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Abstract In Igusa and Todorov (2013) we constructed topological triangulated categories
Cc as stable categories of certain topological Frobenius categories Fc. In this paper we
show that these categories have a cluster structure for certain values of c including c =
π . The continuous cluster categories are those Cc which have cluster structure. We study
the basic structure of these cluster categories and we show that Cc is isomorphic to an
orbit category Dr/F s of the continuous derived category Dr if c = rπ/s. In Cπ , a cluster
is equivalent to a discrete lamination of the hyperbolic plane. We give the representation
theoretic interpretation of these clusters and laminations.
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1 Introduction

The continuous cluster categories Cc, by construction, may be considered to be cluster
categories of type AR. (See Section 2.1, Theorem 6.2.3 and Theorem 6.4.4.) These are con-
tinuous versions of the cluster category of type An. Before describing the construction, we
recall the standard definitions.
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Cluster categories were introduced by Buan, March, Reineke, Reiten and Todorov in [4].
Given any hereditary algebra � over an algebraically closed field �, the cluster category
C(�) is an orbit category of the derived category Db(mod �) of bounded complexes over
� under the triangulated autoequivalence F = τ−1[1]. This orbit category inherits the
structure of a triangulated category from that of the derived category [12]. Clusters in the
cluster category are defined to be maximal collections of nonisomorphic indecomposable
objects Ti which are rigid and do not extend each other. Thus Hom(Ti,�Tj ) = 0 for all
i, j where �X = Tj [1] ∼= τX in the cluster category.

In special case where � is a hereditary algebra of type An there was also a combina-
torially construction by Caldero, Chapoton and Schiffler in [5]. In that construction, the
indecomposable objects of the category are internal chords in a regular (n + 3)-gon, mor-
phisms are given by counterclockwise rotation and a cluster is a maximal collection of
noncrossing internal chords giving a triangulation of the (n + 3)-gon.

We will first give the idea of continuous cluster categories and a topological interpreta-
tion in Section 1.1, and an outline of the algebraic construction in Section 1.2, followed by
a detailed description of the contents of the paper in Section 1.3.

1.1 Idea of Continuous Cluster Category

The continuous cluster category C = Cπ was originally obtained by taking the cluster cate-
gory of type An and taking the limit as n goes to infinity. Although our current construction
is different, the idea is still the same. The Auslander-Reiten quiver of the cluster category of
type An embeds in a Moebius band as a discrete lattice with irreducible morphisms drawn
as perpendicular line segments of equal length. As n goes to infinity, the lattice of points
(indecomposable objects) converges to all points in the open Moebius band (the points on
the boundary are the projective injective objects of the Frobenius category and are therefore
zero in the cluster category) and the lengths of the line segments representing irreducible
morphisms goes to 0.

The limiting category is a topological category. Since τX ∼= �X = X [1] converges to
X as n → ∞, we have �X ∼= X in the limit. However, a continuous triangulation of a
topological additive category does not allow �X = X (except when the characteristic of �
is 2). So, we must have at least two objects in each isomorphism class of indecomposable
objects. The minimum topological space must be a two-fold covering space of the open
Moebius band. There are two possibilities (as shown in [8]). One is the connected oriented
covering which is geometrically easier to describe. Namely, we view the indecomposable
objects as geodesics in the hyperbolic plane and the two isomorphic copies are represented
by the two possible orientations of the corresponding geodesic.

Clusters in the continuous cluster category are certain maximal sets of compatible
objects. In the geometric picture, two geodesics are compatible if they do not cross. A max-
imal collection of noncrossing geodesics is a “lamination”. However, not all laminations
can be considered to be clusters since clusters need the crucial property that any object in
a cluster can be exchanged for exactly one other object (up to isomorphism). Since lamina-
tions are closed sets, any object which is a limit of other objects in the lamination cannot
be exchanged. So, we define a cluster to be a discrete lamination (they are also known
as “simple laminations”). These correspond to ideal triangulations of the hyperbolic plane.
Algebraically, two indecomposable objects X,Y are compatible if any nonzero morphism
X → Y , when completed to a distinguished triangle X → Y → Z → �X ∼= X, makes the
third object Z indecomposable.
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1.2 Construction of Continuous Cluster Category

In this paper we construct the continuous cluster category C = Cπ as an orbit category of
the doubled continuous derived category D(2)

π , defined below, under a triangulated functor
Fπ . More generally we take any 0 < r ≤ s and define Cr,s to be the orbit category D(2)

r /F s ,
then we show that Cr,s is isomorphic to the stable category Cc of the Frobenius category Fc

constructed in [8] where c = rπ/s.
For any positive real number r we can define Dr to be the �-linear additive Krull-

Schmidt category with indecomposable objects M(x, y) where x, y are real numbers with
|x − y| < r . Hom sets are given by

Dr (M(x, y),M(a, b)) =
{
� if x ≤ a < y + r and y ≤ b < x + r

0 otherwise

To construct Cr,s , we first “double” the category Dr by taking two isomorphic copies of each
indecomposable object, call them M(x, y)+,M(x, y)−. This doubled category is denoted
D(2)

r . Then Cr,s is given by identifying M(x, y)ε with FsM(x, y)ε = M(y + s, x + s)−ε .
This is accomplished by taking the orbit category: Cr,s = Dr/F s . It is easy to see that, up to
isomorphism, Cr,s depends only on the ratio r

s
. To see the geometric picture, we take s = π

and view M(x, y)+ as a directed geodesic from x to y + π on the circle S1 = R/2πZ and
M(x, y)− as the same geodesic oriented the other way.

To give Dr the structure of (continuously) triangulated categories, we construct a topo-
logical Frobenius category B≤r whose stable category is Dr . We also show that Fc is
isomorphic to the completed orbit category of B≤r under a triangulated functor Fs whenever
c = rπ/s .

As an additive category, B≤r is easy to describe. The indecomposable objects are
M(x, y) where x, y are real numbers with |x − y| ≤ r and the hom sets are

B≤r (M(x, y),M(a, b)) =
{
� if x ≤ a and y ≤ b

0 otherwise

In other words, all morphism go right and up. Composition is given by multiplication of
scalars. In other words, composition of basic morphisms (corresponding to 1∈ �) is basic
unless it is forced to be zero. To show that this is a Frobenius category we need an exact
structure. This is given by embedding the category in the abelian category of representations
of the real line. We show in a later paper [10] that the exact structure is uniquely determined.

Recall from [7] that the stable category of a Frobenius category has the same set of
objects and Hom sets given by quotienting out all morphisms which factor through a
projective-injective object. For B≤r the projective injective objects are M(x, y) where
|x − y| = r .

1.3 Contents of the Paper

We describe the contents of the paper with more technical details. In Section 2 we construct
the continuous derived category Dr . We start with the abelian category A of representations
of the real line over the field �. An indecomposable object VS of A is uniquely determined
up to isomorphism by its support S which must be a connected subset of R. We construct
a strictly additive full subcategory Asa

R
= add X where X is the full subcategory of A

generated by objects V(a,b] where a < b and we give it an obvious topology. The categoryB
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is isomorphic to the exact category A′
R

which is the extension closed subcategory of add X
generated by all V(a,b] where a < 0 < b. The isomorphism sends V(a,b] to the object
M(x, y) in B where x = −ln(−a) and y = ln b. Since B ∼= A′

R
it is exact.

The Frobenius category B≤r is defined to be the strictly additive full category of B gener-
ated by all M(x, y) where |x −y| ≤ r . The stable category of B≤r is the continuous derived
categoryDr . Being the stable category of a Frobenius category it admits a triangulated struc-
ture which is specified by a choice of two-way approximation sequences X → IX → �X

for every object X. This means that IX is a left approximation of X by a projective-injective
object and a right approximation of �X. We give the formula for our choice of two-way
approximations and show that it leads to “positive triangles” as the basic distinguished tri-
angles in the category. The idea of using approximations to define triangulated structures
comes from [1].

In Section 3 we double the categories Dr and B≤r and show that the orbit category of
D(2)

r under a strictly triangulated strictly additive functor Fs : D(2)
r → D(2)

r is equivalent
to the stable category Cc of the continuous Frobenius category Fc constructed in [8] for
c = rπ/s. To do this we take the completed orbit category B(2)

≤r /F
∧
s whose morphism sets

are products

B(2)
≤r /F

∧
s (X,Y ) =

∏
n∈Z

B(2)
≤r (X, Fn

s Y )

The equivalence Ĝ : B(2)
≤r /F

∧
s → Frπ/s is induced by a continuous strictly additive functor

G : B(2)
≤r → Frπ/s which is uniquely determined by the restriction of its object map to the

indecomposable objects (by an argument similar to the one in Prop 2.2.1).
In Section 4 we consider maximal compatible sets of indecomposable objects of the

continuous cluster category C = Cπ = Cπ,π . We show that these are laminations of the
hyperbolic plane. We define a cluster to be a discrete lamination. In Section 5 we show that
all clusters are equivalent under strictly additive automorphisms of the cluster category. We
also describe all such automorphisms. In Section 4 we also give a short proof of a theorem
of W. Thurston [14] showing that laminations are locally homeomorphic to compact subsets
of R which are arbitrary.

Finally, in Section 5, we show that clusters in C form a cluster structure as defined in
[2]. We also show that mutation of clusters is given by the octahedral axiom. For r < s, the
continuous orbit category Cr,s also has a cluster structure if and only if r

s
= (n+1)/(n+3).

2 The Continuous Derived Category

We will construct an exact category B as an extension closed subcategory of an abelian cate-
gory AR and choose certain full subcategory B≤r for r > 0 which we show to be Frobenius
categories with Br being the full subcategory of projective-injective objects. Then the stable
category Dr = B≤r is a triangulated category which we call the continuous derived cate-
gory. We briefly examine the topological structure of these category. We also examine some
of the distinguished triangles in Dr . All of these categories will be �-categories where � is
a fixed field. We assume there is a unique zero object in the category of �-vector spaces.
(Choose one 0 and discard all the others.)
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2.1 The Abelian Category A

The category AR will be defined to be the category of representations of the “quiver” R.
This is similar to the representations of infinite linearly ordered posets considered in [15],
except that R is not locally finite, so we do not have Serre duality.

Definition 2.1.1 A representation of R over a field � is defined to be a functor V which
assigns a �-vector space Vx to every x ∈ R and a �-linear map Vxy : Vy → Vx for all
x < y so that

(1) VxyVyz = Vxz for all x < y < z and
(2) (∀x ∈ R)(∃z < x)(∀y ∈ (z, x))Vyx : Vx → Vy is an isomorphism.

A morphism between two such representations f : V → W is a collection of linear maps
fx : Vx → Wx so that Wxyfy = fxVxy for all x < y.

Given any representation V , we define a regular value of V to be any real number x so
that Vxy : Vy → Xx is an isomorphism for all y > x sufficiently close to x. We define the
critical values of V to be the other elements of R. Let AR be the category of representa-
tions V of R over � which are finite dimensional at every point of R and which have only
finitely many critical values. For every subset S of R of the form (a, b], (a,∞), (−∞, b]
or (−∞,∞) = R we define the representation VS of R as Vx = � for all x ∈ S, Vx = 0 if
x /∈ S and Vxy : Vy = � → Vx = � is the identity map for all x, y ∈ S with x < y. Then
VS is an object of AR.

The following observation can be used to reduce statements involving finitely many
objects of the category AR to statements about representations of the quiver An with straight
orientation: 1 ← 2 ← · · · ← n.

Proposition 2.1.2 For any finite sequence a∗ = {a1 < a2 < · · · < an} of strictly increasing
real number, let Aa∗ be the full subcategory of AR of all representations whose critical
values lie in the set a∗. Then Aa∗ is equivalent to the category of representations of the
quiver An+1 with straight orientation as above. The quiver representation W corresponding
to V ∈ Aa∗ is given by Wi = Vai

for i ≤ n and Wn+1 = Van+1.

Given the well-known properties of the quivers of type An we get the following.

Corollary 2.1.3
(1) AR is an abelian Krull-Schmidt category.
(2) The projective objects of AR are those in which the structure maps Vxy are monomor-

phism for all x < y. Indecomposable projective objects are isomorphic to Pa :=
V(−∞,a] or VR.

(3) AR is hereditary (all subobjects of projective objects are projective).
(4) The injective objects are those for which Vxy is an epimorphism for all x < y.

