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Abstract Based on the classical PKN two-dimensional

fracture propagation mathematical model, the two-dimen-

sional leak-off model of fracturing fluid of fractured dual-

medium reservoir is established by considering the time-

varying non-Newtonian fracturing fluid leak-off coefficient

in the stretching process of fractures. Using the finite ele-

ment difference method, a dynamic discrete grid system is

established and solved by Newton–Raphson iterative

method. At the same time, the effect on fracturing fluid

leak-off of the fractured reservoir stress sensitivity coeffi-

cient, the pumping rate, and the propagating length of the

fractures is analyzed. As it is analyzed, under the combined

effect of the formation pressure, the fracture pressure, the

edge effect, and the fracture permeability, the greater the

stress sensitivity coefficient is, the smaller the leak-off rate

and coefficient are. However, the greater pumping rate is,

the larger leak-off rate and coefficient are. If both of them

increase to a certain value, the leak-off coefficient firstly

decreases , and then increases; the longer the fracture is, in

the same position, the larger fracturing fluid leak-off

coefficient is; and the greater boundary effect is, the larger

fracturing fluid leak-off coefficient near the pinch point is.

Keywords Low-permeability reservoirs � Filtration
coefficient � Fracture propagation � Stress sensitivity �
Dynamic grid

Introduction

Low-permeability reservoirs need to be developed with

fracturing technology (Balen et al. 1988; Demarchos and

Chomatas 2004; Fan and Economides 1995); due to the

presence of natural fractures in the reservoirs, the con-

ventional homogeneous reservoir fracturing fluid leak-off

model is no longer applicable (Settari 1985; Yi and

Penden 1993; Settari 1998). For the double-porosity

reservoir fluid leak-off calculation model, many scholars

have studied it. Considering single permeability and dual

permeability (Mayerhofer et al. 1991; Nghiem et al.

1984), some established one-dimensional fracturing fluid

leak-off models for fractured dual-medium rese rvoirs,

and then considering the actual situation that fracturing

fluid leak-off in the formation is two-dimensional flowing

fluid and the fracturing fluid is non-Newtonian fluid, they

established the two-dimensional model of non-Newtonian

fracturing fluid leak-off, which improved the pressure

fracturing fluid leak-off model, rendering the results more

in line with the actual situation. However, the above

models are established on the basis of the situation that

the fractures do not extend after the pump stops and the

pressure distributes evenly in the fracture, and combining

the actual mineral conditions, the fracturing fluid leak-off

also exists in the propagation process. For the propagation

of the fractures, the classical two-dimensional PKN and

KGD models and the pseudo-three dimensional (P3D)

model are mainly used to conduct the simulation (Al-

Shatri et al. 2009; Ouenes and Hartley 2000), and we can

make the assumption that the fracturing fluid filtration

coefficient is constant. However, the leak-off process does

not accord with the classic Carter leak-off model. The

actual filtration coefficient changes with time and is

associated with the fluid flowing process among the
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formation and the fractures (Economides and Demarchos

2008; Gidley et al. 1989)).

At present, the main point is the stress sensitivity

when the formation pressure decreases in production.

Therefore, the fracturing fluid leak-off makes the reser-

voir pressure increase, and the permeability of the stress

sensitive reservoir may increase. So it is necessary to

discuss the increasing volume of leak-off fluid. This

paper combines the dual-porosity formation flow equa-

tions with PKN two-dimensional fracture-stretching

model, and considering the filtration coefficient dynamic

variation during the fracture-stretching process, and the

effect of the reservoir stress sensitivity, we will establish

two-dimensional fracturing fluid leak-off model. Com-

pared with the actual site, the results of simulation get

better adaptability.

Mathematical model

Formation

According to the Darcy law, when fracturing fluid flows in

low-permeability reservoirs fractures and matrix, the dif-

ferential equations are derived asFlowing in the fractures:

�r � ðvf Þ þ a
Km

lem
ðPm � Pf Þ ¼ ð/CtÞf

oPf

ot
ð1Þ

Flowing in the matrix:

�r � ðvmÞ � a
Km

lem
ðPm � Pf Þ ¼ ð/CtÞm

oPm

ot
: ð2Þ

Wherein, when the fracturing fluid is considered as non-

Newtonian fluid, the equation of motion can be derived as

vi ¼ � Ki

lei
rPi; ði ¼ f ;mÞ ð3Þ

lei ¼
3nþ 1

8n

/i

8Ki

� �1�n
2n

ð2knÞ
1
nð�rPiÞ

n�1
n ; ði ¼ f ;mÞ: ð4Þ

For the reservoirs of which the depth is relatively

shallow and the deformation of the skeleton particles is

obvious, such as the coalbed methane reservoirs, when

the fracturing fluid filtrates into the reservoirs, the

formation pressure increases, which may cause fractures

or matrix porosity to expand and the permeability to

increase. For the low-permeability reservoir

characteristics, only the stress sensitivity is considered,

namelyInitial condition:

Kf ¼ Kfie
�bðPi�Pf Þ ð5Þ

Pjðx; y; 0Þ ¼ Pi; ðj ¼ f ;mÞ

Boundary condition

Kf

lef

oPf

oy
¼ CðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t � sðxÞ
p ; ð0\x\LðtÞ; y ¼ 0Þ oPf

oy
¼ 0;

ðLðtÞ\x\xe; y ¼ 0Þ
ð6Þ

oPf

oy
¼ 0; ð0\x\xe; y ¼ yeÞ

oPf

ox
¼ 0;

ðx ¼ 0; 0\y\yeÞ
ð7Þ

oPf

ox
¼ 0; ðx ¼ xe; 0\y\yeÞ: ð8Þ

Artificial fractures

The classic PKN two-dimensional model is used to simu-

late the propagation of fractures in the formation, and the

fracture height is constantly equal to the effective reservoir

thickness. While considering the fracturing fluid leaking

off into the formation, the filtration coefficient is not the

same at different locations and changes with time.

Considering the artificial fracture vertical face’s strain

and combining with the England and Green equation, we

can derive the fracture width equation:

Wðx; tÞ ¼ ð1� vÞHðPFðx; tÞ � rhÞ
G

: ð9Þ

Considering the artificial fracture vertical profile as oval

and the fracturing fluid as non-Newtonian fluid, when the

fracturing fluid flows in the fracture, we can obtain the

pressure drop equation as

oPF

ox
¼ � 64

p
q

W3H
Kn

2nþ 1

3n

� �n
6q

HW2

� �n�1

: ð10Þ

when the fracturing fluid flows in the artificial fracture, the

continuity equation can be expressed as

oq

ox
þ pH

4

oW

ot
þ 2CHffiffiffiffiffiffiffiffiffiffi

t � s
p ¼ 0 ð11Þ

Initial condition:

Wðx; tÞ ¼ 0; x[ LðtÞ ð12Þ

Boundary condition:

Wðx; 0Þ ¼ 0 ð13Þ

oW4

ox

� �
x¼0

¼ 256ð1� vÞQ
pG

; x ¼ 0: ð14Þ

The model solution

Formation

Combined with Eqs. (1)–(5), and considering the quasi

steady-state channeling in matrix and the two-dimensional

flow of the fracturing fluid in the formation, the synthesis
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flow equation in fracture and matrix can be derived

asFracture:

r � Kfie
�bðPi�Pf Þ

lef
rPf

 !
þ a

Km

lem
ðPm � Pf Þ ¼ ð/CtÞf

oPf

ot

ð15Þ

Matrix:

�a
Km

lem
ðPm � Pf Þ ¼ ð/CtÞm

oPm

ot
: ð16Þ

Equation (15) shows a strong non-linear characteristic,

and it is difficult to the analytical solution. Therefore, the

finite-difference distribution combined with the Newton–

Raphson iterative method is used to solve the equation.

With the fracturing proceeding, the fractures keep

propagating, which makes it difficult to divide meshes.

So a dynamic discrete grid is established in Fig. 1, which

works as follows: according to the increase of the fractures,

the number of meshes is increased and all the time steps are

assumed to be equal to T0. During the first period T0, the

fracture length is LF1, and the entire area is divided into the

two grids in the fracture crack orientation. The length of

the grids are, respectively, LF1 and (Xe - LF1). During the

second period T0, the length of the fracture increases by

LF2, and the entire region is divided into three grids in the

direction of the fracture, and the length of the grids are,

respectively, LF1, LF2, and (Xe - LF1 - LF2). We can find

that the pressure of the grid of LF2 during the last period is

the pressure on the grid of (Xe - LF1) during the last

period. It can be successively obtained according to this

method that during the n period of T0, the length of the

fracture increases by LFn, and the whole region is divided

into (n ? 1) grids in the direction of the fracture, the length

of which are, respectively, LF1, LF2,…, LFn, and [Xe - (LF1
? LF2 ? ��� ? LFn)] and the pressure on the grid LFn during

this period is equal to the pressure on the last grid of

[Xe - (LF1 ? LF2 ? ��� ? LFn-1) ] during last period.

