally, the case-statement modification algorithm
almost always outperforms the outer-join mechanism,
except in certain cases, such as sparse choice spaces.

6 Conclusion and Future Work

Limited disclosure is a vital component of a data pri-
vacy management system. We proposed a scalable
architecture for enforcing limited disclosure rules and
conditions at the database level, and we presented sev-
eral models for cell-level limited disclosure enforcement
in a relational database. Application-level solutions
are unable to process arbitrary SQL queries efficiently.
By pushing the enforcement down to the database, we
gain improved performance and query power. This
mechanism can be deployed without modifying legacy
application code or existing database schemas. We
showed that the performance overhead of database-
level privacy enforcement is small, and often times the
overhead is more than offset by the performance gains
obtained through record filtering.

The work reported here has broader applicability
than the Hippocratic databases. Specifically, our tech-
niques can be used in any application requiring policy-
driven fine-grained access and disclosure control.

There are several important extensions to this ar-
chitecture that are areas of ongoing and future work.
One such extension would allow us to assign versions to
privacy policies. In this case, personal data would be
permanently associated with the policy in place at the
time of collection. The database would then be respon-
sible for enforcing these multiple policies as queries are
issued. Another such extension would provide granular
privacy enforcement for data modification commands.

7 Acknowledgements

Our thanks to Jerry Kiernan for his invaluable help
in implementing query modification and discussions
about EPAL and cell-level enforcement semantics, to
Ramakrishnan Srikant for discussions about choice
storage and query modification, and to Ameet Kini
and Diana Zhou for their work on the prototype im-
plementation.

References

[1] US Department of Health and Human Services.
http://www.hhs.gov/ocr/hipaa.

[2] Vignette Corportation. www.vignette.com.

[3] Nov. 2003. Personal communications with Sushil Jajodia.

[4] The Lowell database research self assessment, June 2003.

[5] N. Adam and J. Wortman. Security-control methods for
statistical databases. ACM Computing Surveys, 21(4):515–
556, Dec. 1989.

[6] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In VLDB, Hong Kong, China, August 2002.

[7] P. Ashley, S. Hada, G. Karjoth, C. Powers, and
M. Schunter. Enterprise privacy authorization language 1.2
(EPAL 1.2). W3C Member Submission, November 2003.

[8] P. Ashley and D. Moore. Enforcing privacy within an en-
terprise using IBM Tivoli Privacy Manager for e-business,
May 2003.

[9] D. Bell and L. LaPadula. Secure computer systems: Unified
exposition and multics interpretation. Technical Report
ESD-TR-75-306, MITRE Corp., Bedford, Mass., March
1976.

[10] S. Castano, M. Fugini, G. Martella, and P. Samarati.
Database Security. Addison Wesley, 1995.

[11] D. Chamberlin. A Complete Guide to DB2 Universal
Database. Morgan Kauffmann, San Francisco, California,
USA, 1998.

[12] L. Cranor, M. Langheinrich, M. Marchiori, M. Pressler-
Marshall, and J. Reagle. The platform for privacy prefer-
ences 1.0 (P3P1.0) specification. W3C Recommendation,
April 2002.

[13] D. DeWitt. The Wisconsin benchmark: Past, present, and
future. In J. Gray, editor, The Benchmark Handbook. Mor-
gan Kaufmann, 1993.

[14] P. Griffiths and B. Wade. An authorization mechanism for
a relational database system. In SIGMOD, Washington,
DC, June 1976.

[15] S. Jajodia and R. Sandhu. Polyinstantiation integrity in
multilevel relations. In IEEE Symposium on Security and
Privacy, May 1990.

[16] S. Jajodia and R. Sandhu. A novel decomposition of mul-
tilevel relations into single-level relations. In IEEE Sympo-
sium on Security and Privacy, Oakland, California, USA,
May 1991.

[17] N. Kabra, R. Ramakrishan, and V. Ercegovac. The QUIQ
Engine: A hybrid IR-DB system. In ICDE, Bangalore,
India, March 2003.

[18] T. Lunt, D. Denning, R. Schell, M. Heckman, and
W. Shockley. The SeaView security model. IEEE Trans-
actions on Software Eng., 16(6):593–607, June 1990.

[19] A. Nanda and D. Burleson. Oracle Privacy Security Au-
diting. Rampant, 2003.

[20] X. Qian and T. Lunt. Tuple-level vs. element-level classi-
fication. In Database Security, VI: Status and Prospects.
Results of the IFIP WG 11.3 Workshop on Database Se-
curity, Vancouver, Canada, August 1992.

[21] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, 3rd edition, 2003.

[22] A. Sahuguet, R. Hull, D. Lieuwen, and M. Xiong. Enter
once, share everywhere: User profile management in con-
verged networks. In CIDR, Asilomar, CA, January 2003.

[23] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. IEEE Computer, 29(2):38–47,
Feb. 1996.

[24] M. Stonebraker and E. Wong. Access control in a relational
data base management system by query modification. In
ACM/CSC-ER, 1974.

[25] G. Wiederhold, M. Bilello, V. Sarathy, and X. Qian. A
security mediator for healthcare information. In AMIA
Conference, Washington, DC, Oct. 1996.

[26] L. Willenborg and T. deWaal. Elements of Statistical Dis-
closure Control. Springer Verlag, 2000.