Indecomposable injective objects are isomorphic to Ia := V(a,∞) or VR.
(5) The remaining indecomposable objects are isomorphic to V(a,b] for some a < b.
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Continuing our list of easy properties of the category AR we have:

Corollary 2.1.4
(1) AR has enough projectives and injectives.
(2) Homomorphisms between the standard indecomposable objects V(a,b] are given by

scalars in �:

A(V(a,b], V(c,d]) =
{
� if a ≤ c < b ≤ d

0 otherwise

(3) Composition of morphisms between standard indecomposable objects is given by
multiplication of scalars.

(4)

ExtA(V(c,d], V(a,b]) ∼=
{
� if a < c ≤ b < d

0 otherwise

Proof This follows from very well-known facts about representations of quivers of type
An. We should only point out that the homomorphism V(a,b] → V(c,d] corresponding to the
scalar s ∈ � is given by the composition

V(a,b] � V(c,b]
s−→ V(c,b] ↪→ V(c,d]

This is s times the basic morphism which is the identity on V(c,b] and zero outside this
interval and statement (3) follows from the fact that any composition of basic morphisms is
a basic morphism or zero. Also the nonzero extensions of V(a,b] by V(c,d] all have the form:

V(a,b] � V(c,b] ⊕ V(a,d] � V(c,d] → 0

where V(c,b] := 0 when c = b and we will discuss later the choices of the morphisms in the
basic extension sequence.

2.2 Strictly Additive and Topological Categories

The category AR is equivalent to a “strictly additive” full subcategory Asa
R

defined to be the
additive category generated by the standard indecomposable objects V(a,b]. Thus objects of
Asa

R
are finite ordered sequences of standard objects V(a1,b1] ⊕ · · · ⊕ V(an,bn] where n ≥ 0.

An additive category C is defined to be strictly additive if direct sum is strictly associative
on objects and morphisms and has a strict identity. (So, C has a distinuished zero object 0
so that 0 ⊕ X = X = X ⊕ 0.) A functor � between strictly additive categories will be
called strictly additive if it strictly commutes with direct sum and takes the distinguished
zero object of the first category to the distinguished zero object of the second category.
So, �(X ⊕ Y) = �X ⊕ �Y and �(f ⊕ g) = �f ⊕ �g. A strictly additive functor on
a strictly additive Krull-Schmidt category is uniquely determined by its value on the full
subcategory of indecomposable objects since � maps any morphism

∑
fij : ⊕Xj → ⊕Yi

to
∑

�fij : ⊕�Xj → ⊕�Yi because

fij = 0 ⊕ fij ⊕ 0 : (· · · ) ⊕ Xj ⊕ (· · · ) → (· · · ) ⊕ Yi ⊕ (· · · )
which maps to 0 ⊕ �fij ⊕ 0 since � is strictly additive.

This emphasis on strictly additive categories is motivated by topological considerations.
Recall that a topological category is a small category together with a topology on the set
of objects and the set of all morphisms so that the structure maps of the category (source,
target, composition) are continuous mappings. A continuous functor between topological
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categories is a functor � which is a continuous mapping on object sets and morphism sets. A
topological �-category is a topological category which is also a �-category where addition
and scalar multiplication of morphisms is continuous.

If C is a topological category then add C is also a topological category with object set∐
n≥0 Ob(C)n with product topology on Ob(C)n and morphism set the subspace of

∐
n,m≥0

Ob(C)n × Mor(C)nm × Ob(C)m

consisting of triples ((Yi)1≤i≤n, (fij )1≤i≤n,1≤j≤m, (Xj )1≤j≤m) so that each fij ∈
C(Xj , Yi). Any continuous functor between topological additive categories � : C →
D induces a strictly additive continuous functor add C → add D also called � by
�((Yi), (fij ), (Xj )) = ((�Yi), (�fij ), (�Xj )).

As an example, let X be the �-category of standard objects V(a,b]. Then

Ob(X ) = {(a, b) ∈ R
2 | a < b}.

We take the usual metric topology on this space. The morphism set of X is Mor(X ) =
� × M where

M = {(a, b, c, d) ∈ R
4 | a < b, c < d, a ≤ c, b ≤ d} ⊂ Ob(X )2

We give � the discrete topology and R4 the usual topology. This defines a topological
�-category structure on X with the key property that Mor(X ) is a covering space of M ⊆
Ob(X )2. Thus Asa

R
= add X is a topological additive category.

As an example of the use of this structure we have the following.

Proposition 2.3.1 Any continuous strictly additive �-linear endofunctor on Asa
R

is uniquely
determined by its value on indecomposable objects.

Proof If an endofunctor � sends X to �X, it must send the identity morphism of X to
the identity morphism of �X. Since X (X,X) ∼= � and � is �-linear, the value of � on
every endomorphism of X is determined. This determines the value of � on one point in
each sheet of the covering space Mor(X ) → M ⊂ Ob(X )2. Since M is path connected,
there is a unique continuous map Mor(X ) → Mor(X ) which covers the given object map
� : M → M . So, �, if continuous, is uniquely determined on Mor(X ). Since � is strictly
additive, its value on all of add X = Asa

R
is uniquely determined.

2.3 The exact category B

We will construct a strictly additive category B which is isomorphic to a full subcategory
A′

R
of Asa

R
. Since A′

R
is an extension closed full subcategory of the abelian category Asa

R

our category B will be an exact category.

Proposition 2.3.1 Suppose that V is an object of AR with the following properties.

(1) 0 is a regular value of V .
(2) Vx = 0 for |x| sufficiently large.
(3) V0x is a monomorphism for all x > 0.
(4) Vx0 is an epimorphism for all x < 0.
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Then V is isomorphic to a direct sum of representations of the form V(a,b] where a <

0 < b (with a, b both finite). Conversely, all such representations have the properties listed
above.

We define A′
R

to be the additive full subcategory of Asa
R

generated by the indecom-
posable nonprojective and noninjective objects V(a,b] where a < 0 < b. In other words,
A′

R
is the strictly additive version of the full subcategory of AR described by the above

proposition.

Proposition 2.3.2 A′
R

is an extension closed subcategory of Asa
R

.

Proof Suppose that A � B � C is a short exact sequence in Asa

R
and A, C lie in A′

R
.

Consider Condition (3). For any x > 0 we have the following commuting diagram with
exact rows.

Since A0x, C0x are monomorphisms, so is B0x . So, B satisfies condition (3). The other
conditions are verified in a similar way and we conclude that B is an object of A′

R
.

Thus, A′
R

is an exact category. The exact sequences of A′
R

are defined to be the short
exact sequences in Asa

R
all of whose objects lie in A′

R
.

There is a better description of the exact sequences in the exact category A′
R

. Roughly
speaking it says that a sequence of morphisms A � B � C is a short exact sequence
in A′

R
if and only if it is split exact on the positive real numbers and on the negative real

numbers. To state this more precisely, let π+, π− : A′
R

→ AR be the exact functors given
by π+V(a,b] = Py where y = log b and π−V (a, b] = Px where x = −log|a| and which
take morphisms to the corresponding morphisms. Then the image of each of these functors
is the full subcategory PR of all projective objects in Asa

R
with no injective summands (i.e.,

which are zero at large positive real numbers). Then A′
R

is isomorphic to the pull-back in
the diagram:

where ε : PR → �-mod is the exact functor which sends each Px to �.
Since all exact sequences in PR split, we have the following.

Proposition 2.3.3 A sequence of morphisms X � Y � Z in A′
R

is a short exact sequence
if an only if it is split exact in each coordinate, i.e., if and only if π+(X) � π+(Y ) � π+(Z)

and π−(X) � π−(Y ) � π−(Z) are split exact sequences in PR.

We now define the category B which will be isomorphic to A′
R

.



Continuous Cluster Categories I 73

Definition 2.3.4 Let B be the strictly additive �-category with one indecomposable object
M(x, y) for every ordered pair of real numbers (x, y). Morphism sets are defined by

Hom(M(x, y),M(x ′, y ′)) =
{
� if x ≤ x ′ and y ≤ y ′

0 otherwise

The morphism M(x, y) → M(x ′, y ′) corresponding to 1∈ � will be called the basic
morphism. We define any composition of basic morphisms to be a basic morphism. Thus
morphisms between indecomposable objects are scalar multiples of basic morphisms and
composition is given by multiplication of these scalars.

Proposition 2.3.5 There is a �-linear isomorphism of categories B → A′
R

given by send-
ing M(x, y) to V(a,b] where a = −e−x, b = ey and basic morphisms to basic morphisms.
Therefore, B is an exact category.

We note that the compositions B ∼= A′
R

π−−→ PR and B ∼= A′
R

π+−→ PR send M(x, y)

to Px and Py respectively. By Proposition 2.3.3, a sequence in B is exact if and only it its
images under these two functors are both exact.

From Corollary 2.1.4, we also have

Ext(M(x ′, y ′),M(x, y)) ∼=
{
� if x < x ′ and y < y ′

0 otherwise

with all nonsplit extensions being isomorphic to the exact sequence

for some t ∈ �×.
From this description it is clear that B is completely homogeneous by which we mean

that the group of automorphisms of B acts transitively on the set of objects. In fact, if ϕ1, ϕ2
are two order preserving bijections (= orientation preserving homeomorphisms) of R then
we get a strictly additive �-linear automorphism of B given on indecomposable objects by

M(x, y) �→ M(ϕ1(x), ϕ2(y))

and on morphisms by the property that it takes basic morphisms to basic morphisms. Thus
Aut(B) acts transitively on the set of objects of B. This is an example of the following
definition.

Definition 2.3.6 Suppose that ϕ : R2 → R2 is a function which is nondecreasing in
both coordinates in the sense that if x ≤ x ′ and y ≤ y ′ then ϕ1(x, y) ≤ ϕ1(x

′, y ′) and
ϕ2(x, y) ≤ ϕ2(x

′, y ′) where ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)). Then we define �ϕ to be
the strictly additive endomorphism of B (always assumed to be �-linear) given on inde-
composable objects by �ϕM(x, y) = M(ϕ(x, y)) and given uniquely on morphisms by
the condition that it takes basic morphisms to basic morphisms. We call �ϕ the basic
endomorphism induced by the object map ϕ.

As another example the involution σ on B is the basic automorphism given on objects by
switching x and y: σM(x, y) = M(y, x). This is equivalent to saying that σ reverses the
projection functors on the first and second coordinates: σπ+ = π− and σπ− = π+.
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A more general endomorphism of B corresponding to the object map ϕ is given by twist-
ing �ϕ by a coefficient map λ : R2 → �×. We define the twisted endomorphism �(ϕ,λ)

to be the strictly additive endomorphism of B which is given by ϕ on objects and on mor-
phisms is given by sending the basic morphism M(x, y) → M(x ′, y ′) to λ(x ′, y ′)/λ(x, y)

times the basic morphism M(ϕ(x, y)) → M(ϕ(x ′, y ′)). Since we only use the ratio of two
values of λ, we may change λ by multiplying all values by the same scalar in �× with-
out changing the corresponding �(ϕ,λ). Note that �(ϕ,λ) is continuous if and only if λ is
constant (so that �(ϕ,λ) = �ϕ is untwisted).

Proposition 2.3.7 All strictly additive automorphism of B are given by �(ϕ,λ) where ϕ is
given by either ϕ(x, y) = (ϕ1(x), ϕ2(y)) for all x, y or ϕ(x, y) = (ϕ2(y),ϕ1(x)) for all
x, y with ϕ1, ϕ2 being any order preserving bijection of R and λ : R2 → �× any mapping.

Proof Suppose that � is a strictly additive automorphism of B. Then we will show that �

is one of the automorphisms that we have described.
Composing with a suitable object map ϕ = (ϕ1, ϕ2) we may assume that �M(0, 0) =

M(0, 0). Using Hom and Ext we see that � preserves the set of objects M(x, y) for x, y ≥
0 and the set of all M(x, y) where x, y > 0. Therefore, � preserves the union of the
positive x-axis and the positive y-axis. Since the objects M(x, 0),M(0, y) for x, y > 0
do not map nontrivially to each other, we see that � either preserves both of these sets
(positive x-axis and positive y-axis) or switches them. Composing with σ is necessary,
we may assume that � preserves the set of all M(x, 0) where x > 0 and the set of all
M(0, y) where y > 0. By a similar argument we may also assume at the same time that �

preserves the negative x-axis and the negative y-axis. Therefore, �M(x, 0) = M(ϕ1(x),0)

and �M(0, y) = M(0, ϕ2(y)) for order preserving bijections ϕ1, ϕ2 of R. Then it follows
that �M(x, y) = M(ϕ1(x), ϕ2(y) for all x, y since this is the only indecomposable module
which has homomorphisms but no extensions from �M(x, 0) and �M(0, y). Thus we may
assume that � is the identity map on all objects of B.

