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1 Introduction

The multivariate resultant, which gives conditions for an overdetermined system of
polynomial equations to have common solutions, is a basic concept in algebraic geom-
etry [13,19,27,45]. In recent years, the multivariate resultant has emerged as one of
the most powerful computational tools in elimination theory due to its ability to elimi-
nate several variables simultaneously without introducing many extraneous solutions.
Many algorithms with best complexity bounds for problems such as polynomial equa-
tion solving and first-order quantifier elimination are strongly based on the multivariate
resultant [4,5,15,16,26,38].

In the theory of multivariate resultants, polynomials are assumed to involve all the
monomials with degrees up to a given bound. In practical problems, most polynomials
are sparse in that they only contain certain fixed monomials. For such sparse poly-
nomials, the multivariate resultant often becomes identically zero and cannot provide
any useful information.

As a major advance in algebraic geometry and elimination theory, the concept
of sparse resultant was introduced by Gelfand, Kapranov, Sturmfels, and Zelevinsky
[19,45]. The degree of the sparse resultant is the Bernstein—Kushnirenko—Khovanskii
(BKK) bound [2] instead of the BeZout bound [19,37,46], which makes the computa-
tion of the sparse resultant more efficient. The concept of sparse resultants originated
from the work of Gelfand et al. [18] on generalized hypergeometric functions, where
the central concept of A-discriminant is studied. Kapranov et al. [28] introduced the
concept of A-resultant. Sturmfels further introduced the general mixed sparse resul-
tant and gave a single exponential algorithm to compute the sparse resultant [45,46].
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Canny and Emiris showed that the sparse resultant is a factor of the determinant of a
Macaulay style matrix and gave an efficient algorithm to compute the sparse resultant
based on this matrix representation [14,15]. D’ Andrea further proved that the sparse
resultant is the quotient of two Macaulay style determinants [11]. The representation
given in [11] is used to develop efficient algorithms for computing sparse resultants
[16].

Using the analog between ordinary differential operators and univariate polyno-
mials, the differential resultant for two linear ordinary differential operators was
implicitly given by Ore [36] and then studied by Berkovich and Tsirulik [1] using
Sylvester style matrices. The subresultant theory was first studied by Chardin [7] for
two differential operators and then by Li [35] and Hong [24] for the more general Ore
polynomials.

For nonlinear differential polynomials, it is more difficult to define and study the
differential resultant. The differential resultant for two nonlinear differential polyno-
mials in one variable was defined by Ritt [41, p. 47]. In [50, p. 46], Zwillinger proposed
to define the differential resultant of two differential polynomials as the determinant of
amatrix following the idea of algebraic multivariate resultants, but did not give details.
General differential resultants were defined by Carra-Ferro [6] using Macaulay’s def-
inition of algebraic resultants. But, the treatment in [6] is not complete. For instance,
the differential resultant for two generic differential polynomials with positive orders
and degrees greater than one is always identically zero if using the definition in [6].
In [48], Yang, Zeng, and Zhang used the idea of algebraic Dixon resultant to compute
the differential resultant. Although efficient, this approach is not complete, because
it is not proved that the differential resultant can always be computed in this way.
Differential resultants for linear ordinary differential polynomials were studied by
Rueda—Sendra [43,44]. In [17], a rigorous definition for the differential resultant of
n+ 1 differential polynomials in n variables was first presented and its properties were
proved.

This paper, together with its preliminary version [34], initiates the study of the
sparse differential resultant which is an extension of the sparse resultant and the dif-
ferential resultant. In [34], we studied the sparse differential resultant for a system of
differential polynomials with nonvanishing degree zero terms. For more general sys-
tems, our first observation is that the sparse differential resultant is closely connected
with non-polynomial solutions of algebraic differential equations, that is, solutions
with nonvanishing derivatives to any order. As a consequence, the sparse differential
resultant should be more naturally defined for Laurent differential polynomials. This
is similar to the algebraic sparse resultant [19,46], where nonzero solutions of Laurent
polynomials are considered.

Consider n + 1 Laurent differential polynomials in n differential variables

YZ{)’la-n,yn}
li

Py =D ugMi (i =0,....n), ()

k=0
defined over sets of Laurent monomials A; = {Mjo, ..., M;;} in Y, where u;; are
differential indeterminates over Q. Let w; = (u;0, u;1, ..., u;;;) be the coefficient
EOE';W
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vectorof P; (i =0, ..., n).Foreachi, there exists aunique Laurent monomial M; such
that PY = M;P; is an irreducible differential polynomial in Y and u;, which is called
the norm form of P;. Lets; = ord(P;, Y) and denote M/ M;o = H'}=1 H;izo(y;l))likjl’
0
J
the exponent vector of the monomial M; in Y1), that is, M;; = (Yl°1)%i where Y]
istheset{yﬁl) c1<j<n0<l<o}

The concept of Laurent differentially essential system is introduced, which is a
necessary and sufficient condition for the existence of the sparse differential resultant.
Py, ..., P, are called Laurent differentially essential if Zy = Zy+, N Q{ug ..., u,}
is a prime differential ideal of codimension one, where Zy+ , = [Po,...,[P,]
is the differential ideal generated in the Y-Laurent differential polynomial ring
Q{Y*; up, ..., u,}. This concept is similar to (but weaker than) the concept of essen-
tial supports introduced by Sturmfels [46]. We have the following criteria for a Laurent
differential polynomial system to be Laurent differentially essential.

where y: is the /th derivative of y; and t;;j; € Z. Leto = max;‘zoord(IP’i, Y) and o

Theorem 1.1 ForP; givenin(1), letd;; = Zi":o Ui lei:o tikjlxll. i=0,....,n;j =

1,...,n) where x; are algebraic indeterminates. Denote
dor dy ... don
dip dip ... di
Dp =
dnl dp2 ... dpp

to be the symbolic support matrix of (1). Then, the following assertions hold.

1) The differential transcendence degree of Q(ug... ’u”><ll%)o’ A AI%> over
n

Qug . .., u,) is equal to rank(Dp).
2) Let Iy+y = [Po,...,Py] C Q(Y*;ug, ..., w,). Then I, = Iy+y N

Qfug, ..., w,} is a prime differential ideal of codimension n + 1 — rank(Dp).
So {Py, ..., P} is Laurent differentially essential if and only if rank(Dp) = n.

3) {Po,...,P,} is Laurent differentially essential if and only if there exist ki (i =
0,...,n)withl < k; <I; suchthatrank(Dy,, . ,) = nwhereDy,. ., isthe sym-
bolic support matrix for the Laurent differential monomials Mok, /Moo, - - ., Muk, /
M.

With the above theorem, computing the differential transcendence degree of certain
differential polynomials is reduced to computing the rank of their symbolic support
matrix. Similar to the case of linear equations, this result provides a useful tool to study
generic differential polynomials. As an application of the above result, the differential
dimension conjecture [42, p. 178] for a class of generic differential polynomials is
proved.

Before introducing properties of the sparse differential resultant, the concept of
Jacobi number is given below. Let G = {g1, ..., g4} be n differential polynomials
in Y. Let s;; = ord(g;, y;) be the order of g; in y; if y; occurs effectively in g; and
s;j = —oo otherwise. Then the Jacobi bound, or the Jacobi number, of G, denoted as

Elol:;ﬂ
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Jac(G), is the maximum number of the summations of all the diagonals of S = (s;;).
Or equivalently,

n
Jac(G) = maXy ZS,'U(,'),
i=1

where o is a permutation of {1, ..., n}. The Jacobi’s Problem conjectures that the
order of every zero-dimensional component of G is bounded by the Jacobi number of
G [40].

If Py, ..., P, in (1) are Laurent differentially essential, then Z, defined in Theorem
1.1 is a prime differential ideal of codimension one. Hence, there exists an irreducible
differential polynomial R € Q{ug ..., u,} such that Z, = sat(R) and R is defined to
be the sparse differential resultant of Py, ..., P,. Properties of the sparse differential
resultant are summarized in the following theorem.

Theorem 1.2 The sparse differential resultant R(ug, ..., u,) € Q{uy, ..., u,} of
Po, ..., P, has the following properties.

1) Let Z(Py,...,P,) be the set of all specializations of the coefficients uj; of
P; under which P; = 0( = O0,...,n) have a common non-polynomial solu-
tion and Z(Py, ..., P,) the Kolchin differential closure of Z(Py, ..., Py). Then
Z(Po, ...,P,) = V(sat(R)).

2) R(uyg, ..., uy) is differentially homogenous in eachu; (i =0, ..., n).

