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Abstract For a long time, the microbiology of cystic fibrosis
has been focussed on Pseudomonas aeruginosa and associat-
ed Gram-negative pathogens. An increasing body of evidence
has been compiled demonstrating an important role for
moulds and yeasts within this complex patient group.
Whether or not fungi are active participants, spectators or
transient passersby remain to be elucidated. However, func-
tionally, they do appear to play a contributory role in patho-
genesis, albeit we do not know if this is a direct or indirect
effect. The following review examines some of the key evi-
dence for the role of fungi in CF pathogenesis.
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Introduction

Cystic fibrosis (CF) is a systemic multi-organ, chronic condi-
tion, which causes functional disorders of the exocrine glands,
which are located mainly in the respiratory and alimentary
systems. It is the most common monogenetic autosomal re-
cessive disease in Northern Europe and is caused bymutations

of the CFTR gene located on the long arm of chromosome 7.
Functionally, it codes for a chloride channel that, together with
sodium channels, maintains the ion balance of epithelial cells
within the exocrine glands, and is responsible for maintaining
airway homeostasis and mucociliary clearance [70]. The
CFTR mutation results in reduced secretion of chloride ions
in cells leading to increased water absorption and viscid se-
cretions, leading to defective mucociliary clearance, which
ultimately drives the morbidity and mortality in the CF popu-
lation due to the irreversible decline in lung function caused
by microbial colonisation of the airways and the resulting
overactive neutrophilic immunological response. This chronic
bronchopulmonary disease leads to frequent hospitalisations
and ultimately death.

In CF pathogenesis, the ‘vicious cycle’ of inflammation
results from colonisation/infection of the respiratory tract,
which progresses in an age-related manner. Staphylococcus
aureus andHaemophilus influenzae begin to colonise in child-
hood or early adolescence, and as age increases,
Pseudomonas aeruginosa, Burkholderia cepacia complex
and non-tuberculous mycobacterial infection occur. Fungi
are another group ofmicroorganisms commonly found in clin-
ical specimens from CF patients [49, 62]. However, the isola-
tion of yeasts and moulds from CF patients is considered by
some to be of secondary importance when compared to bac-
terial pathogens. In the recent years, Aspergillus spp.,
Scedosporium spp., Exophiala spp. and Candida spp. have
all been isolated from different cohorts of CF patients [8, 13,
15, 35]. A. fumigatus has a prevalence rate of between 10 and
57% [4, 62], though other Aspergillus species have been iso-
lated from the lungs including A. niger, A. flavus, A. nidulans
and A. terrus [16, 80], as well as several yeasts such as
C. albicans, C. glabrata, C. krusei and C. parapsilosis [12,
46]. Recent next-generation sequencing analysis suggests the
mycobiome is more diverse than we really appreciate,
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although whether these are active participants, spectators or
transient passersby remain to be elucidated [37, 82].

Given the ubiquitous nature of fungi in the environment,
with thousands of conidia being inhaled every day [69], the
detection of fungi in respiratory samples creates clinical un-
certainty. A positive culture may indicate specimen contami-
nation during sampling or laboratory processing, transient or
chronic colonisation or an active infection. This ambiguity is
reflected in epidemiological studies where prevalence rates
are variable with the reported prevalence ranging from 6 to
57% with factors, such as culture frequency, laboratory meth-
odology and expertise, duration of monitoring and the patient
population all contributing to the differences [9, 62].
Regardless of the cause, the number of patients with mould
in sputum samples is increasing, exemplified in a cohort da-
tabase study between 1997 and 2007 that reported an increase
in the prevalence of filamentous fungi, predominantly
A. fumigatus from 2 to 29% [80].

The Clinical Problem

The lung mycobiome has been suggested to have a significant
impact on clinical outcome of CF and other chronic respira-
tory diseases, such as asthma, chronic obstructive pulmonary
disease and bronchiectasis [54]. The microbiology of lower
respiratory tract is primarily associated with biofilm infection,
withP. aeruginosa being a primary causative agent in CF [78].
It is becoming increasingly recognised however that fungal
biofilms can persist in the lung and contribute to pathology
[28, 67, 83]. Importantly, these structures are highly resistant
to antifungal therapy, which complicates chemotherapeutic
interventions [51, 74]. In the CF lung filamentous moulds
such as A. fumigatus may cause a spectrum of respiratory
disease, including allergic bronchopulmonary aspergillosis
(ABPA), an aspergilloma and invasive aspergillosis (IA) [20].