If � is the identity map on objects then � is given by linear automorphisms of

B(M(x,y),M(x ′, y ′)) = �

for all x ≤ x ′ and y ≤ y ′. These are given by scalar multiplication by some
f ((x, y), (x ′, y ′)) ∈ � which must satisfy the following two conditions in order to form a
functor:

f ((x, y), (x ′, y ′))f ((x ′, y ′), (x ′′, y ′′)) = f ((x, y), (x ′′, y ′′))
and f (x, y), (x, y)) = 1. Let λ : R2 → �× be given by

λ(x, y) = f ((0, 0), (|x|, |y|))
f ((x, y), (|x|, |y|))

Then one can easily show that

f ((x, y), (x ′, y ′)) = λ(x ′, y ′)/λ(x, y)

proving the proposition.

2.4 The Category B≤r

For any real number r > 0 we define B≤r to be the additive full subcategory of B generated
by all indecomposable objects of the form M(x, y) where |y − x| ≤ r . All such choices are
equivalent in the sense that there is a strictly additive automorphism of B which sends B≤r
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to B≤r ′ for any r, r ′ > 0, namely the functor �ϕ where ϕ(x, y) = (r ′x/r, r ′y/r). Let Br be
the full subcategory of B≤r generated by all M(x, y) where |y − x| = r .

We will show that B≤r is a Frobenius category by showing that it is an exact category
in which Br is the full subcategory of projective-injective objects. We also choose a spe-
cific two-way Br approximation sequence for each object of B≤r in order to specify the
triangulated structure of its stable category of B≤r .

For any x, y ∈ R with x−r < y < x+r consider the following exact sequence which we
call the positive two-way approximation sequence. (The negative two-way approximation
sequence is given by replacing

( 1
−1

)
with

(−1
1

)
.)

(1.1)

Note that only the terms in the middle lie in Br . These points are plotted in Fig. 1.

Lemma 2.4.1 The sequence (1.1) is a two-way approximation sequence. I.e., the middle
term is a minimal left Br approximation of M(x, y) and a minimal right Br approximation
of M(y + r, x + r).

To show that B≤r is an exact category, we use the following general fact.

Lemma 2.4.2 Suppose that D is an additive full subcategory of an exact category E with
the property that, for any exact sequence X � Y � Z in E with middle term Y in D, the
other two terms X,Z also lie in D. Then D is an exact category with exact sequences being
those sequences which are exact in E with all three terms in D.

Proof Recall that an exact category is an additive category with a distinguished collection

of exact sequences where X is the kernel of g and Z is the cokernel of f

and which satisfying the following list of axioms given by Keller [11].
(E0) 0 � 0 � 0 is an exact sequence in D (since 0 ∈ D.)

(E1) Given exact sequences and in D there is an

exact sequence (This is true in E and W ∈ D.)

(E2) The pushout of an exact sequence along any morphism h : X →
X′ in D exists and gives an exact sequence X′ � Y ′ � Z in D. (The pushout exists in E
and is exact. Since X � X′ ⊕ Y � Y ′ is exact in E and X′ ⊕ Y ∈ D, the object Y ′ lies in
D. So, the pushout sequence lies in D.)

Similarly, we have the dual axiom:

Fig. 1 Basic positive two-way approximation sequence in B≤r (1.1).
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(E2)op The pullback of an exact sequence in D along any morphism in D is an exact
sequence in D.

Therefore, D is an exact category.

We also need the following easy lemma.

Lemma 2.4.3 Suppose that X � Y � Z is an exact sequence in B. Then, for any compo-
nent M(x, y) of Z, there are, not necessarily distinct, components M(x, b) and M(a, y) of
Y which map nontrivially to M(x, y).

Proof This follows immediately from Proposition 2.3.3 which said that a sequence in B is
exact if and only if it is split exact in each coordinate.

Lemma 2.4.4 B≤r is an exact category.

Proof Suppose that A � B � C is an exact sequence in B so that B lies in B≤r . Let
M(x, y) be a component of C. Then we will show that |y − x| ≤ r .

By the previous lemma, B has components M(x, b) and M(a, y) which map to M(x, y).
But this implies that b ≤ y and a ≤ x. Since B lies in B≤r we must have |x − b| ≤ r and
|y − a| ≤ r . So,

x − r ≤ b ≤ y ≤ a + r ≤ x + r

and we conclude that C lies in B≤r . A similar argument shows that A also lies in B≤r .
Lemma 2.4.2 implies that B≤r is an exact category.

Theorem 2.4.5 B≤r is a Frobenius category and Br is the full subcategory of projective-
injective objects.

Proof It remains only to show that the objects of Br are the projective and injective objects
of B≤r . So, suppose that A � B � C is an exact sequence in B≤r and C ∈ Br . Let
M(x, x + r) be a component of C. As in the proof of the lemma above, B has a component
M(a, x + r) which maps to M(x, x + r) and this is possible only if a = x. The case of
M(x, x − r) being similar, we see that B � C is a split epimorphism. Therefore objects in
Br are projective. Conversely, any projective object P is part of a two-way approximation
sequence A � B � P where B lies in Br . Since P is projective, the sequence splits making
P an object of Br . So Br is the full subcategory of projective objects in B≤r . Similarly, Br is
the full subcategory of injective objects in B≤r . The existence of two-sided approximations
means that B≤r has enough projectives. Since the projective objects are also injective, B≤r

is Frobenius.

2.5 The Category Dr

For any r > 0 we define Dr to be the stable category of the Frobenius category F≤r . Thus
Dr has the same objects as B≤r but Dr (X, Y ) = B≤r (X,Y )/ ∼ where we quotient out
the morphisms X → Y which factor through an object in Br . The equivalence class of a
morphism f : X → Y is denoted f .

Proposition 2.5.1 Dr := B≤r is a triangulated category for any r > 0. The automorphism
� = [1] of Dr is induced by the basic automorphism of B≤r given by �M(x, y) = M(y +
r, x + r).
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We now use Happel’s procedure [7] to construct all distinguished triangles in the tri-
angulated category Dr . We begin with the explicit choice of two-way Br -approximation
sequence for any object in Dr given on indecomposable objects by (1.1). Let B<r ⊂ B≤r

be the strictly additive full subcategory of B generated by all M(x, y) where |y − x| < r .
For any indecomposable object M(x, y) in B<r let I1M(x, y) = M(y + r, y), I2M(x, y) =
M(x, x + r) and �M(x, y) = M(y + r, x + r). Extend I1, I2, � additively to all objects of
B<r . Then, for any object X in B<r , the two-way Br-approximation sequence for X in B≤r

is:

Every object X in Dr lifts uniquely to an object in B<r which we also call X. Then any
morphism f : X → Y in Dr comes from a morphism f : X → Y in B≤r where X, Y lie in
B<r . The standard diagram for f using the positive two-way approximation sequence for
each component of X is the pushout diagram

By Happel’s construction [7], the resulting distinguished triangle in Dr is

X
f−→ Y

g−→ Z
h−→ �X

Recall that all distinguished triangles in D are isomorphic to triangles of this form.
As a basic example, let X = M(x, y) and Y = M(x, z) where x − r < y < z < x + r .

Then we get the diagram

Since M(x, x + r) ∈ Br is zero in Dr , this gives the distinguished triangle

M(x, y)
1−→ M(x, z)

1−→ M(y + r, z)
1−→ �M(x, y) (1.2)

where the 1’s represents the fact that each morphism in this triangle is a basic morphism.
These points are plotted in Fig. 2. We call this the basic positive triangle.

Fig. 2 Basic positive triangle (1.2)
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If X = M(x, y) and Y = M(w, y) where y − r < x < w < y + r we get another
distinguished triangle

M(x, y)
1−→ M(w, y)

−1−→ M(w, x + r)
1−→ �M(x, y) (1.3)

which we call the basic negative triangle. Here, the second morphism is −1 times a basic
morphism. These points are plotted in Fig. 3

A third example is given by X = M(x, y) and Y = M(w, z) where x < w < y + r and
y < z < x + r . Then we get the distinguished triangle

M(x, y)
1−→ M(w, z)

( 1
−1)−−→ M(y + r, z) ⊕ M(w, x + r)

(1,1)−−→ �M(x, y) (1.4)

Thus a basic positive triangle is distinguished when the morphism are basic morphisms
and a basic negative triangle is distinguished when two of the morphisms are basic and
the third is negative a basic morphism. Note that when we apply the functor � to a basic
positive triangle it has the shape of a basic negative triangle but has positive signs and is
thus not a distinguished triangle unless � has characteristic 2. This comes from the general
fact that if a distinguished triangle remains distinguished when the sign of one or three of
the morphisms is changed, then either the ground field has characteristic 2 or the triangle
splits (is a direct sum of triangle with one term equal to zero).

Similarly, � changes a basic negative triangle into a triangle with the shape of a basic
positive triangle, again with the wrong sign. We will describe more general triangles later
using the hyperbolic plane.

3 Continuous Orbit Category

The continuous orbit category Cr,s is defined to be the orbit category of the (doubled) con-
tinuous derived category D(2)

r under a triangulated automorphism Fs . However, it is easier
to see the triangulated structure of this category if we first take the (completed) orbit cate-
gory of the “doubled” category B(2)

≤r under the exact automorphism Fs , show that the result
is again a Frobenius category, then stabilize.

We will see later that Cr,s has a cluster structure only for certain values of r
s
, namely,

r
s

= n+1
n+3 and r

s
= 1. Thus the name “continuous cluster category” is only appropriate for

those values of r, s. Otherwise, Cr,s will be called a continuous orbit category.

When we take the orbit category of the doubled Frobenius category B(2)
≤r , we need to

complete the category since, otherwise, the endomorphism ring of an indecomposable object
will be the polynomial ring �[u] which is not local. In the completed orbit category, the
endomorphism ring of any indecomposable object will be the local ring S = �[[u]] and

Fig. 3 Basic negative triangle (Equation 1.3)
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Hom(X, Y ) will be a free S-module of rank 1 for any two indecomposable objects X,Y .
We will show that the completed orbit category B≤r/F

∧
s is equivalent to the continuous

Frobenius category Frπ/s constructed in [8]. In the notation of [8], u = √
t .

3.1 Construction of Completed Orbit Category

For any s ≥ r , we want to take an orbit category of B≤r with respect to a functor Fs

which takes M(x, y) to M(y + s, x + s). However, the obvious functor of this form, which
takes basic morphisms to basic morphisms, is not strictly triangulated since it takes posi-
tive triangles to negative triangles with the wrong signs on the arrows, namely, all (positive)
basic morphism instead of two basic morphisms and one negative basic morphism. To
remedy this we will “double” the category. For any additive category E , let E (2) be the cat-
egory whose objects are ordered pairs (X0,X1) of objects in E and whose Hom sets are
E (2)((X0,X1), (Y0, Y1)) = E(X0 ⊕ X1, Y0 ⊕ Y1). Then E (2) is equivalent to the full sub-
category of objects of the form (X, 0) since (X0,X1) ∼= (X0 ⊕ X1, 0). Therefore, E (2) is
always equivalent to E .

In the case at hand, B(2)
≤r is the strictly additive �-category with exactly two objects in

every isomorphism class of indecomposable objects: M(x, y)+ and M(x, y)−. The advan-
tage of this is that we can take different two-way approximation sequences for these two
objects:

(2.1)
For ε = +, this agrees with (1.1) and, in the stable category of B(2)

≤r , this gives positive
distinguished triangles for M(x, y)+. For ε = −, the sign is reversed and we get negative
distinguished triangles in the stable category starting with M(x, y)−.

Let Fs be the strictly additive �-automorphism of B≤r given on indecomposable
objects by

Fs (M(x, y)ε) = M(y + s, x + s)−ε

and on morphism by taking basic morphisms to basic morphisms. Then Fs takes the chosen
two-way approximation sequence for M(x, y)ε to the two-way approximation sequence for
M(y + s, x + s)−ε and therefore gives a strictly triangulated automorphism of the stable
category. This stable category is isomorphic to the double of the continuous derived category
Dr , so we denote it by D(2)

r and we define the triangulated structure of this doubled category
to match that of the stable category of B(2)

≤r so that, e.g., one triangle starting with M(x, y)+
and corresponding to (1.4) is

M(x, y)+
1−→ M(w, z)

( 1
−1)−−→ M(y + r, z) ⊕ M(w, x + r)

(1,1)−−→ M(y + r, x + r)+
where the three terms in the middle can have any parity.