3) (Poisson product formula) Let hg = ord(R, ug) > 0. Then ty = deg(R, u(()}(')(’)) >1
and there exist differential fields (Q,8;) and &1 € Q; fort = 1,..., 1ty and
k=1,...,I1lysuchthat

10 Io (ho)
R=A H (uoo + Z MOkETk) ,
=1 k=1

where A is a polynomial in Q(uy, . . ., un)[u([)hO]\u(()%O)]. Furthermore, if 1) everyn

ofthe P; (i =0, ...,n) form a differentially independent set over Q{uy, ..., u,)
and2)foreachj =1, ...,n,e; € Spanglojx—ajo :k=1,...,1;;i =0,...,n},

then there exist Ny € Q; (t =1,...,10; k=1, ..., n) such that
1 (ho)
P
R=A H |: 0(n7) ] ’
-~ LMoo(nr)
where n: = (N¢1, ..., Nn) and e is the exponent vector of y ;. Moreover, n; (t =
1,...,1) are generic points of the prime differential ideal [PY, ..., P)]:m in
Quy, ..., u){Y}, where m is the set of all differential monomials in Y.
4) Assume that P; (i = 0,...,n) have the same monomial set A = A; (i =
0, ..., n). The differential toric variety X 4 associated with A is defined and is

shown to be an irreducible projective differential variety of dimension n. Further-
more, the differential Chow form [17,34] of X 4 is R.

FoC'T
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5) h; = ord(R, w;) < J; = Jac(B;) fori = 0,...,n, whereP; = (B}, ... PY\{P}).

6) degR) < [[/_g(m; + DMFL < (n + DZUFD = (m + 1)+ where
m; = deg(PY, Y), m = max;{m;}, and J=3"7_, Ji.

7) Letord(IP}, y;) = e;j and Nio = M; M;o. Then R has the following representation

n n  hi )
H Ni((l)'li‘i‘l)deg(R) .R = Z Z G[/ (]P)iv) ()

i=0 i=0 j=0

where G;j € Q[ug“)], . uLh”], y%ll], . y,[f"]] with t; = max_g{h; + e;;} such
that deg(G i (]P);-V)(j)) <[m+1+ 27 (hi + 1)deg(Njo)ldeg(R).

Although similar to the properties of algebraic sparse resultants, each property given
above is an essential extension of its algebraic counterpart. For instance, it needs lots of
efforts to obtain the Poisson product formula. Property 5) is unique for the differential
case and reflects the sparseness of the system in a certain sense.

LetP; (i =0, ...,n)in (1) be generic differential polynomials such that all mono-
mials with order < s; and degree < m; appear effectively in P; and R(uy, ..., u,) the
differential resultant of Py, ..., P,. Then a BKK style degree bound is given:

Theorem 1.3 Foreachi € {0,1,...,n},

S§—S;

deg(R, w;) < Z M((Qj1) jio<i<s—s;» Qios -+ » Qik—1> Qikats--» Qis—s;)

k=0

where s = D7y si, Qji is the Newton polytope of (P j)(l) treated as a polynomial in
y{s], ey y,[,s] and M(S) is the mixed volume of the polytopes in S.

In principle, the sparse differential resultant can be computed with characteristic
set methods for differential polynomials via symbolic computation [3,8,25,42,47].
But in general, differential elimination procedures based on characteristic sets do not
have an elementary complexity bound [20].

Based on order and degree bounds given in (5)—(7) of Theorem 1.2, a single expo-
nential algorithm to compute the sparse differential resultant R is proposed. The idea
of the algorithm is to compute R with its order and degree increasing incrementally
and to use linear algebra to find the coefficients of R with the given order and degree.
The order and degree bounds serve as the termination condition. Precisely, we have

Theorem 1.4 The sparse differential resultant of Py, . . ., P, can be computed with at
most O ((( J4+n+2)00ID (g 4 1H)OWWIHI( /+”+2)))/n”) Q-arithmetic operations,
where l =77 (l; + 1), m = max}_ym;, and J = ;_ J;.

Since n < [, the complexity of the algorithm is single exponential in terms of /

and J. The sparseness is reflected in the quantity / which is called the size of the

system and the Jacobi number J. Note that even for algebraic sparse resultants, the
Elol:;ﬂ

@ Springer Lﬁjog



Found Comput Math (2015) 15:451-517 457

computational complexity is single exponential [15,45]. This seems to be the first
algorithm which eliminates several variables from nonlinear differential polynomials
with a single exponential complexity.

As mentioned above, a preliminary version of this paper was reported in ISSAC
2011 [34], where the sparse differential resultant of differential polynomials with
nonvanishing degree zero terms is studied. To be more precise, in [34], differential
polynomials of the form (1) are required to satisfy that all M;; are differential mono-
mials and M;o = 1 foreachi =0, ..., n. There, (2), (3), (6), and (7) of Theorem 1.2
and Theorem 1.4 in that case are proved. In this paper, we consider sparse differential
resultants for general Laurent differential polynomial systems. Moreover, Theorem
1.1, (1), (4), and (5) of Theorem 1.2, and Theorem 1.3 are newly studied here.

The rest of the paper is organized as follows. In Sect. 2, preliminary results are
introduced. In Sect. 3, the sparse differential resultant for Laurent differentially essen-
tial systems is defined. In Sect. 4, Theorem 1.1 is proved. In Sect. 5, properties (1)—(4)
of Theorem 1.2 are proved. In Sect. 6, properties 5)—7) of Theorem 1.2, Theorem 1.3,
and Theorem 1.4 are proved. In Sect. 7, the paper is concluded and several unsolved
problems for differential sparse resultant are proposed.

2 Preliminaries

In this section, some basic notations and preliminary results in differential algebra will
be given. For more details about differential algebra, please refer to [3,17,29,42].

2.1 Differential Polynomial Algebra and Kolchin Topology

Let F be a fixed ordinary differential field of characteristic zero with a derivation
operator 6. An element ¢ € F such that §(c) = 0 is called a constant of F. In
this paper, unless otherwise indicated, § is kept fixed during any discussion and we
use primes and exponents (i) to indicate derivatives under 8. Let ® denote the free
commutative semigroup with unit (written multiplicatively) generated by §.

A typical example of differential fields is Q(x) which s the field of rational functions
in a variable x with § = L.

Let S be a subset of a differential field G which contains F. We will denote, respec-
tively, by F[S], F(S), F{S}, and F(S) the smallest subring, the smallest subfield, the
smallest differential subring, and the smallest differential subfield of G containing F
and S. If we denote ®(S) to be the smallest subset of G containing S and stable under
8, we have F{S} = F[O(S)] and F(S) = F(O(S)). A differential extension field G
of F is said to be finitely generated if G has a finite subset S such that G = F(S).

A subset ¥ of a differential extension field G of F is said to be differentially
dependent over F if the set (fa)pco ocx 1s algebraically dependent over F, and
otherwise, it is said to be differentially independent over F, or to be a family of
differential indeterminates over J . In the case X consists of only one element o, we say
that « is differentially algebraic or differentially transcendental over F, respectively.
A maximal subset Q2 of G which is differentially independent over F is said to be
a differential transcendence basis of G over F. We use d.tr.degG/F (see [29, pp.

EOE';W
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105-109]) to denote the differential transcendence degree of G over F, which is the
cardinal number of Q2. Considering F and G as purely algebraic fields, we denote the
algebraic transcendence degree of G over F by tr.deg G/F.

A homomorphism ¢ from a differential ring (R, §) to a differential ring (S, ;) is
a differential homomorphism if ¢ 0§ = 81 o ¢. If R is a common differential subring
of R and S and the homomorphism ¢ leaves every element of R invariant, then ¢ is
said to be a homomorphism over Ry. If, in addition, R is an integral domain and S is
a differential field, ¢ is called a differential specialization of R into S over Rg. The
following property about differential specialization will be needed in this paper, and
it can be proved similarly to [17, Theorem 2.16].

Lemma 2.1 Ler P;(U,Y) € F(Y){U} ¢ = 1,...,m) where U and Y are sets of
differential indeterminates. If 0;; (P,- (U, Y)) i=1,....,m;j=1,...,n;) are alge-
braically dependent over F(U) for 0;; € ©, then for any differential specialization
U° ¢ F of U over F, 0ij (Pi (WO, Y)) are algebraically dependent over F. In partic-
ular, if P;(U,Y) (i =1, ..., m) are differentially dependent over F(U), then for any
differential specialization U° C F of Uover F, P;(U°, Y) are differentially dependent
over F.

A differential extension field £ of F is called a universal differential extension
field, if for any finitely generated differential extension field 7y C £ of F and any
finitely generated differential extension field F, of F; not necessarily in £, F can
be embedded in £ over Fj, i.e., there exists a differential extension field 73 in £
that is differentially isomorphic to F» over Fi. Such a differential universal extension
field of F always exists [29, Theorem 2, p. 134]. By definition, any finitely generated
differential extension field of F can be embedded over F into £, and £ is a universal
differential extension field of every finitely generated differential extension field of
F. In particular, for any natural number n, we can find in £ a subset of cardinality n
whose elements are differentially independent over F. Throughout the present paper,
€& stands for a fixed universal differential extension field of F.