Dynamic meshes dividing diagram is shown as follows in

Fig. 2:

Now the differential discretization is conducted for the

formulas (15) and (16), which is the process of simple

discretization. We regard the fracture and the matrix of

channeling as the same grid, while we can make use of the

pressure value of last period to calculate the effective crack

permeability and effective viscosity of this period. Then we

can get the final differential equation as follows:

ai;jP
Nþ1
f ði;j�1Þ þ bi;jP

Nþ1
f ði�1;jÞ þ ci;jP

Nþ1
f ði;jÞ þ di;jP

Nþ1
f ðiþ1;jÞ

þ ei;jP
Nþ1
f ði;jþ1Þ ¼ gi;j:

ð17Þ

Among them:

ai;j ¼
2Kfie

�bðPi�PN
f ði;jÞÞ

Dyjlef ðj�1=2ÞðDyj þ Dyj�1Þ

bi;j ¼
2Kfie

�bðPi�PN
f ði;jÞÞ

Dxilef ði�1=2ÞðDxi þ Dxi�1Þ

di;j ¼
2Kfie

�bðPi�PN
f ði;jÞÞ

Dxilef ðiþ1=2ÞðDxi þ Dxiþ1Þ

ei;j ¼
2Kfie

�bðPi�PN
f ði;jÞÞ

Dyjlef ðjþ1=2ÞðDyj þ Dyjþ1Þ

X

Y

Fig. 1 Dynamic grid

Lf1

(1) T0 (2)2T0 (3) nT0

Xe-Lf1 Lf1 Lf2 Xe-Lf-Lf2 Lf1 Lf2 ······Lfn Xe-Lf1-

Lf2-Lfn

Fig. 2 Dynamic grid schematic

diagram in different time
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gi;j ¼ �
ðCt/Þf PN

f ði;jÞ
T0

�
ðCt/ÞmaKmP

N
mði;jÞ

lemði;jÞðCt/Þm þ aT0Km

ci;j ¼ �ðai;j þ bi;j þ di;j þ ei;jÞ �
ðCt/Þf
T0

� ðCt/ÞmaKm

lemði;jÞðCt/Þm þ aT0Km

lef ði�1=2Þ ¼
3nþ 1

8n

/f

8Kfie
�bðPi�PN

f ði;jÞÞ

 !1�n
2n

� ð2knÞ
1
n

PN
f ði�1Þ � PN

f ðiÞ
ðDxi þ Dxi�1Þ=2

�����
�����
n�1
n

� ci;j ¼ �ðai;j þ bi;j þ di;j þ ei;jÞ

�
ðCt/Þf
T0

� ðCt/ÞmaKm

lemði;jÞðCt/Þm þ aT0Km

lemði;jÞ ¼
3nþ 1

8n

/f

8Kfie
�bðPi�PN

mði;jÞÞ

 !1�n
2n

� ð2knÞ
1
n

PN
mðiþ1jÞ � PN

mði�1;jÞ
ðDxi�1 þ 2Dxi þ Dxiþ1Þ

�����

þ
PN
mði;jþ1Þ � PN

mði;j�1Þ
ðDyj�1 þ 2Dyj þ Dyjþ1Þ

�����
n�1
n

:

Artificial fracture

The fracture synthetical flowing equation can be derived of

the combination from Eqs. (9) to (11) as

G

64ð1� vÞHl
o2W4

ox2
� oW

ot
� 8C

p
ffiffiffiffiffiffiffiffiffiffi
t � s

p ¼ 0: ð18Þ

On the basis of the value of the pressure distribution of

last period, the value of the leak-off in Eq. (18) can be

approximated as

Cffiffiffiffiffiffiffiffiffiffi
t � s

p ¼
2Kfie

�bðPi�PN
f ði;1ÞÞðPN

F � PN
f ði;1ÞÞ

lefDy1
: ð19Þ

Thus, by the ‘‘t’’ period (which can also be expressed as

NT0), we can get the filtration coefficient at the fracture tip

as

C ¼
2Kfie

�bðPi�PN
f ði;1ÞÞðPN

F � PN
f ði;1ÞÞ

lefDy1

ffiffiffiffiffiffiffiffi
NT0

p
: ð20Þ

With the combination of the Eqs. (18) and (20),

according to Carter method, at the ‘‘t’’ period (which can

be expressed as the first (N ? 1) one time T0), the full

length and pressure distribution of the fracture are derived

as

LððN þ 1ÞT0Þ ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

N

r
lefDy1

2Kfie
�bðPi�PN

f ði;1ÞÞðPN
F � PN

f ði;1ÞÞ
ð21Þ

PF ¼ 4G

ð1� vÞH
2ð1� vÞlQ2

p3GCH

� �1
4

t
1
8

� x

L
sin�1 x

L

� 	
þ 1� x

L

� 	2� �1
4

� p
2

x

L

( )1
4

þrH :

ð22Þ

Then the fracture is regarded as the boundary condition

of formation pressure, which can be expressed as

PNþ1
f ði;1Þ ¼ PNþ1

F �
ClefDy1

2Kfie
�bðPi�PN

f ði;1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1ÞT0

p : ð23Þ

Forma�on: matrix and 
fracture flow equa�on

Forma�on Differen�al 
equa�on and coefficient 

matrix 

 Outer boundary 
differen�al equa�on

Dynamic grid

 Inner boundary 
differen�al equa�on

Forma�on pressure 
distribu�on  last �me

Fracture filtra�on 
coefficient this �me

PKN  fracture 
extension model

Fracture length and 
stress  distribu�on

Fig. 3 Solving flowchart
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Based on all the equations above, considering the

additional boundary condition and initial condition, we can

use the strong implicit Newton–Raphson iterative method

to derive the pressure value at each point. By using the

Eq. (20), we can get fracturing fluid filtration coefficient

and rate at different locations. The overall calculation

flowchart is shown as follows: first, we need to discrete the

formation flowing equation, then combine it with the

formation pressure distribution at last period to obtain the

correlation coefficient and the outer boundary condition of

differential equations; then we make use of PKN model

and combine it with the pressure distribution of grids

nearby the fracture on the last moment to derive the

dynamic filtration coefficient, and the length of the fracture

and pressure distribution in fractures are obtained. Then the

pressure distribution of fractures is regarded as a boundary

condition of the formation; the differential equations, the

outer boundary conditions, and the inner boundary

conditions are integrated to obtain the current reservoir

pressure by using the Newton–Raphson iterative method

and the fracturing fluid filtration coefficient is finally

obtained. Solving flowchart is shown in Fig. 3.

Calculation and analysis

Based on the models above, making use of non-uniform

grid mesh which is divided into 20 perpendicular to the

fracture, we may analyze the examples and factors. The

other basic data are shown in Table 1.

As is shown in Fig. 4, considering stress sensitivity

during the fracture propagation process, we can get the law

of fracturing fluid leak-off. It can be concluded from Fig. 4,

as the stress sensitivity coefficients increase, the fracturing fluid rate and filtration coefficient decrease; as time passes

by, the leak-off rate decreases but the filtration coefficient

increases. In the beginning of fracturing, both the fractur-

ing fluid rate and filtration coefficient appear obvious

variation, and both of them remain unchanged later. As is

shown in Fig. 4b, when the stress sensitivity coefficient

increases to a certain value, the filtration coefficient will

firstly decreases and then increases. Based on comprehen-

sive analysis of the reason, it is obtained that, along with

the continuous injection of the fracturing fluid, the artificial

fracture’s pressure continues to increase, and due to the

fracturing fluid leak-off and the increase of the formation

pressure, the stress sensitivity makes the formation frac-

tures open and the permeability increase, which improve

the capacity of the increase of the formation pressure. Also

as the fracture permeability increases, the comprehensive

effect results in the decrease of leak-off. When the pressure

wave reaches the boundary, the sealed boundary will

weaken the effect; therefore, the fracturing fluid filtration

coefficient will increase again.