Definition 3.1.1 The standard orbit category B(2)
≤r /Fs is the category with the same objects

as B(2)
≤r but with Hom sets given by B(2)

≤r /Fs(X,Y ) = ⊕
n B

(2)
≤r (X, Fn

s Y ). The completed

orbit category (B(2)
≤r /Fs)

∧ which we simplify to B(2)
≤r /F

∧
s has the same object set but with

Hom sets given by
B(2)

≤r /F
∧
s (X, Y ) =

∏
n∈Z

B(2)
≤r (X, Fn

s Y )
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with composition given by (gj )(fk) = (hn) where fk ∈ B(2)
≤r (X,F k

s Y ), gj ∈ B(2)
≤r (Y, F

j
s Z)

and

hn =
∑

j+k=n

F k
s gj ◦ fk ∈ B(2)

≤r (X,Fn
s Z)

This is a finite sum for each n since (∃N ∈ Z)(∀j, k ≤ N) gj = 0 and fk = 0.

For each M(x, y)ε in B(2)
≤r , consider the basic morphism

u : M(x, y)ε → FsM(x, y)ε = M(y + s, x + s)−ε

This is a natural transformation since any composition of basic morphisms is a basic mor-
phism by definition. Given M(x, y)ε and M(a, b)ε′ in B(2)

≤r , let m ∈ Z be minimal so that
there is a nonzero morphism

f0 : M(x, y)ε → Fm
s M(a, b)ε′

which we take to be basic. For example, if m is even, then x ≤ a + 2sm, y ≤ b + 2sm but
either x + s > b + 2sm or y + s > a + 2sm or both. Then any morphism f : M(x, y)ε →
M(a, b)ε′ in the completed orbit category is given by a unique infinite sum of the form

f =
∑
k≥0

aku
kf0

where ak ∈ � for all k ≥ 0. Composition of morphisms multiplies these coefficients as if
they were elements of the ring S = �[[u]]. Therefore, we have:

Proposition 3.1.2 The completed orbit category B(2)
≤r /F

∧
s is an additive S-category. Given

any two indecomposable objects X,Y of B(2)
≤r /F

∧
s , the Hom set B(2)

≤r /F
∧
s (X, Y ) is a free

S-module generated by one basic morphism, call it fYX , and composition with a basic
morphism fZY : Y → Z gives fZY fYX = unfZX for some n ≥ 0. In particular, the
endomorphism ring of any indecomposable object is a local ring.

We leave it as an exercise for the reader to show that n = 0,1 or 2. Also n = n(XYZ)

in the equation fZY fYX = unfZX is a cocycle in the sense that n(XYZ) − n(XYW) +
n(XZW) − n(YZW) = 0 for all indecomposable X,Y, Z, W . This structure will be
explored in another paper [9].

Although B(2)
≤r /F

∧
s is a category over the ring S = �[[u]], we prefer to consider it

as a category over R = �[[t]] where t = u2. As an R-module, each Hom set (between
indecomposable objects X,Y ) is freely generated by two morphisms fYX and ufYX .

3.2 Review of Continuous Frobenius Categories

For any discrete valuation ring R with unique maximal ideal (t) and any positive real num-
ber c ≤ π another Frobenius category Fc was constructed in [8]. We will review this
constuction and, in the case when R = �[[t]] and c = rπ

s
, we will show that Fc is equiva-

lent to the completed orbit category B(2)
≤r /F

∧
s . We conclude that B(2)

≤r /F
∧
s is also a Frobenius

category.
Let PS1 be the strictly additive R-category whose indecomposable objects are projective

representations P[x] of the circle S1 = R/2πZ generated at one point [x] = x + 2πZ. For



Continuous Cluster Categories I 81

every nonnegative real number α we have a morphism eα : P[x] → P[x+α] with composition
given by eαeβ = eα+β : P[x] → P[x+α+β]. The morphism sets PS1(P[x], P[y]) are free
R-modules of rank 1 with generator equal to eα where α is the smallest nonnegative real
number so that [x + α] = [y]. We call this the basic morphism from P[x] to P[y]. All
morphisms of the form e2π are multiplication by the uniformizer t ∈ R by definition. See
[8] for details. (See also the construction of the big loop in [15].)

Let F be the category of all pairs (V, d) where V is an object of PS1 and d is an endo-
morphism of V so that d2 = ·t (multiplication by t). Morphisms (V, d) → (W, d) are
defined to be morphisms f : V → W in PS1 so that df = f d . An example of an object of
F is given, for any x ≤ y ≤ x + 2π ∈ R, by

E(x, y) :=
(

P[x] ⊕ P[y],
[

0 ex+2π−y

ey−x 0

])

Note that E(x, y) = E(x + 2π, y + 2π) and E(x, y) ∼= E(y, x + 2π). Morphisms between
these objects are given by 2×2 matrices which can always be written as the sum of a diago-
nal morphism and a counter diagonal morphism. For example d is always a counterdiagonal
endomorphism of any object and d2 = ·t is a diagonal endomorphism.

The following theorem in proved in [8] and generalized in [9] using the results of [8].

Theorem 3.2.1 [8] Let F be the category of all pairs (V, d) where V is an object of PS1

and d is an endomorphism of V so that d2 = ·t with morphisms those commuting with d .
Then F is a Frobenius category with exact sequences defined to be sequences

so that

is a split exact sequence in PS1 . The projective injective objects are those of the form (P ⊕
P, dP ) where P is any object of PS1 and dP =

[
0 t

1 0

]
. Furthermore, F is a Krull-Schmidt

category with indecomposable objects isomorphic to E(x, y) for x ≤ y ≤ x + 2π .

Corollary 3.2.2 [8] Given a positive real number c ≤ π , let θ = π − c and let Fc denote
the full subcategory of F generated by the indecomposable objects E(x, y) where x + θ ≤
y ≤ x + 2π − θ . Then Fc is a Frobenius category with exact sequences defined to be those
in F with all objects in Fc and with projective-injective objects given by E(x, y) where
|y − x − π | = c.

The stable category of Fc is defined to be Cc. The continuous cluster category is defined
to be Cπ . To compare the categories B(2)

≤r /F
∧
s and Frπ/s we use the following notion. The

continuous degree of any nonzero morphism f : M(x, y) → M(a, b) is defined to be
cdeg f := a + b − x − y. This has the property that cdeg (fg) = cdeg f + cdeg g if f, g

are nonzero morphisms between indecomposable objects of B≤r . Any nonzero morphism
f : P[x] → P[y] in PS1 has the form f = reα where x + α − y ∈ 2πZ and r is a unit in
R = �[[t]]. The continuous degree of f is then defined to be cdeg f = α. The continuous
degree of any nonzero diagonal or counterdiagonal morphism E(x, y) → E(a, b) is defined
to be the sum of the continuous degrees of the diagonal or counterdiagonal entries. For
example, cdeg d = 2π .
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3.3 The Equivalence Ĝ

There is an equivalence of categories

Ĝ : B(2)
≤r /F

∧
s

∼=−→ Frπ/s

induced by G : B(2)
≤r → Frπ/s , the strictly additive �-linear functor defined on

indecomposable objects and basic morphisms as follows.
On indecomposable objects M(x, y)ε of B(2)

≤r , G is defined by:

GM(x, y)ε =
{

E
(

π
s
x, π

s
y + π

)
if ε = +

E
(

π
s
y − π, π

s
x
)

if ε = −
For M(x, y)ε in B(2)

≤r we have x − r ≤ y ≤ x + r . So, x + θ ≤ y + π ≤ x + 2π − θ where
θ = s − r and E(x, y + π) ∼= E(y − π, x) is an object of Frπ/s .

For every basic morphism f : M(x, y)ε → M(a, b)ε′ in B(2) with cdeg f := a +
b − x − y, we define Gf : GM(x, y)ε → GM(a, b)ε′ to be the unique morphism of the
form Gf = dng0 = g0d

n where g0 : GM(x, y)ε → GM(a, b)ε′ is a basic morphism and
n ∈ Z≥0 so that dng0 has continuous degree equal to π

s
cdeg f . A formula for Gf is given

by:

Gf =
[

0 1
1 0

](ε′=−) [
ea− π

s x 0
0 eb− π

s y

] [
0 1
1 0

](ε=−)

where (ε = −) denotes the truth value of that statement (1 if true and 0 if false). In particular,
Gf is a diagonal morphism if ε = ε′ and a counterdiagonal morphism if ε = −ε′.

The formula clearly shows that G is a continuous functor and it follows from the topology
of covering spaces that G is uniquely determined, as a continuous strictly additive �-linear
functor, by its value on indecomposable objects (just as in Proposition 2.2.1).

Theorem 3.3.1 The functor G : B(2)
≤r → Frπ/s induces an equivalence of categories:

Ĝ : B(2)
≤r /F

∧
s

∼=−→ Frπ/s

Proof The proof uses the following diagram.

First, we will show that this diagram commutes. Commutativity of the left hand square
is a tautology. All four categories have the same set of objects by definition and the four
functors are the identity maps on these objects again by definition. The functors send basic
morphisms to basic morphism. So, the left side of the diagram commutes.

For commutativity of the right hand square note first that G = G ◦ Fs by the following
calculation.

GFsM(x,y)ε =GM(y+s, x+s)−ε =
{
E(π

s
y + π, π

s
x + 2π) = E(π

s
y − π, π

s
x) if ε =−

E(π
s
x, π

s
y + π) if ε =+

This equals GM(x, y)ε . So, G takes the same value on all objects in any Fs orbit.
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Given two indecomposable objects M(x, y)ε,M(a, b)ε′ , let n ∈ Z be minimal so that
there exist a nonzero morphism f0 : M(x, y)ε → Fn

s M(a, b)ε′ . Then a morphism

f ∈ B(2)
≥c/F

∧
s (M(x, y)ε, M(a, b)ε′) =

∏
i∈Z

B(2)
≥c (M(x, y)ε, F i

s M(a, b)ε′)

is given by f = ∑∞
i=n aiu

i−nf0 where u denotes the basic morphism X → FsX for all
objects X and ai ∈ � for all i ≥ n. Let g0 : GM(x, y)ε → GM(a, b)ε′ = GFn

s M(a, b)ε′
be the basic morphism. Then we define Ĝf to be the morphism

Ĝf = vg0 + wdg0 ∈ Frπ/s (GM(x,y)ε,GM(a, b)ε′)

where v, w ∈ R = �[[t]] are given by v = ∑
k≥0 an+2kt

k and w = ∑
k≥0 an+2k+1t

k . Since
Gu2 = t , this gives an R-linear isomorphism

Ĝ : B(2)
≥c/F

∧
s (M(x, y)ε,M(a, b)ε′) ∼= Frπ/s(GM(x, y)ε, GM(a, b)ε′)

To check that Ĝ is a functor, take another indecomposable M(p, q)ε′′ and let

f ′ =
∑

bju
j−mf1 ∈ B(2)

≥c /F
∧
s (M(a, b)ε′, M(p, q)ε′′)

where f1 : M(a, b)ε′ → FmM(p, q)ε′′ is the basic morphism with minimal m ∈ Z. Then
Ĝf ′ = r ′g1 + s ′dg1 where r ′ = ∑

bm+2kt
k , s ′ = ∑

bm+2k+1t
k and g1 : GM(a, b)ε′ →

GM(p, q)ε′′ is the basic morphism. Then g1g0 = d�g2 where g2 is basic (and � = 0, 1 or
2). This corresponds to f1f0 = u�f2 where f2 : M(x, y)ε → Fn+m−�

s M(p, q)ε′′ is basic.
Calculation shows:

f ′f = (r ′ + s ′u)f1(r + su)f0 = (r ′ + s ′u)(r + su)u�f2

Gf ′Gf = (r ′ + s ′d)g1(r + sd)g0 = (r ′ + s ′d)(r + sd)d�g2 = G(f ′f )

Since the objects in an Fs orbit in B(2)
≥c /F

∧
s are canonically isomorphic, this induces an

equivalence of categories Ĝ : B(2)
≤r /F

∧
s

∼=−→ Frπ/s as claimed.

Corollary 3.3.2 The completed orbit category B(2)
≥c/F

∧
s is a Frobenius category whose

stable category is equivalent to the orbit category Cr,s = D(2)
r /F s . So, Cr,s

∼= Crπ/s .