Now suppose Y = {yi, y2, ..., y»}isaset of differential indeterminates over £. For
any y € Y,denote ¥y by y©). The elements of F{Y} = }'[yg.k) lj=1,....,nk e N]
are called differential polynomials over F in Y, and F{Y} itself is called the differential
polynomial ring over F in Y. A differential polynomial ideal Z in F{Y?} is an ordinary
algebraic ideal which is closed under derivation, i.e., §(Z) C Z. And a prime (resp.
radical) differential ideal is a differential ideal which is prime (resp. radical) as an
ordinary algebraic polynomial ideal. For convenience, a prime differential ideal is
assumed not to be the unit ideal in this paper.

By a differential affine space, we mean any one of the sets £ (n € N). An element
n = ,...,n,) of E" will be called a point. Let X be a subset of differential
polynomials in F{Y}. A point n = (31, ..., n,) € E" is called a differential zero of
Y if f(n) = 0forany f € X. The set of differential zeros of X is denoted by V(X),
which is called a differential variety defined over F. When the base field is clear from
the context, we simply call it a differential variety. The differential varieties in £”"
(resp. the differential varieties in £" that are defined over F) are the closed sets in a
topology called the Kolchin topology (resp. the Kolchin F-topology).

Elol:;ﬂ
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For V C £",1etI(V) be the set of all differential polynomials in F{Y} that vanish at
every pointof V. Clearly, (V) is aradical differential ideal in 7{Y}. By the differential
Nullstellensatz, there exists a bijective correspondence between Kolchin F-closed sets
and radical differential ideals in F{Y?}. That is, for any differential variety V defined
over F, V(I(V)) = V and for any radical differential ideal Z in F{Y}, [(V(Z)) = Z.

Similarly as in algebraic geometry, an F-irreducible differential variety can be
defined. And there is a bijective correspondence between F-irreducible differential
varieties and prime differential ideals in F{Y}. A point n € V(Z) is called a generic
point of a prime ideal Z C JF{Y}, or of the irreducible variety V(Z), if for any
polynomial P € F{Y} we have P(n) =0 < P € Z.Itis well known that [42, p. 27]
a non-unit differential ideal is prime if and only if it has a generic point. Notice that
irreducibility depends on the base field over which the polynomials are defined. In
this paper, to emphasize the differential ring where differential ideals are generated,
we use the notation Zzyyy or (Z) Fyy;to mean that 7 is a differential ideal in F{Y}.

Let 7 be a prime differential ideal in F{Y} and £ = (&1, ..., &,) a generic point
of Z [29, p. 19]. The dimension of Z or of V(Z) is defined to be the differential
transcendence degree of the differential extension field F (&, ..., &,) over F, that s,
dim(Z) = d.tr.deg F (&1, ..., &) /F.

We will conclude this section by introducing some basic concepts in projective
differential algebraic geometry which will be used in Sect. 5.4. For more details,
please refer to [31,33]. And unless otherwise stated, in the whole paper, we only
consider the affine differential case.

For each ! € N, consider a projective space P(/) over £. By a differential projective
space, we mean any one of the sets P(/) (! € N). Denote zg, 71, ...,z to be the
homogenous coordinates and z = {zo, z1, - - -, 27}

Definition 2.2 Let Z be a differential ideal of F{z} and Z:z = {f € Flz}|z; f €
Z,j =0,...,1}. Call T a differentially homogenous differential ideal of F{z} if
7:z = T and for every P € 7 and a differential indeterminate A over F{z}, P(Az) €
FAMT in F{x, z}.

Consider a differential polynomial P € F{z} and a point « € P(/). Say that P
vanishes at & and that « is a zero of P, if P vanishes at L« for every A in €. For a subset
A of P(1),let1(.#) denote the set of all differential polynomials in F{z} that vanish at
A . Let V(§) denote the set of points of P(/) that are zeros of the subset S of F{z}. And
asubset V C P(l) is called a projective differential F-variety if there exists § C F{z}
such that V = V(S). There exists a one-to-one correspondence between projective
differential varieties and radical differentially homogenous differential ideals. And a
projective differential F-variety V is F-irreducible if and only if I(V') is prime.

Let 7 be a prime differentially homogenous ideal and & = (&, &;,...,&) be a
generic point of Z with &y # 0. Then the differential dimension of V(Z) is defined to
be the differential transcendence degree of F((§, L&) 1<k<1) over F.

2.2 Characteristic Sets of a Differential Polynomial System

Let f be a differential polynomial in F{Y}. We define the order of f w.r.t. y; to be
(k)

the greatest number k such that y;" appears effectively in f, which is denoted by

FoC'T
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ord( f, y;). And if y; does not appear in f, then we set ord(f, y;) = —o0o. The order
of f is defined to be max; ord(f, y;), that is, ord( f) = max; ord(f, y;).

A ranking Z is a total order over ®(Y), which is compatible with the derivations
over the alphabet:

1) 80y; > 6y; for all derivatives 6y; € O(Y).
2) 91y,- > szj — 591)1,' > 592){/ for 91y,-, 92yj € ®(Y).

By convention, 1 < 0y; for all 0y; € ©(Y).
Two important kinds of rankings are the following:

1) Elimination ranking: y; > y; = skyi > (Slyj forany &k, > 0.
2) Orderly ranking: k > | — (Sky,- > 8ly.,~, foranyi, j € {1,2,...,n}.

Let 7{Y} be endowed with a ranking % and f be a differential polynomial in F{Y}.
The greatest derivative w.r.t. & which appears effectively in f is called the leader of
[, denoted by u ¢ or 1d( f). The two conditions mentioned above imply that the leader
of 6(f)is Ou s for 6 € O. Let the degree of f in u y be d. As a univariate polynomial
inug, f can be rewritten as

f= ldu”} + Id—lu?_l + -+ Iop.

Then I, is called the initial of f and is denoted by 1. The partial derivative of f w.r.t.
u ¢ is called the separant of f, which will be denoted by S . Clearly, S f is the initial
of any proper derivative of f. The rank of f is u‘;- and is denoted by rk( f).

Let f and g be two differential polynomials and rk(f) = u‘]’c Then g is said to
be partially reduced w.r.t. f if no proper derivatives of u y appear in g. And g is said
to be reduced w.r.t. f if g is partially reduced w.r.t. f and deg(g,us) < d. A set of
differential polynomials A is said to be an auto-reduced set if each polynomial of .4
is reduced w.r.t. any other element of .4. Every auto-reduced set is finite.

Let A = Ay, Ay, ..., A; be an auto-reduced set and f an arbitrary differential
polynomial. Then there exists an algorithm, called Ritt’s algorithm of reduction, which
reduces f w.r.t. A to a polynomial r that is reduced w.r.t. A, satisfying the relation

t
[1s%1 - f=r.mod[Al 2)
i=1

where d; and e; are nonnegative integers. The differential polynomial r is called the
differential remainder of f w.r.t. A.

Let A be an auto-reduced set. Denote H 4 to be the set of all the initials and separants
of A and H% the minimal multiplicative set containing H 4. The saturation ideal of
A is defined as

sat(A) = [AHY = {p|3h € HY, s.t. hp € [A]}.

An auto-reduced set C contained in a differential polynomial set S is said to be a
characteristic set of S, if S does not contain any nonzero element reduced w.r.t. C. A
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characteristic set C of a differential ideal Z reduces all elements of Z to zero. If the
ideal is prime, C reduces only the elements of Z to zero and Z = sat(C) [29, Lemma
2, p. 167] is valid.

In terms of characteristic sets, the cardinal number of a characteristic set of Z is
equal to the codimension of Z, that is, n — dim(Z). When 7 is of codimension one, it
has the following property.

Lemma 2.3 [42, p. 45] Let T be a prime differential ideal of codimension one in F{Y}.
Then there exists an irreducible differential polynomial A such that T = sat(A) and
{A} is the characteristic set of I w.r.t. any ranking.

3 Sparse Differential Resultants for Laurent Differential Polynomials

In this section, the concepts of Laurent differential polynomial and Laurent differen-
tially essential system are first introduced, and then the sparse differential resultant
for a Laurent differentially essential system is defined.

3.1 Laurent Differential Polynomials

Let F be an ordinary differential field with a derivation operator § and F{Y} the ring
of differential polynomials in the differential indeterminates Y = {y1, ..., y,}. Let &
be a universal differential extension field of . For any element e € &, !kl denotes
the set {©@, ..., e®}.