A number of recent studies have reported that lung function
declines more rapidly in patients chronically colonised with
A. fumigatus [2, 44, 71] or co-infected with A. fumigatus and
P. aeruginosawhen compared to single species infection [56],
a phenomenon also reported with Candida species and
P. aeruginosa [13]. In addition, A. fumigatus is the only spe-
cies that has been associated with an increased risk for the
development of infection with P. aeruginosa [29]. Perhaps
infection with fungi should be treated more seriously in terms
of managing CF patients with combinations of antifungal and
antibacterial drugs.

Aspergillus Infection

Among the fungal species isolated from the airways of CF
patients, the most frequent is A. fumigatus, but A. flavus,
A. niger, A. terreus and A. nidulans are all reported and may
cause sinusitis, bronchitis or allergic bronchopulmonary

aspergillosis (ABPA) [12, 40]. A. fumigatus is a saprophytic
spore-forming mould found widely in the environment [32].
The spores are 2–4 mm in diameter, and thousands of these
spores are inhaled daily [38]. These inhaled spores settle the
mucous membrane of the upper airways and the lungs [12],
and either due to the thick mucus in the airways providing a
source of nutrients supporting growth of the fungus or failure
of mucociliary clearance the spores germinate. During fungal
growth, the cells may secrete proteolytic enzymes (proteases,
phosphatases), which inhibit their phagocytosis and further
facilitate adhesion and colonisation within the airways [12,
68]. Another predisposing factor is the use of broad-
spectrum antimicrobials in the management of patients with
CF. Tobramycin used to treat P. aeruginosa infection encour-
ages the colonisation of filamentous fungi A. fumigatus [12].
Though it has been suggested that antimicrobial management
of this patient group with antibiotics is able to positively im-
pact the reduction in bioburden of Aspergillus species, sug-
gesting a complex inter-kingdom relationship is worth further
exploration [7].

Allergic Bronchopulmonary Aspergillosis

Allergic bronchopulmonary aspergillosis (ABPA) is the best
recognised fungal disease in CF. It has a reported prevalence
of 2–25% [3, 44] and is a result of a Th2-mediated hypersen-
sitivity response to Aspergillus antigen. The current first-line
treatment of ABPA is oral prednisolone [27]. While
itraconazole is widely used as an adjunct to steroid therapy,
azole resistance [10] is now a potential problem and there are
no large studies available showing a direct benefit of using
antifungals in the management of ABPA in patients with CF
or any steroid-sparing effect. A case report and a small study
of nebulised amphotericin B (AMB) in this condition suggests
that nebulised liposomal AMB could represent a possible
strategy in ABPA management in CF patients [11, 63], and
in asthmatics with ABPA, a further small study suggests that
nebulised amphotericin may be beneficial in decreasing the
frequency of exacerbations in patients with ABPA complicat-
ing asthma [65]. Again, in asthmatics, ABPA has been shown
to progress to invasive pulmonary aspergillosis which is a
fulminant disease, and in a recent systematic review, only
three of the nine patients survived [44]. This has not yet been
described in patients with CF.

Aspergillus Bronchitis

This was first described by Shoseyov et al. [75] who described
a group of patients with CFwhowere experiencing respiratory
exacerbations which were non-responsive to appropriate anti-
microbial therapy, cultured Aspergillus spp. from sputum and
responded to antifungal therapy [75]. Aspergillus bronchitis
may be responsible for persistent respiratory symptoms in
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patients with CF inwhomAspergillus is detected repeatedly in
sputum, but have no evidence of parenchymal disease and no
hypersensitivity to Aspergillus [36]. While it is largely a diag-
nosis of exclusion, Chrdle et al. [14] have further characterised
this patient population and reviewed 400 patients with a pos-
itive culture or real-time PCR for Aspergillus spp. Seventeen
patients fulfilled the criteria for aspergillus bronchitis.
Thirteen patients cultured A. fumigatus, 3 A. niger, and 1
A. terreus. Twelve patients had elevated aspergillus IgG, with
a mean of 89.2 mg/L and five (29%) had elevated aspergillus
precipitins. Fifty percent had a major response to antifungal
therapy and five of 12 (42%) patients relapsed, requiring long-
term therapy [14]. Elevated IgG without elevation of IgE in
the presence of either positive aspergillus culture, PCR or
galactomannan has been suggested as a diagnostic criterion
for aspergillus bronchitis [6, 32].