Remark 3.3.3 In particular, when r = s = π , the orbit category Cr,s
∼= Cπ is triangulated

and we will show in Theorem 6.2.3 that it has a cluster structure.

Remark 3.3.4 B(2)
≥c /F

∧
s is a topological R-category with space of indecomposable objects

homeomorphic to the connected and oriented 2-fold covering space of the closed Moebius
band. At the end of [8] another topological construction is given which forms the discon-
nected and unoriented 2-fold covering space of the closed Moebius band. Thus there are
two inequivalent topological triangulated structures on Cr,s

∼= Crπ/s .

3.4 Embedding the Cluster Category of Type An

Suppose that r
s

= n+1
n+3 . Then we will construct an embedding of the cluster category of type

An into the continuous orbit category Cr,s . But first, we need the general description of the
continuous orbit category Cr,s = Dr /F s for any 0 < r ≤ s. For this we use the continuous
degree of any morphism and w = s − r .

The indecomposable objects of Cr,s are E(x, y) where x, y are real numbers so that
x + w < y < x + 2s − w modulo the identification E(x, y) = E(x + 2ms, y + 2ms) for
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any m ∈ Z and E(x, y) ∼= E(y, x + 2s). Hom sets are given by Cr,s (E(a, b),E(x, y)) = �

if x, y can be chosen so that either

(1) a ≤ x < b − w and b ≤ y < a + 2s − w or
(2) a ≤ y < b − w and b ≤ x + 2s < a + 2s − w

and the Hom set is zero otherwise. In other words, there is a nonzero homomorphism
E(a, b) → X with X indecomposable if and only if X ∼= E(x, y) where (x, y) lies in the
half-open rectangle

R(a,b) = [a, b − w) × [b, a + 2s − w)

This is because the upper left and lower right corners of this rectangle are the projective-
injective objects E(a, a + 2s − w) and E(b − w, b) respectively. The continuous degree of
any nonzero morphism f : E(a, b) → E(x, y) is given by cdeg f = x + y − a − b in the
first case and cdeg f = 2s + x + y − a − b in the second case. In particular, all nonzero
morphism have continuous degree < 2c = 2s − 2w.

Composition of nonzero morphisms f : X → Y, g : Y → Z in Cr,s for X, Y,Z

indecomposable is given by multiplication of scalars provided that Cr,s(X,Z) = � and
cdeg f + cdeg g < 2c. This is necessary since cdeg(g ◦ f ) = cdeg f + cdeg g. The con-
dition is also sufficient since it implies that Y and Z lie inside the rectangle RX in such a
way that Z is northeast of Y and therefore the morphisms f, g are entirely inside RX .

Figure 4 shows the example: X = E(0, 7s/6), Y = E(2s/3, 5s/3), Z = E(4s/3, 2s) ∼=
Z′ = E(0, 4s/3) with w < s/3. There are nonzero morphisms f : X → Y, g : Y →
Z, h : X → Z with cdeg f = 7s/6, cdeg g = s and cdeg h = s/6. The composition
g ◦ f is not equal to a multiple of h since the unique point (0, 4s/3) in the half-open
rectangle RX isomorphic to Z is to the southwest of Y and this is equivalent to the fact that
cdeg f + cdeg g �= cdeg h.

Lemma 3.4.1 Let 0 < θ < π and let Z be any nonempty subset of S1 with the property that,
for all z ∈ Z, both z+θ and z−θ lie in Z. Let F(Z) be the additive full subcategory of Fc,
where c = π−θ , generated by objects E(x, y) ∈ Fc where x+θ ≤ y ≤ x+2π−θ and x, y

lie in Z. Then F(Z) is a Frobenius category with projective-injective objects E(x, x + θ)

and E(x + θ, x + 2π) where x ∈ Z. Consequently, the embedding F(Z) ↪→ Fc induces a
strictly triangulated embedding of stable categories F(Z) ↪→ F c

∼= Cr,s whenever r
s

= c
π

.

Proof Given any exact sequence (A, d) � (B, d) � (C, d) in Fc with (B, d) ∈ F(Z),
the components of B ∼= A⊕C are projective representations of S1 generated at points of Z.
Then A,C also have this property. So, (A, d), (C, d) lie in F(Z). By Lemma 2.4.2, F(Z)

Fig. 4 Z′ = E
(

0, 4s
3

)
∈ RX = [0, 7s

6 − w) × [ 7s
6 , 2s − w) is southwest of Y = E

(
2s
3 , 5s

3

)
. So, a nonzero

morphism X → Z ∼= Z′ cannot factor through Y .
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is an exact category. For any object in F(Z), its projective cover and injective envelope in
Fc lies in F(Z) by definition. So, F(Z) is a Frobenius category.

Since the projective-injective objects of F(Z) are equal to the projective injective objects
of Fc which lie in F(Z), the embedding F(Z) ↪→ Fc induced an embedding of stable
categories F(Z) ↪→ F c

∼= Cr,s . If we make compatible choices of two-way approximation
sequences using the formulas described in (2.1) this embedding will be strictly triangulated.

Theorem 3.4.2 Suppose that r
s

= n+1
n+3 and let Z be any subset of S1 of the form Z =

{a, a+θ, · · · , a+(n+2)θ} where θ = 2π
n+3 . Then the stable category of F(Z) is equivalent

to the cluster category of type An over the field � and the embedding F(Z) ↪→ Frπ/s

induces a triangulated embedding F(Z) ↪→ Cr,s .

Proof Take the image of Z under the standard embedding of S1 to the unit circle in the
plane. These points form the vertices of a regular (n + 3)-gon. The indecomposable objects
of F(Z) are E(x, y) where x, y are nonconsecutive vertices of this regular polygon. The
sides of the polygon are zero since they correspond to projective-injective objects of F(Z).
By the description of morphisms and their composition in Cr,s given above, morphisms
between indecomposable objects are given by counterclockwise rotation of the correspond-
ing chords as described in [5]. Therefore, F(Z) is equivalent to the cluster category of type
An. By the general theorem of Keller and Reiten [13], this is a triangulated equivalence.

4 Clusters and Laminations

This section is devoted to the definition of a cluster in the continuous cluster category C =
Cπ defined in Section 3.2. There is a short digression into the concept of “laminations”
as originally introduced by W. Thurston [14]. The algebraic purpose of this digression is
to explain why a maximal compatible set of indecomposable objects in C need not form a
cluster.

In this section we let M be the set of all isomorphism classes of indecomposable objects
of C considered as a topological space with the quotient topology. Thus M is an open
Moebius band whose elements are unordered pairs of distinct points in S1 and Ind C is the
two fold connected covering of M whose elements are given by ordered pairs of distinct
points on the circle.

We begin by defining “compatibility” for indecomposable objects of the continuous clus-
ter category. This condition is equivalent to the condition that the corresponding geodesics
in the hyperbolic plane do not cross. A lamination can then be defined to be a closed sub-
set of pairwise compatible elements of M. We define a cluster to be a discrete maximal
lamination. Since discrete implies closed, this is the same as a discrete maximal compatible
subset of M.

4.1 Compatibility

Definition 4.1.1 Two indecomposable objects X,Y of the continuous cluster category C =
Cπ are defined to be compatible if either C(X,Y ) = 0 or C(Y,X) = 0 or X ∼= Y .

To fully understand this definition, we need to interpret it in terms of the Moebius band
M and in terms of geodesics in the hyperbolic plane. We give statements without much
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proof since the proofs are very straightforward, following from the definitions. We use the
asymmetric notation E(x, y) = M(x, y − π) where x < y < x + 2π .

4.1.1 Geometric Interpretation of Compatibility in Terms of M

Proposition 4.1.2 The objects compatible with X = E(a, b) are E(x, y) and E(x, y)′ =
E(y, x + 2π) where either

(1) a ≤ x < y ≤ b (E(x, y) is “southeast” of E(a, b)) or
(2) x ≤ a < b ≤ y < x + 2π (E(x, y) is “northwest” of E(a, b)).

Note that the notion of “northwest” and “southeast” depend on the choice of coordinates
for X. However, the union of these two regions is independent of the choice of coordinates.
The compatible regions form right triangles which are closed on the two short sides and open
on the hypotenuse. The incompatible region is an open rectangle with X,X′ on opposite
corners. A simple example is given in Fig. 5 where A is the northwest compatible region
and B is the southeast compatible region. Note that C(Y,X) �= 0 since morphisms go right
and up. But C(X,Y ) ∼= C(X,Y ′) = 0 since the morphism X → Y ′ factors through a point
in the boundary (the upper left corner of C).

4.1.2 Geometric Interpretation of Compatibility in Terms of Geodesics

In the notation E(a, b), the points in our open Moebius band M corresponds to pairs of
distinct point on the circle S1 = R/2πZ which corresponds to geodesics in the circular
model of the hyperbolic plane h2. The pair of points {a, b} represents the unique geodesic
in h2 converging to those two points on the circle at infinity.

Proposition 4.1.3 Two indecomposable objects of C are compatible if and only if the
corresponding geodesics do not cross.

Figure 6 represents the same example as the one given in Fig. 5. Morphisms are given by
angles which always go counterclockwise. Thus α, β, γ are nonzero morphisms α : X →
Z, β : Z → X, γ : Y → X.

Fig. 5 X = E
(

0, 4π
3

)
is compatible with points in regions A,B such as Y = E(0, π) but not with points

in the open rectangle C such as Z′ = E
(
π, 5π

3

)
.
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Fig. 6 X,Z are not compatible since they cross. But X,Y are compatible since their intersection lies on the
“circle at ∞” which is not in the set h2.

4.2 Laminations

Following standard procedure, we would like to define a cluster to be a maximal set of
pairwise compatible indecomposable objects of C. However, maximal compatible sets do
not form a “cluster structure” because of the following fact.

Proposition 4.2.1 Maximal compatible subsets of M are closed.

Before we prove this, we want to point out the implication for cluster mutation. Suppose
that T is a maximal compatible set and T ∈ T . If T is a limit point of T then we cannot
mutate T by the obvious fact that, if we replace T with a different object T ∗ then the new set
will not be closed. In other words, all limit points are “frozen”. One example is the vertical
line T = 0× (−π, π), a maximal compatible set in which every point is a limit point. Thus,
we will define a cluster to be a discrete maximal compatible set.

Proof Suppose that L is a maximal compatible subset of M. Then for any T ∈ L, L is
contained in the set C(T ) of all points in M which are compatible with T . It follows from
Proposition 4.1.2 that C(T ) it a closed set. Since this holds for all T ∈ L we have:

L ⊆
⋂
T ∈L

C(T )

We claim that L = ⋂
T ∈L C(T ). Otherwise, we can add one element of

⋂
T ∈L C(T )\L

to L to make a larger compatible set contradicting the maximality of L. Therefore, L =⋂
T ∈L C(T ). But any intersection of closed sets is closed. So, L is closed.

Now we make a brief digression to study maximal compatible subsets of M in general.

Definition 4.2.2 A lamination of the hyperbolic plane h2 is a closed subset C of h2 and a
homeomorphism S×R ∼= C, for some space S, which is equal to the exponential map on the
second coordinate. In other words, this is a family of disjoint geodesics in h2 parametrized
by the topological space S.

Since geodesics in the hyperbolic plane are disjoint if and only if the corresponding
objects in M are compatible, laminations of h2 correspond to closed subsets of M whose
elements are pairwise compatible. We also call these sets “laminations.” To make sure that
this interpretation is accurate, we need the following proposition.
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Proposition 4.2.3 A compatible subset L of M is closed if and only if the union C of the
corresponding geodesics in h2 is closed.

Proof Suppose first that L is closed in M and p is a point in h2 which does not lie in
C. For each point x in the circle at ∞, there is a unique geodesic passing through p and
converging to x. This set of geodesics is compact, being homeomorphic to S1 and the cor-
responding subset K(p) of M is also compact and disjoint from L by construction. Since
K(p) depends continuously on p, there is a neighborhood U of p in h2 so that K(q) is dis-
joint from the closed set L (as subset of M) for every q ∈ U . Then U is disjoint from C

(as subsets of h2) and we conclude that C is closed in h2.
Conversely, suppose that L is not closed in M and E(x, y) is a limit point of L. Then the

union of L with E(x, y) will be compatible since compatiblity is a closed condition in the
sense that the set of all compatible pairs of points in M is a closed subset of M2. Therefore,
the geodesic converging to x, y on the circle at ∞ is disjoint from C but the center points of
some geodesics in C converge to the center point of this new geodesic. Therefore C is not
closed in h2 in this case.