The sparse differential resultant is closely related to Laurent differential polynomi-
als, which will be defined below.

Definition 3.1 A Laurent differential monomial of order s € N is a Laurent
monomial in variables Y1 = (yi(k))lgign;OSkgs- More precisely, it has the form
[T, Hizo(yi(k))mik, where m;; are integers which can be negative. A Laurent dif-
ferential polynomial is a finite linear combination of Laurent differential monomials
with coefficients from £.

Clearly, the collection of all Laurent differential polynomials forms a commutative
differential ring under the obvious sum and product operations and the usual deriva-
tion operator &, where all Laurent differential monomials are invertible. We denote
the differential ring of Laurent differential polynomials with coefficients in F by
Fiyr.yr ' yus vy 1), or simply by F(YE).

Remark 3.2 F{Y*} = F{y, yl_l, ey Yns yn_l} is only a notation for Laurent differ-
ential polynomial ring. It is not equal to F [yl.(k), ;- DICAVENI))
Denote S to be the set of all differential ideals in F{Y}, which are finitely gener-

ated. Let m be the set of all differential monomials in Y and 7 the set of all differential
ideals in F{Y}, each of which has the form

(Lfis-o il pyy ={f € FYYAM em, st. M- felfi,.... f;]}
EOE';W
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for arbitrary f; € F{Y}. Now we give a one-to-one correspondence between S and
7.
The maps ¢ : S —> 7 and  : T —> S are defined as follows:

o Given Z = [Fi,..., FilFys) € S. Since each F; € ]—'{Yi}, a vector
(My, ..., My) € m*® can be chosen such that each M; F; € F{Y}. We then define
A
@) = (M F, ..., MgFlm) £y
e Given j = ([fla cees fr]:m)}‘(y} € T, define ‘/f(j) = [fla e fr]]—'{Yi}'

Lemma 3.3 The above maps ¢ and r are well defined. Moreover, ¢ o = id7 and

Yo¢p = ids.

Proof i is obviously well defined. To show that ¢ is well defined, it suffices to
show that given another (Ny, ..., Ny) € m*® with N;F; € F{Y}(i = 0,...,n),
(M1 Fy, ..., MgFgl:im) pyy = ([N1F1, .., Ny Fglim) #pyy. 1t follows from the fact

that N; F; € (M Fy, ..., MyFylm)zryy and M; F; € ([N1F), ..., NgFg]:im) zyy.
ForeachZ = [Fy, ..., FS]]_‘{Yi} €S, Yop(D) =Y (M, Fy, ..., M Fylm) Fryy) =
(M Fy, ..., MsFs]ryxy = Z where M; F; € F{Y}. So we have ¥ o ¢ = ids. And
foreach 7 = ([f1,..., frilm)Fryy € T, ¢ o Y (T) = ¢ f1, ..., frlrpys) = T.

Thus, ¢ o Yy = id7 follows. O

From the above, for a finitely generated Laurent differential ideal Z = [F1, ...,
Fslrpy+) € S, although ¢ (Z) is unique, different vectors (M, ..., Ms) € m® can be
chosen to give different representations for ¢(Z). Now the norm form for a Laurent
differential polynomial is introduced to fix the choice of (My, ..., My) € m® when
we consider ¢ (7).

Definition 3.4 For every Laurent differential polynomial F € £{Y*}, there exists a
unique Laurent differential monomial M such that (1) M - F € £{Y} and (2) for any
Laurent differential monomial 7 with T - F € E{Y}, T - F is divisible by M - F as
differential polynomials. This M - F' is defined to be the norm form of F, denoted by
F~. The order of F" is defined to be the effective order of F, denoted by Eord(F).
Clearly, Eord(F) < ord(F). And the degree of F is defined to be the degree of F",
denoted by deg(F).

In the following, we consider zeros for Laurent differential polynomials.

Definition 3.5 Let £ = E\{a € £|3k € N, s..a® = 0}. Let F be a Laurent
differential polynomial in F{Y*}. A point (a1, ...,a,) € (EM)" is called a non-
polynomial differential zero of F if F(ay,...,a,) =0.

It becomes apparent why non-polynomial elements in £ are considered as zeros of
Laurent differential polynomials when defining the zero set of an ideal. If F' € Z, then
(yl.(k))’1 F € T for any positive integer k, and in order for (yl.(k))’] F to be meaningful,
we need to assume yi(k) # 0. We will see later in Example 5.2 how non-polynomial
solutions are naturally related to the sparse differential resultant.

FoC T
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3.2 Definition of Sparse Differential Resultant

In this section, the definition of the sparse differential resultant will be given. Since
the study of sparse differential resultants becomes more transparent if we consider not
individual differential polynomials but differential polynomials with indeterminate
coefficients, the sparse differential resultant for Laurent differential polynomials with
differential indeterminate coefficients will be defined first. Then the sparse differential
resultant for a given Laurent differential polynomial system with concrete coefficients
is the value that the generic resultant takes for the coefficients of the given system.
Let A; = {Mio, M1, ..., My} for i = 0,...,n, where My = []}_, [T,

(y(l))d'kfl (Y[Si ])"‘ik is a Laurent differential monomial of order s; with exponent

vector ajx = (digjilj = 1,...,n;0 = 0,...,5) € Z"6i*tD and for ky # ko,
Qjk; # ok, Here yhsil = {y}l) lj=1,...,n;1=0,...,s;}. Consider n + 1 generic
Laurent differential polynomials defined over A; (i =0, 1,...,n):

li

Pi =D uixMix (i =0,....n), 3)

k=0

where all the u;; are differentially independent over Q. The set of exponent vectors
Si = {aix |k = 0,...,[;} is called the support of P;. The number |S;| = [; + 1 is
called the size of P;. Note that s; is the order of IP; and an exponent vector of IP;
contains n(s; + 1) elements. Denote

u; = (W0, Ui, ..., ui;;)) @ =0,...,n)andu ={u; |i =0,...,n;k=1,...,[;}.
4)

To avoid the triviality, each l; > 1 (i =0, ..., n) is always assumed in this paper.

Definition 3.6 A set of Laurent differential polynomials of the form (3) is said to be a
Laurent differentially essential system if there existk; (i =0, ...,n)with1 <k; <[;
such that d.tr.deg Q( A;[M(z‘é’, AA/{II:‘O‘ e ”"” }/Q = n. In this case, we also say that

Ao, ..., A, orSp,...,S, forma Laurent differentially essential system.

Although M;( are used as denominators to define Laurent differentially essential
systems, the following lemma shows that the definition does not depend on the choice
of M;g.

Lemma 3.7 The following two conditions are equivalent.

1. Thereexistky, ..., k,withl < k; <[; suchthatd.tr.deg Q(%, R ML:(;‘)/Q =
n.
2. There exist pairs (k;, jl) i=0,...,n)withk; # j; € {0, ...,1;} such that
d.tr. degQ(MOk", o M:’;n )/Q = n.
Proof 1t is trivial that 1) implies 2). For the other direction, assume 2) holds. With-
out loss of generality, suppose AA;[:’;I ., %:’;n are differentially independent over Q.

FoE'ﬂ
@ Springer L|.. jO E|



464 Found Comput Math (2015) 15:451-517

We need to show (1) holds. Suppose the contrary, then for any m; € {1,...,1[;},
A;{/}"” ey A;{/’I‘"’” are differentially dependent over Q. Now we claim that () suppose

for each i € {1 2}, a and b; are differentially dependent over Q, then a and by /b, are
differentially dependent over Q. Indeed, if « is differentially algebraic over QQ, then
(x) follows. If a is differentially transcendental over Q, then each b; is differentially
algebraic over Q(a). Thus, by /b, is differentially algebraic over Q( ) [29, p. 102] and

M; M, ; Mj;
the claim is proved. Since M’; = Mi% ” , by claim (x), M ZHoG=1,...,n) are
differentially dependent over Q, which leads to a contradiction. O

Suppose the norm form of P; has the following form:

li

Py = MP; = > ugNy (i =0.....n). ®)
k=0

Clearly, Nix = M; M, 3; M’k =N ’k . Suppose m is the set of all differential monomials
inY. Let

IYi,u = ([Py, ..., P ])Q{Yi ug,...,u,) (6)
Iyu = ([PS, e, Pn]'m)Q{Y:uo,...,un}' (7)

By Lemma 3.3, Zy= ,, corresponds to Zy , in a unique way. Moreover, we have
Lemma 3.8 Zy: , NQ{uo, ..., u,} =Ty y N Qfuo, ..., u,}.