Aspergillus Biofilm

Aspergillus has been shown to produce biofilms both in vitro
[50] and in vivo [41]. These are multicellular populations of
filamentous intertwined hyphae attached to surfaces or one
another and enclosed within a dense extracellular matrix
(ECM) [67]. Microbes in biofilms have altered metabolism
compared to the same organisms growing planktonically,
and the ECM provides microbes with protection from host
defences as well as tolerance to some antimicrobial drugs
[51]. Aspergillus is recognised bronchoscopically by the pro-
duction of mucus plugs, which may be due to the production
of glycan polymers. The ECM includes the polysaccharides,
galactomannan, galactosaminogalactan,α-1,3 glucans, mono-
saccharides, proteins, melanin and extracellular DNA [66,
84]. The Aspergillus galactosaminogalactan allows adherence
to host constituents and conceals hyphal beta-glucan from the
immune system [25, 26], and the extracellular DNA is impor-
tant for protection from environmental stresses, including an-
tifungal therapy [64]. These types of structures are critically
important, particularly as they can support the growth and
proliferation of bacterial species, while providing physical
protections from environmental stressors [61].

Inter-kingdom Interactions

The most commonly isolated microbial pathogen is
P. aeruginosa, which has been reported to colonise the air-
ways of around 50% of adult patients with CF [72]. This is
the most prevalent and persistent microbe found in the CF
lung [19], and is associated with a more rapid decline in lung
function, increased hospitalisation and a decreased life expec-
tancy [21, 55]. Infection in CF patients is also commonly
associated S. aureus and H. influenzae, and recent advances
in culture-independent, NGS technologies, have revealed that
the microbiome of the CF lung is much richer than previously

appreciated comprising of a diverse range of bacterial and
fungal pathogens [82], of which A. fumigatus is the most
prevalent filamentous fungi [67]. The lungs of CF sufferers
are lined with a thick viscous mucus layer susceptible to
polymicrobial infections, leading to recurrent infections and
continuous inflammation [70]. The interplay between the
pathogens residing in the lung may be responsible for the
acute exacerbations associated with CF, where the balance is
tipped towards an environment with excess inflammatory, ox-
idative and proteolytic activity. Several studies have identified
an association between A. fumigatus and P. aeruginosa,
whereby co-infection saw decreased pulmonary function in
comparison to those with a mono-infection [2], a phenomenon
also reported with Candida species and P. aeruginosa [13].
Evidence is therefore increasing for the need for improved
clinical management of these patients [19]. Indeed, inter-
kingdom interactions of the CF lung, and elsewhere, may lead
to adverse clinical outcomes [39]. The ability of these mi-
crobes to form strong mixed species biofilms likely contrib-
utes towards their persistence, making it extremely difficult to
eradicate the infection [42, 74].

The CF lung is a site of intense inter-kingdom interaction,
where P. aeruginosa is a primary participant. It has been
shown that P. aeruginosa is able to selectively form biofilms
onC. albicans, hyphae, but not the yeast formwhich results in
the death of the Candida [30]. Presumably, this occurs
through the release of a phenazine toxin [23, 47]. It has also
been shown to inhibit the morphological transition through a
3-oxo-C12 homoserine lactone [31], a phenomenon replicated
in studies of A. fumigatus biofilm [52]. Recent evidence from
amurinemodel demonstrated that lung tissue injury caused by
P. aeruginosa infection is alleviated if preceded by a short-
term C. albicans colonisation [1]. This was a result of
C. albicans activating IL-22 producing innate lymphoid cells,
which provided protection from P. aeruginosa induced injury
[45]. Given the dynamic relationship between these organ-
isms, it is not surprising that the release by C. albicans of its
quorum sensing molecule farnesol impacts P. aeurginosa by
inhibiting its quinolone signalling, which controls pyocyanin
production [17]. These studies highlight the on-going and dy-
namic battle within a polymicrobial environment such as the
CF lung, which clearly plays a crucial role in the overall path-
ogenesis of disease [61]. Elegant studies in a Drosophila fruit
fly infection model of polymicrobial infection demonstrate
this point. This showed that microorganisms of the CF air-
ways were able to influence the outcome of an infection de-
pending on the presence or absence of P. aeruginosa [76, 77].