4.2.1 Description of all Maximal Laminations

The following theorem is essentially due to W. Thurston [14].

Proposition 4.2.4 Any maximal lamination L ⊆ M is locally embeddable in R in the
sense that every point in L has a closed neighborhood N in L which is homeomorphic to a
compact subset C of R. Conversely, all nonempty compact subsets C of R occur in this way.
(There exists a maximal laminationL and point in L having a neighborhood homeomorphic
to C.)

Proof Take any E(a, b) ∈ L. Then the coordinate difference function (x, y) �→ x − y

gives a continuous mapping from a neighborhood of E(a, b) in L to a neighborhood of
a − b in R. This mapping is 1-1 since any two points E(x, y),E(x + d, y + d) with the
same difference in coordinates are not compatible if d < |x − y|. Restriction of this map to
a compact neighborhood N = L∩ [a − ε, a + ε] × [b − ε, b + ε] gives a homeomorphism
of N with a compact neighborhood of a − b.

Conversely, suppose that C is any compact subset of R. By rescaling and adding disjoint
points to C if necessary, we may assume that C lies in a closed interval [a, b] where π <

a < b < 3π/2 and a, b ∈ C. Then the complement of C in [a, b] is a countable union of
disjoint open intervals (xi, yi). Then we can take L to be the set with E-coordinates:

L = 0 × ((0, π] ∪ C ∪ [3π/2, 2π)) ⊕ π × (π, a] ⊕ b × (b, 3π/2] ⊕
⊕

i

xi × (xi, yi]

This is a maximal compatible set having a relatively open and closed subset 0 × C which is
homeomorphic to C.

4.2.2 Clusters

Definition 4.2.5 A cluster in C is defined to be a discrete maximal lamination T in M. By
discrete we mean that every E(x, y) in T has an open neighborhood that contains no other
object of T .
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Definition 4.2.6 The standard cluster is the set T0 of all objects in M with E-coordinates

(
mπ

2n
,
(m + 1)π

2n

)

for integers n ≥ 0 and 0 ≤ m < 2n+1. These objects are all nonisomorphic except for
E(0, π) ∼= E(π, 2π). If we reverse the parity of any of the objects in T0 we will still
consider it to be a standard cluster.

Proposition 4.2.7 The standard cluster T0 is a cluster. In particular, clusters exist in Cπ .

Proof To see that the objects in the standard cluster are compatible, look at the interval
given by the formula. Clearly any two of these with the same n are disjoint and thus com-
patible and any two with different n are either disjoint or one contains the other. So they are
compatible.

To show that this set is maximal, take any E(x, y) which is compatible with all of these
objects but is not in this set. The first coordinate x must be an integer times π/2n for some
n. Otherwise, for some sufficiently large n we will have mπ/2n < x < (m + 1)π/2n and y

outside this interval making the two geodesics cross. Thus x = aπ/2n where a = 2k + 1 is
odd. Then x lies in the center of the interval (kπ/2n−1, (k + 1)π/2n−1). To make E(x, y)

compatible with the corresponding object of T0 we must have |x − y| ≤ π/2n.
If |x − y| = π/2m for any m ≥ n then E(x, y) lies in T0. Therefore, if E(x, y) does not

belong to the standard cluster, there exists an m ≥ n so that π/2m > |x − y| > π/2m+1.
Suppose y > x. Then the object E(x+π/2m+1, x +π/2m) ∈ T0 crosses E(x, y) which is a
contradiction. The case y < x is similar. Therefore E(x, y) lies in T0 making T0 a maximal
compatible set and therefore a cluster in C.

In the next section we will show that clusters in C are unique up to triangulated automor-
phisms of C. This uniqueness theorem will make it easier to describe properties of arbitrary
clusters.

5 Automorphism of the Continuous Cluster Category

5.1 Linear Subcategories and Automorphisms of C

For each z ∈ S1 = R/2πZ let Lz be the full subcategory of C consisting of all inde-
composable objects with one end at z. These are E(z, x) and the isomorphic objects
E(z, x)′ = E(x − 2π, z) for all z < x < z + 2π . We view these objects as lying on a
vertical line or on a horizontal line. We call Lz the linear subcategory of C at the end z.
Note that Lx ∩ Ly = {E(x, y),E(y, x + 2π)} has one object up to isomorphism since
E(x, y) ∼= E(y, x + 2π).

Lemma 5.1.1 A full subcategory L of C is equal to a linear subcategory Lz for some z if
and only if it satisfies the following conditions.

(1) L has an infinite number of objects, and they are all indecomposable.
(2) Any two objects X,Y ∈ L are compatible and C(X,Y ) ⊕ C(Y,X) �= 0.
(3) L is maximal with the above two properties.
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Proof Any linear subcategory Lz satisfies these three properties. Conversely, suppose that
L is a full subcategory of C satisfying the above properties. Let X = E(x, y) ∈ L. Condi-
tion (2) implies that each object of L shares at least one end (x or y) with X. By Condition
(1) there are infinitely many objects in L with one of these ends, say x. To share one end
with such an infinite family, it must be that every object of L has one end at x. By Condition
(3), L = Lx .

Proposition 5.1.2 For any �-linear automorphism � of C, there is a unique orientation
preserving homeomorphism ϕ of S1 so that �E(x, y) ∼= E(ϕ(x), ϕ(y)).

Proof The image �(Lz) of any linear subcategory Lz satisfies the conditions of the lemma
above. It follows that �(Lz) = Lx for some x ∈ S1. Since �−1 is also an automorphism,
� induces a permutation ϕ of the elements of S1 so that �(Lz) = Lϕ(z).

It only remains to show that ϕ is an orientation preserving homeomorphism of S1. But
this is equivalent to showing that ϕ preserves the cyclic order of the elements of S1. So,
suppose that x, y, z are in cyclic order: x < y < z < x + 2π . Then the unique objects
Z = E(x, y) ∈ Lx ∩ Ly , X = E(y, z) ∈ Ly ∩ Lz and Y = E(x, z) ∈ Lx ∩ Lz map
to each other in the reverse cyclic order: Z → Y → X → Z and there are no nonzero
morphisms X → Y, Y → Z or Z → X. Applying � we obtain nonzero maps �Z →
�Y → �X → �Z showing that ϕ(x), ϕ(y), ϕ(z) are in correct cyclic order. So, ϕ is an
orientation preserving homeomorphism of S1 as claimed.

The above proposition implies that we have a group homomorphism from Aut(C), the
group of strictly additive strictly triangular automorphisms of C to the group Homeo+(S1)

of all orientation preserving homeomorphism ϕ of S1. This homomorphism is surjective
since, for any ϕ ∈ Homeo+(S1), there is a strictly additive, strictly triangular automorphism
�ϕ of C given on indecomposable object by �E(x, y) = (ϕ(x), ϕ(y)) and on morphisms
by sending basic morphisms to basic morphisms and extending linearly. This proves the
following.

Corollary 5.1.3 There is a split surjective group homomorphism

Aut(C) → Homeo+(S1)

whose kernel consists of all automorphisms of C which send each object to an isomorphic
object.

5.2 Equivalence of Clusters

In this subsection we will prove the following theorem which we interpret to mean that all
clusters are equivalent and all objects in all clusters are equivalent.

Theorem 5.2.1 (Equivalence of clusters) For any two clusters T1,T2 in Cπ and any two
objects T1 ∈ T1, T2 ∈ T2 there is a ϕ ∈ Homeo+(S1) so that �ϕ(T1) ∼= T2 and �ϕ(T1) =
T2.

Equivalently, we will show that, for any object T0 of any cluster T there is an automor-
phism � of C which sends the standard cluster T0 to T and sends the object E(0, π) to
T0. The automorphism will be � = �ϕ where ϕ ∈ Homeo+(S1) will be given only on
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rational points of S1 using the following lemma. Another lemma will show that the technical
condition is automatically satisfied.

Lemma 5.2.2 Let Q ⊆ S1 be the set of all points of the form aπ/2n where a, n ∈ Z and
n ≥ 0. Let ϕ : Q → S1 be a cyclic order preserving monomorphism. Then ϕ extends
uniquely to an orientation preserving homeomorphism of S1 if and only if it satisfies the
following condition.

(∀ε > 0)(∃n ∈ N)(∀a ∈ Z)|ϕ(aπ/2n) − ϕ((a − 1)π/2n)| < ε

Proof In words, the condition says that ϕ is uniformly continuous. Any continuous function
on a compact metric space, such as S1, is uniformly continuous and any uniformly contin-
uous mapping from a dense subset, such as Q, to a complete metric space extends uniquely
to a continuous function on the whole space. The extended map lies in Homeo+(S1) since
it is cyclic order preserving.

The set Q is a union of an increasing sequence of finite subsets Q0 ⊂ Q1 ⊂ Q2 ⊂ · · ·
where Qn consisting of all points of the form aπ/2n. We will construct the function ϕ on
Q as a union of a sequence of cyclic order preserving mappings ϕn : Qn → S1, with
ϕn = ϕn+1|Qn. We do not assume the technical condition in the above lemma.

Note that any object of the standard cluster T0 has endpoints in some Qn. In fact, the
rational cluster category X is a union of finite subcategories Xn consisting of objects with
both ends in Qn and any cyclic order preserving monomorphism ϕn : Qn → S1 gives an
embedding �n : Xn → C. To see this, note that ϕn extends to some ϕn ∈ Homeo+(S1) and
the restriction to Xn of the induced automorphism of C does not depend on the choice of
extensions. The condition ϕn = ϕn+1|Qn will imply that �n = �n+1|Xn. So, �m(T0 ∩Xn)

will be independent of m ≥ n.

Lemma 5.2.3 Let ϕn : Qn → S1 be as above. If T = ⋃
n≥0 �n(T0 ∩ Xn) is a cluster then

the union ϕ = ∪ϕn satisfies the technical condition in Lemma 5.2.2 and therefore extends
to some ϕ ∈ Homeo+(S1) so that �ϕ(T0) = T .

Proof For any ε > 0, let Uε be the set of all points in the open Moebius band which
are within ε of the boundary. Then the complement of Uε is a compact set and therefore
contains only a finite number of elements of the cluster T . This finite set is contained in
�m(T0 ∩Xm) for some m. But this implies that for any n > m, �n(T0 ∩ (Xn −Xm)) ⊂ Uε .
But T0 ∩ (Xn −Xm) contains all objects of the form E((a −1)π/2n, aπ/2n). The statement
that �n sends this object into Uε is exactly the statement that ϕn satisfies the technical
condition in Lemma 5.2.2.

Proof of Theorem 5.2.1 Take any cluster T and any object T0 ∈ T . Then T0 = E(x0, x1)

for some x0 < x1 < x0 + 2π . Let ϕ0 : Q0 = {0, π} → S1 be given by ϕ0(jπ) = xj for
j = 0, 1. Then �0 sends the object E(0, π) ∈ T0 ∩ X0 to T0.

The other objects of T are, up to isomorphism, contained in the two sets A,B where

A = {E(y0, y1) | x0 ≤ y0 < y1 ≤ x1}, B = {E(y0, y1)) | x1 ≤ y1 < y0 +2π ≤ x0 +2π}
To avoid the words “up to isomorphism” in the rest of this proof we assume that T ⊆ A∪B ′
where B ′ = {E(y1, y0 + 2π)}. Let Y = E(y0, y1) ∈ A be the point in T ∩ A closest to T0
in the 1-norm. Thus d = |y0 − x0| + |y1 − x1| is minimal nonzero (Fig. 7).

Claim 1. Either y0 = x0 or y1 = x1.
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Fig. 7 T ⊆ A1 ∪ A2 ∪ A3 ∪ A4 ∪ {T0} ⊆ A ∪ B ′. The points E(xj , xj+1/2) in the Fig. above must lie in T
since they are compatible with all points in A1 ∪ A2 ∪ A3 ∪ A4 ∪ {T0} and, therefore, with all objects in T .

If not then x0 < y0 < y1 < x1. Then the point Z = E(x0, y1) ∈ A is compatible with
every point in B and with every point in A which is compatible with Y and which has a
distance of at least d from T0. So, Z is compatible with every point in T . But Z cannot be
in T since the distance from X to Z is less than d . This contradicts the maximality of T
proving the claim.