Proof Tt is obvious that the right elimination ideal is contained in the left one.
For the other direction, let G be any element in the left ideal. Then there exist

Hjj € Q{Y*;up, ..., u,} suchthat G = 3, HiPY S0 G = >y Hl]( )(j)

> ﬁij (IP’?’)(j) with H,-j € Q{Y*;uo, ..., u,}. Thus, there exists an M € m such
that MG € [P, . .., P} 1Y, u....,u,) and G € Zy y N Qfuo, ..., u,} follows. O

,,,,,

By Lemma 3.8, we are safely to define

Iy = IYi,u N Qfug, ..., u,} = IY,u N Q{uo, ..., u,}. ®)

Letn = (n1, ..., nu) be a generic point of [0]g)(y), Where u is defined in (4). Let

;,:_Z Uik ’;EZ; (=0,1,....n)

é‘ = (CO,MO],...,MO[O, -'-7§n7un]a---aunl,,) (9)
9 = (’77 g‘) = (ns ;Oa MOls ~-~7MOIO; ---;gn»unls --~7unl,,)~

In this paper, when talking about prime differential ideals, it is assumed that they
are distinct from the unit differential ideal. The following result is the foundation for
defining the sparse differential resultant.
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@ Springer |_|_ :‘0 E|



Found Comput Math (2015) 15:451-517 465

Theorem 3.9 Let Py, ..., P, be Laurent differential polynomials defined in (3). Then
the following assertions hold.

1) Zy y is a prime differential ideal in Q{Y;uo, ..., u,} with 6 given in (9) as a
generic point.

2) The prime differential ideal Ty = Ly 4 N Q{uo, ..., u,} is of codimension one if
and only if Py, ..., P, form a Laurent differentially essential system.

Proof To prove 1), it suffices to show that 6 = (n; ¢) is a generic point of Zy ,,.
Clearly, ]P’;“ = M;P; vanishes at 6 (i = 0, ...,n). For any f € Zy y, there exists
an M € m such that Mf € [Py, P}, ..., Py lQ(y,ug,...,u,}- It follows that () =
0. Conversely, let f be any differential polynomial in Q{Y, ug, ..., u,} satisfying
f(©) = 0. Clearly, Pj, P, ..., P} constitute an auto-reduced set with u;q as leaders.
Let f1 be the differential remainder of f w.r.t. this auto-reduced set. Since P} is
linear in u;q, f1 is free from u;o (i = 0, ..., n). By (2), there exist k; > 0 such that
[Ty (Ni)ki - f = fi, mod [P}, P}, ..., P¥]. Hence, f1(8) = 0. Since f1 € Q{u, Y},
f1(0) = fi(n,u) = 0 means f; = 0. Thus, f € Ty y. So Iy is a prime differential
ideal with 6 as its generic point.

Consequently, Zy = Zyy N Qfup, ..., u,} is a prime differential ideal with a
generic point £ = (8o, U1, - - - UOlgs - - -3 $ns> Unls - - ., Upl,). From (9), it is clear that
d.tr.deg Q(¢)/Q < X% 1 + n. Suppose Py, ..., P, form a Laurent differentially
essential system, that is, there exist pairs (ix, jx) (k =1,...,n) with 1 < ji <[
and iy, # ix, (k1 # k2) such that ”“ - IX}”’” are dlfferentlally independent over
Q. Then by Lemma 2.1, &, ..., {ln are dlfferentlally independent over Q(u). For
if not, by specializing u;, j, to —1 and the other u to 0, Lemma 2.1 guarantees that
Niyj N;
Nill.lol e, Nnjn
that d.trdeg Q(¢)/Q = >°I'_ li + n. Thus, Z, is of codimension 1.

Conversely, assume that 7, is of codimension 1. That is, d.tr.degQ(¢)/Q =

Z?zo l; + n. We need to show that there exist pairs (ik, jx) (k = 1,...,n) with
1< ji <y and iy, # ix, (ki # ko) such that UL, St are differentially

Niyjy (”) Niy ju (1)
> Nijo(m) > """ Niyo(n)
dependent for any »n different iy and ji € {1, ..., [; }. Since each ¢;, is a linear com-

are differentially dependent over Q, a contradiction. Then it follows

independent over Q. Suppose the contrary, i.e.

are differentially

bination of ”‘”‘((:)) Uk = 1,...,1;), it follows that ¢, ..., ¢, are differentially

dependent over Q(u). So d.tr.deg Q(¢)/Q < >°7_I; + n, a contradiction. O

Now suppose {Py, ..., P,}is a Laurent differentially essential system. By Theorem
3.9, 7, is a prime differential ideal of codimension one. By Lemma 2.3, there exists
an irreducible differential polynomial R(uy, ..., u,) € Q{uy, ..., u,} such that

Zu = Iy w N Qfuy, ..., u,} =sat(R) (10)

where sat(R) is the saturation ideal of R. More explicitly, sat(R) is the whole set
of differential polynomials having zero differential remainders w.r.t. R under any
ranking endowed on uy, ..., u,. So among all the differential polynomials in Z,, R
is of minimal order in each u; provided that u; effectively appears in R.
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Now the definition of sparse differential resultant is given as follows:

Definition 3.10 R(uy, ..., u,) € Qfug, ..., u,} in (10) is defined to be the sparse
differential resultant of the Laurent differentially essential system Py, . . ., P, denoted
byRes 4,....4, orResp, p,. And when all the 4; are equal to the same A, we simply
denote it by Res 4.

.....

From the proof of Theorem 3.9 and Eq. (10), R has the following useful properties.

Corollary 3.11 7, = sat(R) is a prime differential ideal in Q{uy, ..., w,} with a
generic zero ¢, where ¢ is defined in (9).

By changing variable order, R can be treated as a differential polynomial in
u, uoo, - - -, Uno-

R(“Ov R un) = R(uv uoo, - -+ MnO)a

where u is given in (4). Then, we have the following more useful form of Corollary
3.11.

Corollary 3.12 7,, = sat(R) is a prime differential ideal in Q{u, uog, . . ., uno} with

a generic zero ¢ = (0, {o, - . ., &n), where ¢; is defined in (9).

Denote ord(R, u;) to be the maximal order of R in u;; (k = O, ...,1;), that is,
ord(R, u;) = max; ord(R, u;r). If u; does not occur in R, then set ord(R, u;) = —o0.

Let 7; = ord(R, u;). By Corollary 3.12, R(u; &, ¢1, - - -, &) = 0. Differentiating
both sides of the equality R(u; &g, &1, ..., &) = 0 wort. u[q,zi), we have

oR oR N;
nR. L (1)
duy”  duyy’ Nio(n)

where aa(l,f) = (,, s(W; Co, ¢1, - -+, &n). Equation (11) is frequently used in the rest
of the paf)]ér

Corollary 3.13 For each i, if ord(R,w;) = h; > 0, then ord(R, u;x) = h; (k =
L.

Proof Firstly, we claim that ord(R u;j0) = h;. For if not, suppose ord(R, u;x) = h; >
0 for some k # 0. By (11), ; (h)(u 2o, ..., ¢n) = 0, where ¢; are defined in (9).

Uik
By Corollary 3.12, we have . (IZ) € sat(R), a contradiction since R is irreducible.

ik
Thus, ord(R, u,o) = h;. For each k # 0, ord(R, u;j;) < h;. If ord(R, ujx) < h;, by

an, wehavea (,l)(u C0s ey Cn) - (— ngg;) 0. So (,,)(u 0y .-+, Cn) = 0and

% € sat(R), a contradlctlon. Thus, foreachk =0, ..., l,, ord(R, u;x) = h;. 0O
I

Corollary 3.14 Fori=1,....,nandk €N, y© ¢ Ty ,.
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Proof Assume the contrary, yi(k) € Ly y. Since ¢ in (9) is a generic point of Zy ,,, we
(k)

have n;”" = 0, which contradicts to the fact that n = (11, ..., 7,) is a generic point
of ([0DQuy(y)- o
Remark 3.15 Due to Lemma 3.8, the sparse differential resultant can also be defined
as follows: Zy= ,NQfuy, ..., u,} = sat(R). Although the sparse differential resultant
is defined for Laurent differential polynomials Py, ..., PP,, it is more convenient to
prove its properties using P, . .., P}, instead of Py, ..., P, since IP} are differential

polynomials, and we can thus use results from differential algebra freely.

Remark 3.16 The sparse differential resultant can be computed with characteristic
set methods for differential polynomials [3,8,25,42,47], which is implemented in the
diffalg package of Maple. In Sect. 6, we will give an algorithm to compute the sparse
differential resultant, which has a better complexity bound.