P. aeruginosa has also been shown to inhibit A. fumigatus
filamentation via the release of molecules involved in intra-
cellular communication [52]. Investigations into the interac-
tions between these two are limited; however, the release of
small molecules designed to inhibit fungal growth appear to
be the primary form of interaction. One particular group of
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metabolites known as phenazines have been reported to inhib-
it A. fumigatus biofilm formation; however, it was also found
that A. fumigatus was able to convert these metabolites re-
leased byP. aeruginosa to produce fungal siderophores, which
may in turn influence CF progression [48]. Furthermore,
P. aeruginosa releases the metalloprotease elastase, which has
been shown to be toxic to host cells [79]. It was found that
elastase production was constitutive, but became significantly
increased in the presence of A. fumigatus during biofilm co-
culture. Furthermore, elastase was cytotoxic to human lung ad-
enocarcinoma cells, and therefore, the presence of both of these
pathogens could contribute towards enhanced pathogenicity
[79]. Interestingly though, the inhibition of A. fumigatus is relat-
ed to the source and phenotype of the P. aeruginosa isolate with
CF isolates more inhibitory than non-CF isolates, and non-
mucoid CF isolates most inhibitory suggesting a role for the
extensive evolutionary changes in P. aeruginosa which have
been described in association with chronic residence in CF air-
ways and may reflect adaptive changes to life in a polymicrobial
environment [22]. P. aeruginosa has also been known to sup-
press the growth of a number of other CF-related fungi such as
C. albicans, and Cryptococcus neoformans and more recently
Scedosporium aurantiacum, where inhibition of growth was ob-
served only in co-cultures of P. aeruginosa and S. aurantiacum
with the cell fractions failing to act against the fungus. In parallel
with the observations on Aspergillus/P. aeruginosa interactions,
the ability of P. aeruginosa to form biofilms was an important,
although not crucial, factor in inhibiting the growth of
S. aurantiacum in a lung-mimicking environment [33].

Thus, in general, evidence suggests that co-isolation of
bacteria and fungi indicate a poorer prognosis. However, the
relationship between the two kingdoms remains poorly under-
stood and requires further investigation.

Other Moulds

Members of the Scedosporium species complex are chronic
colonisers and emerging pathogens in patients with CF [15].
Rates of isolation range from 3.1% in Germany where a se-
lective agar was used [73] to 10.6% in Austria where selective
agar and homogenisation of samples was employed [43].
While Scedosporium apiospermum has been reported in a
single case as a cause of acute respiratory distress in a child
with CF [58], neither colonisation with nor sensitization to
Scedosporium apiospermum complex is associated with
poorer lung function [60, 73]. However, allergic responses
and risk of dissemination in immunocompromised hosts have
been described. Interestingly, in comparison with
A. fumigatus, patients colonised with this fungus are less like-
ly to be co-colonised with P. aeruginosa [8]. There is geo-
graphical variation in isolation rates, but also a large discrep-
ancy between relatively high isolation frequency (6.5–10%) in
patients and low environmental abundance which raises

questions about how initial acquisition actually occurs in pa-
tients with CF [85]. Genotype analysis of sequential isolates
demonstrates that individual patients are colonised by unique
phenotypes which are conserved over time [18].

Yeasts

The rate of recovery of Exophiala dermatitidis from the air-
ways of CF patients again varies from 4% in Germany to 17%
in Sweden [34, 86]. In the Swedish study, patients with higher
levels of E. dermatitidis IgG antibodies were more often
colonised with non-tuberculous mycobacteria and had lower
than predicted FEV1 %. Colonisation and infections with
E. dermatitidis occur considerably more frequently in the
group of patients with pancreas failure and with advanced
disease [35]. Other mould species such as Paecilomyces
spp., Penicillium spp., Alternaria spp. or Cladosporium spp.
are seldom cultured from clinical material and probably have
no impact on clinical symptoms or underlying disease.

C. albicans can be isolated from respiratory cultures in up
to 75% of patients with CF [81], and the frequent use of
antibiotics and inhaled steroids may predispose patients to
colonisation with Candida species [53, 57]. There is still de-
bate around the significance of the presence of Candida in the
respiratory tract in patients with CF, though limited studies
have suggested that chronic respiratory colonisation with
C. albicans is associated with worsening of FEV1 in CF
[13, 24]. This raises the possibilities that species derived from
the oral cavity and usually considered as clinically insignifi-
cant may be pathogenic possibly due to a complex interaction
between typical pathogens and microbiota [59]. However, no
pathogenic mechanism has been postulated, and given the
frequency of isolation of Candida species from respiratory
samples, the association remains controversial. Candida also
differs from Aspergillus in that Candida sensitization is not
associated with greater lung function decline or pulmonary
exacerbations [5], so overall further prospective studies are
needed to confirm this association.

Conclusions

Although our knowledge regarding the role of fungi in the
pathogenesis of CF is improving, many questions remain.
Are certain fungi pathogenic, and if so, is the mechanism of
pathogenicity direct or mediated by complex interactions
within the lung microbiome? If pathogenicity is accepted,
should attempts be made to eradicate fungi along with anti-
bacterial treatments? If so, what drugs should be used and for
what duration? These questions are difficult to answer on the
basis of existing knowledge, and further studies are needed
both in individual fungi and in the context of a complex inter-
kingdom microbiome.
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