By symmetry we assume that x0 = y0 and y1 < x1. Since x0 < y1 < x1 we change the
notation to y1 = x1/2. Then the set of points in A compatible with Y = E(x0, x1/2) consists
of T0 and the two sets

Aj = {E(a, b) | x(j−1)/2 ≤ a < b ≤ xj/2} (4.1)

for j = 1, 2. Therefore,

T ∩ A ⊆ A1 ∪ A2 ∪ {T0} (4.2)

Note that the triangular regions A1, A2, B ′ are uniquely determined by their vertices which
are E(x0, x1/2), E(x1/2, x1), E(x1, x0 + 2π) = T ′

0, respectively.
Claim 2. The vertex E(x1/2, x1) of A2 lies in T .
This follows from the maximality of T since every element of A1 ∪ A2 ∪ B ′ ∪ {T0} is

compatible with E(x1/2, x1).
The following claim follows from the analogous argument applied to the triangular

region B ′. (Take the point in B ′ ∩ T which is closest to but not equal to its vertex T ′
0, etc.)

We use the notation x2 = x0 + 2π (which is equal to x0 as an element of S1).
Claim 3. There exists x1 < x3/2 < x2 so that E(x1, x3/2), E(x3/2, x2) ∈ T and

T ∩ B ′ ⊆ A3 ∪ A4 ∪ {T0} (4.3)

where A3, A4 are given by Equation (4.1).
We can now construct the mapping

ϕ1 : Q1 = {0, π/2, π, 3π/2} → S1
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by the formula ϕ1(jπ) = xj for j = 0, 1/2, 1, 3/2. Then �1(T0 ∩ X1) consists of T0 and
the vertices of A1, A2, A3, A4. These lie in T by the above claims and the remainder of
T lies in the union of the triangular regions Aj . To apply induction, we use the notation
Aj = A1

j for each j .

Suppose that n ≥ 1 and we have ϕn : Qn → S1 given by ϕn(jπ) = xj and we have
a sequence of disjoint triangular regions An

j so that the image of �n contains the vertex
E(x(j−1)/2n , xj/2n) of An

j for each j and the remainder T −�n(T0 ∩Xn) lies in the union of
the triangular regions An

j . Then, in each An
j , we take the point in T ∩ An

j which is closest to
and not equal to the vertex of An

j . This gives a new point z = x(2j−1)/2n+1 in the open interval

(x, y) = (x(j−1)/2n , xj/2n) and two new triangular regions An+1
2j−1, An+1

2j
uniquely deter-

mined by their vertices E(x, z),E(z, y), respectively. We also have the following statement
analogous to (4.2) and (4.3) above.

T ∩ An
j ⊆ An+1

2j−1 ∪ An+1
2j ∪ {vertex of An

j } (4.4)

If we do this for each j we obtain the data that we need to construct ϕn+1 and we can
construct ϕn for all n by induction.

We can use Lemma 5.2.3 to finish the proof once we show that every element of T is
contained in �n(T0 ∩ Xn) for some n. So, let Z ∈ T . Let d > 0 be the distance from Z to
the boundary of the Moebius band M. Let d0 be the distance from T0 to the boundary and
let ε = min(d, d0). As in the proof of Lemma 5.2.3, there are at most finitely many, say n,
objects in T which have a distance ≥ ε from the boundary and Z, T0 are among those n

points. (So, n ≥ 1.)
Claim 4. Z is contained in �n−1(T0 ∩ Xn−1).
The case Z = T0 being trivial, we assume that Z �= T0 and n ≥ 2. Then Z ∈ A1

j for

some j . Suppose that A1
j ∩ T has m elements which are at least ε away from the boundary

of M. Then n− 1 ≥ m ≥ 1 (since Z is one of those m elements but T0 is not). So the claim
follows from the following statement which we prove by induction on m.

If Z ∈ Ak
j and Ak

j contains m ≤ n − k elements which are at least ε away from the
boundary of M then Z ∈ �n−1(T0 ∩ Xn−1).

Let V be the vertex of Ak
j . Then, since ε ≥ d0, V is one of the m points of Ak

j ∩T which
are at least ε away from the boundary of M. If m = 1 then Z = V and Z ∈ �k(T0 ∩Xk) ⊆
�n−1(T0 ∩Xn−1) since k ≤ n − m ≤ n − 1. So, suppose that m > 1 and Z �= V . By (4.4),
Z is contained in either Ak+1

2j or Ak+1
2j−1. Suppose, e.g., that Z ∈ Ak+1

2j . Then Ak+1
2j ∩ T will

have at most m − 1 elements which are at least ε away from the boundary of M since it is
missing V . But m− 1 ≤ n− (k + 1). Therefore, the induction statement holds for all m and
the Claim holds for all n.

Our theorem follows from Claim 4 by Lemma 5.2.3.

6 Mutation of Clusters

In order to verify that the clusters in C form a cluster structure, we need to construct the
quiver with potential associated to any cluster. Since clusters are all equivalent, they have
isomorphic quivers with potential. Since the objects of a cluster are all equivalent, this quiver
has the same structure at every vertex. It resembles a Cayley graph. In fact it is isomorphic
to the Cayley graph of the group Z/3 ∗ Z/3 (the free product of the cyclic group of order 3
with itself). (See (5.1) below.)
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6.1 The Quiver of a Cluster

First we recall that the quiver QT of the category T has one vertex vi for each object Ti in
T and the number of arrows vi → vj is equal to the dimension of

Irr(Tj , Ti) = Hom(Tj , Ti)/rad(Tj , Ti)

where rad(Tj , Ti) is the vector subspace of Hom(Tj , Ti) spanned by all morphisms which

factor as Tj
f−→ Z

g−→ Ti where f, g are not isomorphisms. (This description uses the fact
that all objects of T are indecomposable. Also, this is the quiver of EndC(T )op .)

Lemma 6.1.1 Suppose that f : X → Y is a nonzero morphism between compatible
nonisomorphic indecomposable objects of C. If we form a triangle

X
f−→ Y

g−→ Z
h−→ �X

then Z is indecomposable and compatible with both X and Y .

Proof Since X, Y share one end, they each have one free end. Let Z be the unique object
with those two ends. Then Z is compatible with X,Y and we have a basic positive or
negative triangle X → Y → Z → �X. Since the triangle is unique up to isomorphism, it
is isomorphic to the given triangle.

Proposition 6.1.2 For any object T of any cluster T there are nonisomorphic objects
A,B,C,D in T satisfying the following.

(1) T is the source of exactly two irreducible maps a : T → A, f : T → C and the
target of exactly two irreducible maps b : B → T , g : D → T .

(2) There are irreducible morphisms c : A → �B ∼= B, h : C → �D ∼= D so that

B
b−→ T

a−→ A
c−→ �B and D

g−→ T
f−→ C

h−→ �D are triangles:
(3) If T → T ′ is a nonzero morphism with T ′ ∈ T not isomorphic to A or C then the

third object Z in the triangle T → T ′ → Z → �T does not lie in T .

Proof By the Equivalence of clusters (Theorem 5.2.1) we may assume that T = T0 and
T = T0 = E(0, π). Then all nonzero morphisms between T0 and other objects of T0 lie in
the linear subcategories P0,Pπ . All of the morphisms in P0 starting and ending at T0 factor
uniquely through the objects in P0 which are closest to T0 which are A = E(0, 3π/2),D =
E(0, π/2). Similarly, all morphisms in Pπ starting and ending at T0 factor uniquely through
C = E(π/2, π) and B = E(−π/2, π), respectively. This proves (1).

Since �D = D′ = E(π/2, 2π) and C have the same first coordinate they both lie in
Pπ/2. Since π/2 < π < 2π , there is a morphism C → �D. For any angle θ between π

and 2π , E(π/2, θ) is not compatible with T0 = E(0, π) since 0 < π/2 < π < θ < 2π .
Therefore, the morphism C → �D is irreducible. Since the two unshared ends of C,�D

are the ends of T0, there is a triangle D → T → C → �D. Since Hom(D, T ) and
Hom(T ,C) are one dimensional, we may assume that the first two morphisms are g and

f . Similarly, there is an irreducible morphism A → �B which generates a triangle B
b−→

T
a−→ A → �B . This proves (2).
To prove (3) suppose that T → T ′ is a nonzero morphism in T which is not irreducible.

By the Equivalence or clusters we may assume that T = T0 and T ′ = T0 = E(0, π). By
symmetry we may assume T = E(0, π/2n) and n ≥ 2 since T → T ′ is not irreducible.
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But then the third term in the triangle T → T ′ → Z → �T is Z = E(π/2n, π) which is
not in T0 since π − π/2n is not equal to π/2m for any m.

Corollary 6.1.3 The morphism (b, g) : B ⊕ D → T is a minimal right add(T \{T })
approximation of T and any morphism T ′ → T in add T with T ′ ∈ add(T \{T }) fac-
tors uniquely through (b, g). Similarly,

(
a
f

) : T → A ⊕ C is a minimal left add(T \{T })
approximation of T .

Corollary 6.1.4 Suppose that k : Ti → Tj is a nonzero nonisomorphism in T . Then the
following are equivalent.

(1) k is irreducible.
(2) The third term Z in the triangle Ti → Tj → Z → �Ti lies in T .
(3) The objects between Ti and Tj in the unique linear subcategory of C containing both

Ti and Tj do not lie in T .

Corollary 6.1.5 In the quiver QT of a cluster T , every arrow is contained in exactly one
triangle. The composition of any two arrows in each triangle is zero. Each vertex lies on
two triangles which are otherwise disjoint.

To describe the quiver of a cluster, we use group theory. Let G be the free product of two
copies of Z/3 with generators and relations:

G = Z/3 ∗ Z/3 =
〈
a, b : a3, b3

〉
Recall that the Cayley graph C(G) of a group G with n generators, none of order 2, is
a directed graph with one vertex for every element of G and 2n edges at each vertex, n

pointing outward and labeled with the generators and n pointing inward and labeled with
the n generators so that for any arrow labeled a : x → y in the graph the source and target
are related by y = xa in the group. This graph is the 2-skeleton of a 2-dimensional cell
complex K(G) in which, at each vertex we attach a 2-cell (a polygon) for every relation.
K(G) is always simply connected and has a free action of G on the left. In this particular
example, the 2-cells are triangles and K(G) is contractible.

(5.1)
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Theorem 6.1.6 The quiver QT of any cluster T is isomorphic to the Cayley graph C(G)

of the group G = Z/3 ∗ Z/3 with generators and relations given as above.

Proof Let T = T0 then an isomorphism ψ : C(G) ∼= QT0 is given as follows. The vertices
of C(G) are labeled with elements of G which are given by finite sequences

g = aε1bε2aε3 · · · xεn or g = bε1aε2bε3 · · · yεn

where each εi is 1 or −1 and x = a or b depending on the parity of n and similarly for y.
We map the identity e ∈ G to T0 = E(0, π) and other elements of G to

ψ(aε1bε2aε3 · · · xεn) = T0 +
n∑

j=1

π

2j+1
[(−1, 1) − εj (1, 1)]

ψ(bε1aε2bε3 · · · yεn) = T0 +
n∑

j=1

π

2j+1
[(1,−1) − εj (1, 1)]

This gives a bijection between the elements of G and the objects of T0 and triangles are sent
to triangles.

Let W be the potential on QT given by the sum of all triangles: W = ∑
aibici . Then

the Jacobian category J (QT ,W) is given by the quiver QT modulo the relations given by
taking ∂aW = 0 where ∂aW is the cyclic derivative of W with respect to the arrow a. In
this case these relations are that the composition of any two arrows in any triangle is zero. It
is clear that the nonzero paths in this quiver are the paths which have at most one arrow in
every triangle. These are exactly the paths contained in the linear subcategories (but going
the wrong way). This gives the following.

Theorem 6.1.7 J (QT , W) ∼= T op .

6.2 Mutation

We show that the collection of all clusters in C forms a cluster structure as defined in [2]
and [3].

Proposition 6.2.1
(a) Given any object T in any cluster T in C then, up to isomorphism, there is a unique

object T ∗ in C not isomorphic to T so that T ∗ = T \{T } ∪ {T ∗} is a cluster.
(b) This new object T ∗ is given by the octahedral axiom for triangulated categories where

the objects, morphisms and triangles on the left are as given in Proposition 6.1.2.
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(c) In particular (as part of the octahedral axiom), we have triangles T → A ⊕ C →
T ∗ → �T and T ∗ → B ⊕ D → T → �T ∗ and these triangles are add(T \{T })
approximations of T , T ∗ on the left and right.

(d) All morphisms in the right hand diagram above are irreducible morphisms in T ∗.