We give five examples that will be used throughout the paper.
Example 3.17 Let n = 2 and P; of the form

Pi = ujoy] +uity!’ +uinyy (i =0,1,2).
It is easy to show that y|”/y{ and y}’/y{" are differentially independent over Q. Thus,
Py, P{, P, form a Laurent differentially essential system. The sparse differential resul-
tant is

uoo uor uo2
R = Resp, p, p, = |U10 u11 U2 |.
ux) Uz U

Indeed, since y)'R = (ujouzar — uzou11)Po — (uoouz1 — uz0uo)P1 + (uoour1 —
uo1u10)P2, Ris anirreducible differential polynomial in ([Pg, Py, P2 1:m) Qv ug,u;,us)
with minimal order in each u;. Pay attention to the fact that R does not belong
to the differential ideal generated by P; in Q{Y; up, u;, uy} because each P; is
homogenous in y{, y{”, y}” and R does not involve Y. That is why we use the ideal
([Po, Py, P2l:m)Q(v;ug,u;,up) rather than [Py, Py, P21qQqy.ug,u;,up} in Theorem 3.9. Of
course, R does belong to [Po, P, P2lopv+;u,,...,u,)» fOr we have the expression R =

(uiouzr — uzoui1)/yy -Po— (uooua1 —uzouo1) /¥y - Pr+ (uoou 1 —uoruio)/yy - Pa.

The following example shows that for a Laurent differentially essential system, its
sparse differential resultant may not involve the coefficients of some P;.

Example 3.18 Let n = 2 and P; of the form
Po = uoo + uo1y1yy, Pi = uio +uniyr, Po = uz + u21ys.

Clearly, Py, P, P, form a Laurent differentially essential system. And the sparse
differential resultant of Py, P1, P, is

/ l 3
R = ugruio(uiiujy — uiouyy) + uoouiy,
FolTl
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for R = 1401”11“,10[@1 + M()lu/llp% — 2u011410u/11P1 + u?l}P’o — u01u11P1]P”1 +
UQTUOU] 1[?’/1 and R is an irreducible differential polynomial with minimal order in uy.
Note that R is free from the coefficients of ;.

Example 3.19 Let Ay = {1, y1y2}, A1 = {1, y1y5}, and Ay = {1, y|y5}. It is
easy to verify that Ag, Ay, Ay form a Laurent differentially essential system. And
Res 4, A, A, = U10UO1U1 U1 Uy — U10UOOU 11 U2 Uy, — Ud Ua1Udy — Uo1UooUT| U2
Example 3.20 Letn = 1 and Ay = A; = {y?, ()2, y1y}}. Clearly, Ao, A; form
a Laurent differentially essential system and Res4 = ”%1”30 — 2ugiuioU11uoo +
2 2 2 2

U UTg — W12U02UTT1UO0 — UT2U02U01U 10 + U UO1U00 + UTOU1 U, -

Example 3.21 Letn = 1 and Ay = A = {yl,yi,ylz}. Clearly, Ay, A; form a
Laurent differentially essential system and Res 4 = —ujupiuoot1o — ulgu% ”/10
+2u12umu/11uoo + u12u01u11u602— 1140200 10 + uiuoauguor + uouoruyy —
”11“202760 + u11u02’4,611410 + 1ioH12 Ut Ugp 00 — UT1 U UOTU10 — UT1HO1 U] U00
+ Uup U U0 — UL UG U12U00 — U UO2UO1U10-

Remark 3.22 When all the A4; (i = 0,...,n) are sets of differential monomials as
in the above examples, unless explicitly mentioned, we always consider P; as Lau-
rent differential polynomials. In this paper, sometimes we regard P; as differential
polynomials where it will be indicated.

We now define the sparse differential resultant for any set of specific Laurent differ-
ential polynomials over a Laurent differentially essential monomial system. For any
finite set A of Laurent differential monomials, denote by £(.A) the set of all Laurent
differential polynomials of the form >, 4 ayy M where ay € £. Then L(A) can be
considered as the affine space £ or the projective space P(I — 1) over £ where [l = | A|.

Definition 3.23 Let A; = {M;o, M;1, ..., M} (i =0, ..., n) be finite sets of Lau-
rent differential monomials which form a Laurent differentially essential system. Con-
sider n 4+ 1 Laurent differential polynomials (Fy, ..., Fy) € H?:o L(A;). The sparse
differential resultant of Fy, ..., F,, denoted as Resp,, .. F,,is obtained by replacing u;
by the corresponding coefficient vector of F; in Res(uy, ..., u,) which is the sparse
differential resultant of the n + 1 generic Laurent differential polynomials in (3).

We will show in Sect. 5.1 that the sparse differential resultant Resg, . g, = 0
will approximately measure whether or not the overdetermined equation system F; =
0@ =0,...,n)has acommon non-polynomial solution.

4 Criterion for Laurent Differentially Essential System in Terms of Supports

Let A; i =0, ..., n) be finite sets of Laurent differential monomials. According to
Definition 3.6, in order to check whether they form a Laurent differentially essential
system, we need to check whether there exist M, , M;j; € A;(i =0, ...,n)such that
d.tr.deg Q(Moky/Mojy, - - ., Muk, /My;,)/Q = n. This can be done with the differen-
tial characteristic set method via symbolic computation [3,17,25]. In this section, a
criterion will be given to check whether a Laurent differential system is essential in
terms of their supports, which is conceptually and computationally simpler than the
naive approach based on the characteristic set method.
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4.1 Laurent Differential Monomials in Reduced and T-shape Forms

In this section, the differential transcendence degree of a set of Laurent differential
monomials over QQ is shown to be equal to the rank of a certain matrix. The idea is
to transform a Laurent differential monomial set to a standard form called T-shape
whose differential transcendence degree is easy to compute.

Let B =[]}, | J (y](]())fijk (i =1, ..., m)bem Laurent differential monomials
with order g, respectively. Let x1, ..., x, be new algebraic indeterminates and

4qj
dij =Ztijkx§ €Zlx;] G=1,....m,j=1,...n).
k=0

If ord(B;, yj) = —oo, then set d;; = 0 and deg(d;;, x;) = —oc. The vector (d;1, d;2,
..., dip) is called the symbolic support vector of B;. The following m X n matrix

din dip ... di
dyy dyp ... dop
D =
dml dmZ cee dmn
is called the symbolic support matrix of By, ..., By,.

Note that there is a one-to-one correspondence between Laurent differential mono-
mials and their symbolic support vectors, so we will not distinguish these two concepts
whenever there is no confusion. The same is true for a set of Laurent differential mono-
mials and its symbolic support matrix.

Definition 4.1 A set of Laurent differential monomials By, Ba, ..., By, or its sym-
bolic support matrix D is called reduced if for each i < min(m,n), —oco #
ord(B;, y;) > ord(B;yk, yi), or equivalently —oo # deg(d;;, x;) > deg(ditk,i, Xi),
holds for all k > 0.

Note that a reduced symbolic support matrix is always of full rank. The reason is

that the term H;n:iI}(m’") x,.ord(B’ ) will appear effectively in the determinant of the

min(m, n)th principal minor when expanded.

Example 4.2 Let B = y}y|/vjya, By = y}(35)*y3(3})* Bs = y|¥}y,. Then
q1=2,go=1,q3=1,q4 =0, and

X242 x 0 1
D= 3 2x3 2x3+1 0
X1 0 X3 X4

is reduced and is of full row rank.

Before giving the property of reduced symbolic support matrices, the following
simple result about the differential transcendence degree is needed.

FoC'T
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Lemma 4.3 For 1,2 in an extension field of Q, d.tr.degQ(n}', n}?m)/Q =
d.tr.deg Q(n1, m)/Q, where a1, ar are nonzero rational numbers.

Proof For any p € Z \ {0}, we have

d.trdeg Q(n1., 12)/Q = d.trdeg Q(n1, 12)/Q(n . 2) + d.tr.deg Q(f, m2) /Q
= d.tr.deg Q(n!, m2)/Q.

Sofora € Q\{0},d.tr.deg Q(n{, n2)/Q = d.tr.deg Q{n1, n2)/Q. Thus, d.tr.deg Q(n'l“,
1771m2)/Q = dtr.deg Q(n}?, ni*n2) = d.trdeg Q(n1, n2). o

The differential transcendence degree of a set of reduced Laurent differential mono-
mials is easy to compute.

Theorem 4.4 Let By, By, ..., By, be a set of reduced Laurent differential monomials
inY. Then d.tr.deg Q(By, B2, ..., By)/Q = min(m, n).

Proof 1t suffices to prove the case m = n by the following two facts. In
the case m > n, we need only to prove that Bj,..., B, are differentially
independent. And in the case m < n, we can treat y,4i,...,Yy, as parame-
ters, then Bjp, B, ..., B, are still reduced Laurent differential monomials. So
if we have proved the result for m = n, d.tr.degQ(By, B2,..., By)/Q >
d.tr.deg Q(vim+1, - - Yu)(B1, B2, - ..y Bi)/Q(Ym+1, - - -, yn) = m follows.