Table 1 related basic data

Parameters Value

Well control area (m2) xe=100 m,

ye=100 m

Initial formation pressure (Mpa) 25

Initial fracture permeability, Kfi(mD) 10

Stress sensitivity coefficient, b(MPa-1) 0.5

Minimum horizontal stress (MPa) 20.5

Consistency coefficient, Kn (Pa sn) 0.01

Fracture porosity, Uf 0.01

Fluid index, n 0.85

Matrix porosity, Um 0.01

Matrix permeability, Km(mD) 1

Fracture compressibility coefficient, Ctf (MPa-1) 0.00025

Matrix compressibility coefficient Ctm (MPa-1) 0.00030

Pumping volume, Q(m/min) 103

(a)

(b) 

Fig. 4 The effect of stress sensitivity on fracturing fluid leak-off:

a leak-off rate, b leak-off coefficient
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Figure 5 shows the laws of fracturing fluid leak-off

considering the different fracturing fluid pumping rate

during the fracture propagation process. It can concluded

from Fig. 5, as the fracturing fluid pumping rate increases,

the leak-off velocity and filtration coefficient will increase.

As time passes by, the leak-off rate decreases but the fil-

tration coefficient continues to increase. In the beginning of

the fracturing, both of them appear obvious variation first

and remain unchanged later. As is shown in Fig. 4b, when

the stress sensitivity coefficient increases to a certain value,

the filtration coefficient will firstly decrease and then

increase. Based on comprehensive analysis of the mecha-

nism, the increased volume of fluid pumped in increases

the fluid pressure of the fractures, and then increases the

fracturing fluid leak-off. However, when the volume

increases to a certain value, the formation pressure will

increase, the fracture permeability resulting from the stress

sensitivity will increase, and the artificial fracture pressure

will also increase. This comprehensive effect makes the

filtration coefficient decrease, and the sealed boundary

effect results in the increase of the filtration coefficient

later. Thus, an optimal displacement volume of fracturing

fluid pumped in exists during the process of fracturing.

Figure 6 shows the laws of fracturing fluid leak-off

considering the different stretching lengths of the artificial

fractures. In Fig. 6, the lengths of the fractures are,

respectively, 20, 40, and 60 m. It can be concluded that, for

a certain length of the fracture, the leak-off rate and the

filtration coefficient are different, respectively, at the dif-

ferent locations of the fractures. The closer the distance to

the end of the fracture is, the smaller the leak-off rate is and

the greater the filtration coefficient is. For the different

lengths of the fractures, the filtration coefficients are dif-

ferent at the same position of the fracture, the longer the

fractures are, the greater the leak-off rate and the filtration

coefficient are. Based on the analysis of the mechanism, the

longer the fracture and the time of pumping in fracturing

fluids are, the larger the artificial fracture pressure will be,

and the amount of leak-off will also increase. While the

(a)

(b) 

Fig. 5 The effect of pumping rate on fracturing fluid leak-off: a leak-

off rate, b leak-off coefficient

(a)

(b) 

Fig. 6 The effect of different propagating lengths on fracturing fluid

leak-off: a leak-off rate, b leak-off coefficient
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closer to the end of the fracture, the more significant the

effect of the sealed boundary will be, and the worse the

formation pressure supply will be. All of the phenomena

above will result in larger fracturing fluid leak-off rate and

greater filtration coefficient.

Conclusion

1. Based on the classical PKN two-dimensional fracture-

stretching mathematical model, the two-dimensional

leak-off model of fracturing fluid of fractured dual-

medium reservoir is established by considering the

time-varying non-Newtonian fracturing fluid leak-off

coefficient in the stretching process of fractures;

2. Using the finite element difference method, a dynamic

discrete grid system is established and solved by

Newton–Raphson iterative method, and the relevant

factors are analyzed;

3. As the stress sensitivity coefficient increases, the

fracturing fluid filtration coefficient and fracturing

fluid leak-off rate will decrease, while as the volume of

fracturing fluid pumped in enlarges, the fracturing fluid

filtration coefficient and the leak-off rate will increase.

When the stress sensitivity coefficient or the displace-

ment volume of fracturing fluid pumped in increases to

a certain value, under the comprehensive effects of the

formation pressure, the fracture pressure, the bound-

ary, and the fracture permeability, the filtration coef-

ficient will firstly decrease and then increase; and

4. Considering the propagation length of the fracture, the

longer the length is, the more significant the leak-off

effect will be, and the boundary effect close to the end

of the fracture will increase the fracture filtration

coefficient and the leak-off rate.
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