Proof Take T = T0 and T = T0 = E(0, π). Let T ∗
0 = E(π/2, 3π/2). Then T ∗

0 =
T0\{T0} ∪ {T ∗

0 } is a cluster since it is equal to �ϕ(T0) where ϕ : S1 → S1 is rotation by
π/2. The problem is to show that T0, T

∗
0 are the only objects which will complete T0\{T0}

into a cluster.
To prove this we note that, when T is deleted from T , the morphism f b : B → C

becomes irreducible. This follows from Corollary 6.1.4 (characterization of irreducible mor-
phisms) since T is the unique point between B and C in the linear subcategory containing B

and C which is compatible with all objects in T \{T }. The reason is that all of these points
are also compatible with T , so they should already be in T . Therefore, if we replace T with
say Y � T then the morphism B → C becomes irreducible. By Corollary 6.4.1, this implies
that the third terms T ∗

0 in the triangle B → C → T ∗
0 → �B must be in the cluster. And this

implies that Y ∼= T ∗
0 as claimed. The other statements follow from Proposition 6.1.2.

Corollary 6.2.2 Let W ∗ be the potential for the quiver QT ∗ of the mutation T ∗ of T
at T . Then (QT ∗ ,W ∗) is obtained from (QT ,W) by Derksen-Weyman-Zelevinsky (DWZ)
mutation of quivers with potential [6].

Proof We could carry out the calculation. Or we could simply quote known results. The
part of the quiver QT drawn in the above proposition is the quiver with potential for a
cluster mutation between clusters in the cluster category of type A5 and we know by [6] and
[3] that this is given by DWZ mutation. Note that the definition of triangulation in C and
CA5 do not agree.

This proposition and corollary prove the following.

Theorem 6.2.3 The triangulated category C = Cπ has a cluster structure in the sense of
[2] and [3] with clusters defined in Section 3 above.

6.3 Rational Cluster Category

Given a cluster T we say that an indecomposable object E(x, y) ∈ C is rational with respect
to T if both x and y are ends of objects in T , i.e., if and only if T has objects in Px and
in Py . An arbitrary element of C is called rational with respect to T if it is a direct sum of
rational objects. Thus X is the triangulated full subcategory of C of all objects rational with
respect to the standard cluster T0.

Theorem 6.3.1 For any cluster T , the union of all clusters obtainable from T by a finite
sequence of mutations is the set of all indecomposable objects which are rational with
respect to T .

Proof It is clear that all objects in any iterated mutation of T are rational. We need to prove
the converse. We may assume that T = T0. Take any rational objects, say T = E(x, y).
Then x = aπ/2n, y = bπ/2m. So, T is compatible with all objects of T0 of the form
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E(cπ/2k, (c + 1)π/2k) for k ≥ n,m. Therefore, there are only finitely many objects in
T0 which are not compatible with T . If this number is zero then T ∈ T0. If the number is
greater than zero, then there is some object E(a, b) = E(cπ/2k, (c + 1)π/2k) which is not
compatible with T . Choose k to be maximal and let c = (a +b)/2 = (2c+1)π/2k+1. Then
by maximality of k, E(a, c) and E(c, b) are compatible with T which means that either
x = r or y = r . If we mutate T0 at vertex E(a, b) then we replace E(a, b) with E(c, d) for
some d . Therefore, the new cluster T0 has fewer objects which are not compatible with T .
So, by repeating this process, we can eliminate all objects which cross T and T will be in
the mutated cluster.

6.4 Clusters in Cr,s for r < s

Theorem 6.4.3 For any 0 < r < s so that the ratio r
s

is not of the form r
s

= n+1
n+3 , there do

not exist any weak cluster structures in the sense of [2] on the triangulated orbit category
Cr,s .

Before we prove this we examine mutations in any possible weak cluster structure on
Cr,s without coefficients when r < s. Recall that Cr,s

∼= Cc where c = rπ
s

.
Recall from [2] that a weak cluster structure without coefficients on an additive trian-

gulated category C is a collections of sets, called clusters, consisting of indecomposable
objects of C so that these clusters have the following two properties.

(1) For every object T in any cluster T , there is an indecomposable object T ∗ �∼= T which
is unique up to isomorphism so that T \T ∪ T ∗ is a cluster. This new cluster is said to
be obtained from T by mutation at T .

(2) There are distinguished triangles T → B → T ∗ → �T and �−1T → T ∗ → B ′ →
T in C so that B,B ′ are minimal left and right add(T \T )-approximations for T .

Suppose that Cc has a weak cluster structure, T is a cluster in Cc and T ∈ T . By assump-
tion we have triangles T → B → T ∗ → �T and �−1T → T ∗ → B ′ → T in Cc in which
B,B ′ are the left and right add(T \T )-approximations for T and T \T ∪ T ∗ is another
cluster. We have an exact sequence in the Frobenius category Fc:

T → B ⊕ IT → T ∗ ⊕ J

where IT = I1T ⊕ I2T is the injective envelope of T in Fc and J is a summand of IT .
If we split off the sequence 0 → J → J , we get another exact sequence:

T → B ⊕ IT /J → T ∗

where the middle term must have exactly two components since, otherwise, T , T ∗ would be
compatible. If T = E(a, b) then this exact sequence must have the following form where
T ∗ ∼= E(a+, b+).

E(a, b) → E(a+, b) ⊕ E(a, b+) → E(a+, b+) (5.2)

Similarly, we have the dual approximation sequence

E(a−, b−) → E(a−, b) ⊕ E(a, b−) → E(a, b) (5.3)

where E(a−, b−) ∼= T ∗ ∼= E(a+, b+). But b − 2π + θ ≤ a− < a < a+ ≤ b − θ which
means that a+, a− are not the same point on the circle S1. So, we have a− ≡ b+ and
a+ ≡ b− modulo 2π . But a + θ ≤ b− < b. So, we must have:

a + θ ≤ b− = a+ ≤ b − θ. (5.4)



Continuous Cluster Categories I 99

The theorem now follows from the next lemma.

Lemma 6.4.2 Suppose that c < π and Cc has a weak cluster structure without coefficients.
Suppose that T is a cluster in Cc and T ∼= E(a, b) ∈ T then b − a is an integer multiple of
θ = π − c.

Proof of Theorem 6.4.1 Let E(a, b) be an object of any cluster in Cc. Then a+θ < b. So, by
the Lemma, we must have b−a ≥ 2θ . Also, E(a, b) ∼= E(b, a+2π). Therefore, a+2π −b

is also an integer multiple of θ and at least equal to 2θ . Adding these we see that 2π = Nθ

where N ≥ 4. So, N = n + 3 for some positive integer n. Then, θ = 2π/N = 2π/(n + 3)

which implies that c = π − θ = (n + 1)π/(n + 3) as claimed.

Proof Proof of Lemma Suppose not. Let m be the smallest positive integer so that

mθ < b − a < (m + 1)θ

for some E(a, b) ∼= T ∈ T . Then the left and right add(T \T ) approximations of T gives
us triangles (5.2), (5.3) satisfying (5.4).

Claim b − a+ is an integer multiple of θ .
Pf: Either a+ = b − θ or a+ < b − θ . In the first case, the claim holds. In the second

case, E(a+, b) is an object in the cluster T . But b − a+ ≤ b − a − θ (since a+ ≥ a + θ ).
By minimality of m, we must have that b − a+ = kθ for some integer k as claimed.

The dual argument shows that b− − a is also an integer multiple of θ . Since a+ = b−
we conclude that b − a = (b − a+) − (b− − a) is an integer multiple of θ as claimed.

In the case when c = (n + 1)π/(n + 3) we will show that any cluster structure on Cc is
the one we already know (given by embeddings of the cluster category of type An into Cc).

Theorem 6.4.3 Suppose that c = (n + 1)π/(n + 3) and we have a weak cluster structure
on Cc. Then every cluster has exactly n objects and for any two objects Ti = E(a, b), Tj =
E(x, y) in any cluster T the real numbers a, b, x, y differ by integer multiples of θ = π −c.
Furthermore, Ext1(Ti, Tj ) = Ext1(Tj , Ti) = 0. In other words, T is the image of a cluster
in the cluster category of type An under an embedding into Cc.

Proof Ti = E(a, b) ∼= E(b, a+2π) and �Ti
∼= E(b−θ, a+2π−θ). Any indecomposable

object Z of Cc with Ext1(Z, Ti) = Hom(Z,�Ti) �= 0 is isomorphic to E(x, y) where (x, y)

lies in the half-open rectangle (a, b − θ ] × (b, a + 2π − θ ]. Therefore, the statement that
Ext1(Tj , Ti) = 0 for all T ∈ T will follow from the following claim.

Claim 1 T contains no object E(x, y) with (x, y) in the open rectangle (a, b) × (b, a +
2π).

Pf: Suppose that there is an E(x, y) in the open rectangle. Let (m1, m2) be minimal in
lexicographic order among all counterexamples to Claim 1 where m1 is the minimum and
m2 is the maximum of [

x − a

θ

] [
y − b

θ

]

where [ ] means integer part. Consider the left add(T \Ti)-approximation sequence (5.2).
This sequence must also be the right add(T \Ti)-approximation sequence for T ∗

i =
E(a+, b+). Therefore, the point (x, y) cannot lie in the closed rectangle [a, a+] × [b, b+].
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This implies that (x, y) ∈ R1 ∪ R2 where R1 = (a+, b) × (b, a + 2π) and R2 =
(a, b) × (b+, a + 2π).

Case 1. If both objects E(a, b+), E(a+, b) are nonzero in Cc then the inequalities

(x + y) − (a+ + b) ≤ (x + y) − (a + b) − θ

(x + y) − (a + b+) ≤ (x + y) − (a + b) − θ

give a contradiction to the minimality of m. Therefore, either a+ = b−θ or b+ = a+2π−θ .
Case 2. a+ = b − θ (E(a+, b) = 0) but E(a, b+) �= 0 in Cc. In this case (x, y) is not

in R2, so it must be in R1. So, b − θ < x < b and (a, b) is in the forbidden open rectangle
(x, y) × (y, x + 2π) for the object E(x, y) ∈ T . For this counterexample we have m1 = 0
since b − x < θ . Therefore, m1 = 0. This means either x < a + θ or y < b + θ . The
second case is impossible since, by Lemma 6.4.2, y ≥ x + 2θ and x > b − θ . Therefore,
x < a + θ < b which implies that (x, y) cannot lie in R1. So, Case 2 is not possible.

A similar argument shows that the other two cases are also not possible and Claim 1 is
established.

Claim 1 can also be rephrased to say that, for any two objects E(a, b),E(x, y) in a
cluster, the pairs {a, b}, {x, y} are noncrossing. So, we can choose representatives so that
a ≤ x < y ≤ b (up to reordering of a, b and x, y).

Claim 2 For any two objects Ti = E(a, b), Tj = E(x, y) in T , the real numbers
a, b, x, y differ by integer multiples of θ .

Pf: Let b − a = mθ be minimal among all counterexamples so that a ≤ x < y ≤ b.
Then we note that b − a ≥ 3θ since, if b − a = 2θ , we would have a = x and b = y.
Therefore, in the inequality (5.4) we must have either a + θ < b− or a+ < b − θ . In the
first case E(a, b−) ∈ T and, by Claim 1, either a ≤ x < y ≤ b− or b− ≤ x < y ≤ b both
of which are impossible either by induction on m or by the fact that y − x ≥ 2θ . The other
case is similar which shows that there are no counterexamples to Claim 2.

By what we have proved so far, all objects E(x, y) in the cluster T have endpoints x, y

in the set

Z = {a + mθ | m = 0, · · · , n + 2}
Furthermore, |x − y| ≥ 2θ , so each object corresponds to an internal chord in the regular
(n+3)-gon with vertex set Z. We have shown that compatibility of such objects is equivalent
to the condition that the corresponding internal chords do not cross. Thus T is a cluster in
the cluster category F(Z) which is equivalent to the cluster category of type An over � by
Theorem 3.4.2. In particular, T has exactly n objects.

Corollary 6.4.4 The continuous orbit category Cc has a cluster structure without coeffi-
cients if and only if either c = π or c = (n + 1)π/(n + 3) for some nonnegative integer
n.

Proof By the theorem, the restrictions on c are necessary. But we showed in Theorem 3.4.2,
that for c = (n + 1)π/(n + 3), there is a triangulated embedding of the cluster category
CAn into Cc given by choosing n+ 3 equally spaced points on the circle. The image in Cc of
the clusters in the cluster category CAn give a cluster structure on Cc and the theorem above
implies that unions of such collections of clusters are the only possible cluster structure on
Cc without coefficients.
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