Since {Bj, Ba, ..., B,} is reduced, we have o; = ord(B;, y;) > Ofori < n.In

this proof, a Laurent differential monomial will be treated as an algebraic Laurent
monomial, or simply a monomial. Furthermore, the lex order between two monomials
induced by the following variable order will be used.

—1
Yy s>y

> >y >

> |y, > y}'/l >0 > yr(lan_l) > yr(lgn) > yr(lon+1) > ...
2 [y >y S

> .

- )’;01) - y§01+1) .

Under this ordering, we claim that the leading monomial of 8’ B; (1 <i < n,t € N)is

LM; = Biy,-::: ’ . Here by leading monomial, we mean the monomial with the highest
i

order appearing effectively in a polynomial. Let B; = N; (yi(oz'))tli =i =<n).

If N; = 1, then the monomials of §B; is of the form H;czo(yi(”#k))s’(, where

50, - - -, S; are nonnegative integers such that Z;(:O Sy = a; and 22:1 ks = t.
Elol:;ﬂ
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Among these monomials, if sy > O for some 1 < k < t — 1, then sp is strictly
(v,+t)

(01+k))sk < (y(or))alfl (01+f) z),(.

less than @; — 1 and [j_(»; follows. Hence,

in the case N; = 1, the claim holds. Now suppose N; # 1, then it is a product of

variables with lex order larger than y\®’. Then 8" B; = >4 _o (L)8*N;s' % (3.

If k = 0, then similar to the case N; = 1, we can show that the highest mono-

mial in N‘(S’(y.(o"))“i is N~()1.(‘7”))“"_1 .(0i+t). For each k > 0, 8N; < N; and
) v.(oi-H)

SKN; 81— k(y(o’))“' < N; (y(o‘))“'_1 (©i+1) B’;’(Tl) Hence, the leading monomial

B[X’-(ai+t)

i

of 8' B; is N; (yl.(oi))ai_lyl.(oi+t) =~

i

(0j+t)
We claim that these leading monomials LM;; = y’(n) (i=1, it >0)are

algebraically independent over Q. We prove this clalm by showing that the algebraic
transcendence degree of these monomials is the same as the number of monomials
for any fixed 7. Let ¥; = [y, ylf, el yl(o’ l)], Y* = [y(0’+t+l) el yl(q,-H)] Bi;

[Bi, LMy, ..., LM;] for 1 < i < n.Let By = [(y\°))%, (pyei=ty@tD

(yl.(”"))“i—lyl.(”"th)] for 1 <i < n. Then, by Lemma 4.3, we have

n(t + 1) > tr.deg Q(By;, Boy, ..., Bnr)/Q
> tr.deg Qi (Bis, Bar, ..., Bur)/Qi
= trdegQ(B1;, Bas, - .-, Bu)/Q1
=n(t+1)

where Q) = Q(Y1, ..., Y,, Y], ..., Y;). Hence, this claim is proved.

Now, we prove that By, ..., B, are differentially independent over Q. Suppose
the contrary, then there exists a nonzero differential polynomial P € Q{zy, ..., z,}
such that P(By,...,B,) = 0. Let P = Zk ¢k P, where P; is a monomial and
cr € Q\{0}. Then, the leading monomial of Py (B, ..., By) is a product of LM;; (i =
1,...,n;t > 0). We denote this product by LM Py, then LM Py #= LM P; for k # j
since these L M;j; are algebraically independent. But there exists one and only one
product which has the highest order, which cannot be eliminated by the others, which
means that P(By, ..., B,) # 0, a contradiction. O

In general, we cannot reduce a symbolic support matrix to a reduced one. We will
show that any symbolic support matrix can be reduced to a more general standard
form called T-shape to be defined below.

A generalized Laurent differential monomial is a differential monomial with rational
numbers as exponents, that is, a monomial of the form H'}z o (yj(.k))’fk fortjr € Q.
Let By, ..., By, be generalized Laurent differential monomials. Then their symbolic
support matrix is D = (d;;)mxn Where d;; € Q[x;].

Definition 4.5 A set of generalized Laurent differential monomials By, ..., B, or
their symbolic support matrix D is said to be in T-shape with index (i, j), if there exist
1 <i <min(m, n),0 < j < min(m, n) — i such that all elements except those in the
FoE'ﬂ
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Fig. 1 A T-shape matrix

first i rows and the i + 1, ..., (i + j)th columns of D are zeros and the sub-matrix
consisting of the first i 4+ j columns of D is reduced.

In Fig. 1, an illustration of a matrix in T-shape is given, where the sub-matrices D
and D; of the matrix are reduced. It is easy to see that D; must be an i x i square
matrix. Since the first i + j columns of a T-shape matrix D are a reduced sub-matrix,
we have

Lemma 4.6 The rank of a T-shape matrix with index (i, j) equals to i + j. Fur-
thermore, a T-shape matrix is reduced if and only if it is of full rank, that is,
i + j = min (m, n).

The sub-matrices Z; and Z; in Fig. 1 are zero matrices and (Z;, Z) is called the
zero sub-matrix of D. For a k x [ zero matrix A, we define its O-rank to be k + /.

Lemma 4.7 A T-shape matrix D of index (i, j) is not of full rank if and only if the
O-rankr = m +n — i — j of its zero sub-matrix satisfies r > max(m, n) + 1.

Proof Note that the zero sub-matrix of D is an (m — i) x (n — j) matrix with O-rank
r =m-+n—i—j.ByLemma4.6,Disnotof full rank if and only if i + j < min(m, n),
which is equivalenttor = m+n—i —j > m+n—min(m, n) orr > max(m, n)+ 1.

O

The differential transcendence degree of a set of Laurent differential monomials in
T-shape can be easily determined, as shown by the following result.

Theorem 4.8 Let By, ..., By, be generalized Laurent differential monomials and D
their symbolic support matrix which is in T-shape with index (i, j). Then d.tr.deg
Q(B1,...,By)/Q =rank(D) =i + j.

Proof Without loss of generality, each B; is assumed to be a Laurent differential
monomial. For otherwise, by Lemma 4.3, we may consider Bfi for certain k; € N,
which is a Laurent differential monomial.
Since D is a T-shape matrix with index (i, j), by Lemma 4.6, the rank of Disi 4 j.
Deleting the zero columns of the symbolic support matrix of B+, ..., By, we can get
EIOET
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a reduced matrix. By Theorem 4.4, we have d.tr.deg Q(Bj+1, ..., Bn)/Q = j. Since
the symbolic support matrix of By, ..., B; is also a reduced one, by Theorem 4.4, we
have d.tr.deg Q(Bj, ..., B;) /Q = i. Hence,

d.tr.degQ(Byq, ..., By)/Q = d.trdeg Q(By, ..., Byn)/Q(Bit+1, .- -, Bn)
+d.tr.deg Q(B;j+1, ..., Byn)/Q
< d.tr.degQ(By, ..., Bi)/Q+j
=i+j.

On the other hand, if we treat y; 11, ..., y;4+; and their derivatives as parameters, the
symbolic support matrix of By, ..., B; is also areduced one and the rank of this matrix
is i. By Theorem 4.4, we have d.tr.deg Q(y; 1, ..., yi+j){B1,..., Bi)/Q(yit1s .-,
Yi+j) = i. Since Biy1,..., By are monomials in y;j41,..., ¥4+ (see Fig. 1),
Q(Bi+1,---s Bu) CQ(yit1, ..., yi+j). Hence,

d.tr.degQ(By, ..., By)/Q = d.trdeg Q(By, ..., By)/Q(Bi+1, ..., Bn)
+d.tr.deg Q(Bi+1, ..., Bn)/Q
> d.tr.deg Q(yig1, - - Vit By ooy Bi)/Qig1s oo yigj) + ]
—it.

Thus, d.tr.deg Q(By, ..., B,)/Q =rk(D) =i + j. O

To express the differential transcendence degree of a set S of Laurent differential
monomials in terms of the rank of its symbolic support matrix, it remains to show that
S can be reduced to a set of Laurent differential monomials in T-shape, which has the
same differential transcendence degree with S.

We first define the transformations that will be used to reduce each symbolic support
matrix to one in T-shape. A Q-elementary transformation for a matrix D consists of
two types of matrix row operations and one type of matrix column operations. To
be more precise, Type 1 operations consist of interchanging two rows of D, Type 2
operations consist of adding a rational number multiple of one row to another, and
Type 3 operations consist of interchanging two columns.

Let By, ..., B, be Laurent differential monomials and D their symbolic support
matrix. Then Q-elementary transformations of D correspond to certain transforma-
tions of the monomials. Indeed, interchanging the ith and the jth rows of D means
interchanging B; and B;, and interchanging the ith and the jth columns of D means
interchanging y; and y; in By, ..., By (or in the variable order). Multiplying the ith
row of D by arational number r and adding the result to the jth row mean changing B;
to B} B;. Itis clear that by applying Q-elementary transformations to By, ..., By, we
obtain a set of generalized Laurent differential monomials. As a direct consequence
of Lemma 4.3, we have the following result.

Lemma 4.9 Let By, ..., By, be Laurent differential monomials and Cq, . .., Cy, gen-

eralized Laurent differential monomials obtained from By, ..., By, by a series of

Q-elementary transformations. Then d.tr.deg Q(By, ..., By)/Q = d.tr.degQ(Cy,
e, C) Q.
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@ Springer ,_ﬁjo'}



474 Found Comput Math (2015) 15:451-517

In “Appendix”, we will prove the following theorem.

Theorem 4.10 The symbolic support matrix of any Laurent differential monomials
By, ..., By, can be reduced to a T-shape matrix by a finite number of Q-elementary
transformations.

‘We now have the main result of this section.

Theorem 4.11 Let By, ..., By, be Laurent differential monomials in Y and D their
symbolic support matrix. Then d.tr.deg Q(B1, ..., B,)/Q = rank(D).

Proof By Lemma 4.9, Q-elementary transformations keep the differential transcen-
dence degree unchanged. The result follows from Theorems 4.8 and 4.10. O

Theorem 4.11 can be used to check whether the Laurent polynomial system (3) is
differentially essential as shown by the following result.

Corollary 4.12 The Laurent differential system (3) is Laurent differentially essential

if and only if there exist M;j, (i =0, ...,n) with 1 < j; < I; such that the symbolic
support matrix of the Laurent differential monomials Mg,/ Moo, - . ., Myj, / Muo is of
rank n.

By Corollary 3.4 of [16] , the complexity to compute the determinant of a sub-

matrix Dy of D with size k x k is bounded by O(k*2Ly = A), where L = log ||Dy]],
y denotes the number of arithmetic operations required for multiplying a scalar vector
by the matrix Dy, and A is the degree bound of D;. So, the complexity to compute the
rank of D is single exponential at most.

Remark 4.13 A practical way to check whether the Laurent differential system (3) is
Laurent differentially essential is given below.
e Choose n + 1 monomials M;j;, (i =0,...,n)with1 < j; <1;.
e Use Algorithm TSHAPE in “Appendix” to reduce the symbolic support matrix of
Mojy /Moo, . .., Myj, /My to a T-shape matrix D.
e Use Theorem 4.8 to check whether the rank of D is n.
e If the rank of D is n, then the system is essential. Otherwise, we need to choose
another set of n + 1 monomials and repeat the procedure.

The number of possible choices for the n+1 monomials s [ [7_, /;, which is very large.
But, the procedure is more efficient than computing the rank of the symbolic support
matrix for two reasons. Firstly, in Algorithm TSHAPE, since the maximal degree
of polynomials in each column of the matrix is not increased, there is no size swell
in the elimination procedure. Secondly, the probability for n + 1 Laurent differential
monomials to have differential transcendence degree n is very high. As a consequence,
we do not need to repeat the procedure for many choices of n 4+ 1 monomials.
By Corollary 4.12, property 3) of Theorem 1.1 is proved.

4.2 Rank Essential Laurent Differential Polynomial Systems

In this section, the result in the preceding section is used to determine a rank essential
sub-system of P = {P, ..., P,}, which is the minimal subset of P whose coefficients
occur in R.

Elo [y
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Consider m generic Laurent differential polynomials

li

P; = uioMio + D uixMix (i =1,...,m), (12)
k=1

where m < n and all the u;; are differentially independent over Q. Let w; =
(#;0, - .., uj;) and let B; be the symbolic support vector of M;;/M;o. Then the vector
w; = 22:1 u;x Bix is called the symbolic support vector of P;, and the matrix Dp with
wi, ..., Wy, as its rows is called the symbolic support matrix of Py, ..., P,. Then,
we have the following results.

Lemma 4.14 Let Dy, .k, be the symbolic support matrix of the Laurent dif-
ferential monomials (Mix, /Mo, ..., Muk,,/Mmno). Then rank(Dp) = maxj<, <y,
rank (Dg, ..., )-

Proof Let the rank of Dp be r. Without loss of generality, we assume that the
r x r leading principal sub-matrix of D]p, say D]p r» 18 of full rank. By the prop-

erties of determinants, det(Dp,) = Z Z [T, uix, det(ky, ..., k) where
l 1 r—

det(ky, ..., k) is the determinant of the r x r leading principal sub-matrix of Dy, . x, -

So det(Dp ) # 0 if and only if there exist k1, ..., k, such that det(k, ..., k) # 0.

Hence, the rank of Dy, ., is no less than the rank of Dp. On the other hand, let s =

maxi<k; <, Tank (Dg, .. x,,)- Withoutloss of generality, we assume det(ky, ..., k) # O,

,,,,,,

then, det(Dp ) # 0. Hence, s is no greater than the rank of Dp. O

The following result is interesting in that it reduces the computation of differen-
tial transcendence degree for a set of generic Laurent differential polynomials to the
computation of the rank of a matrix, which is analogous to the similar result for linear
equations.

Theorem 4.15 For P; given in (12), d.tr.deg Q(U?  u;)(IP1/Mo, ..., Pu/Mmno)/
QUL |u;) = rank(Dp).

Proof By Lemma 2.1, d.tr.deg Q(U!"_u;){(IP1/ Mg, ..., Py /Muo)/Q(U7L u;) is no
less than the maximal differential transcendence degreeof My, /Mo, . ... Mk, / Mmo
over Q.

On the other hand, the differential transcendence degree will not increase by lin-
ear combinations, since for any differential polynomial a; and ap, d.tr.deg Q()(a;
+Aay, az, ..., ar)/Q(A) < max{d.trdeg Q(aj, az ..., a;)/Q, d.tr.degQ(ay, az, . ..,
ar)/Q}. So, the differential transcendence degree of Py/Mjq, ..., P, /M, over
Q(U'L ;) is no greater than the maximal differential transcendence degree of
My, /Mo, ... mkm/MmO

Thus, d.tr. degQ i) (Py/ Mo, ... P/ Mio) / QUL 0;) = maxy, d.tr.deg Q
(M, /Mo, ..., mkm/Mm() )/Q. By Theorem 4.11 and Lemma 4.14, the differential
transcendence degree of P; /Mo, ..., P, /M0 equals to the rank of Dp. O

By Lemma and 4.14 and Theorem 4.15, we have the following criterion for system
(3) to be differentially essential.

FoE'ﬂ
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Corollary 4.16 The Laurent differential system P = {Py, ..., P,} defined in (3) is
Laurent differentially essential if and only if rank(Dp) = n.

The difference between Corollary 4.12 and Corollary 4.16 is that in the later case
we need only to compute the rank of a single matrix whose elements are multivariate
polynomialsin > _/"_(/;+1)+n variables, while in the former case we need to compute
the ranks of up to [];_, /; matrices whose elements are univariate polynomials in n
separate variables.

In the rest of this section, properties for the elimination ideal

T, = ([P}, ..., P, lm)Qy,u,,..u, N Qui, ..., uy} (13)

will be studied, where IP; are defined in (12) and m is the set of all differential mono-
mials in Y. These results will lead to a deeper understanding of the sparse differential
resultant.

Theorem 4.17 The above I, is a differential prime ideal with codimension m —
rank (Dp).

Proof Letn = (1, ..., n,) be a generic point of [0]g )y}, Wwhere @t = UL u; \{u;o}
and l
~ M)
&= — Uik (i=1,...,m). (14)
’ k; " Mio(n)

Similar to the proof of Theorem 3.9, we can show that 6 = (11, ..., 5, 1, U1ty - - -
Uy -5 Sms Umls - - -5 Ug,) s @ generic point of ([Py, ..., P} l:m) Qv u;.... upn)»
which implies that it is a prime differential ideal in Q{Y, uy, ..., u,}. As a conse-
quence, Z, is a prime differential ideal. Since ¢y, . . ., {, arefreeof ujo (i = 1, ..., m),

by Theorem 4.15,

d.tr.degQu){(¢1, ..., &m)/Qu)
= dtrdeg Quy, ..., up) (G155 Gn) /Quy, oo W)

P1(n) Py (1)
=d.trdegQ(uy, ..., wy){ e Y/ Quy, ..., uy)
¢ "o Muotn)” "
= rank(Dp).
Hence, the codimension of Z,, is m — rank(Dp). O

In the following, two applications of Theorem 4.17 will be given. The first appli-
cation is to identify certain IP; such that their coefficients will not occur in the sparse
differential resultant. This will lead to simplifications in the computation of the resul-
tant.

LetP = {Py,...,P,} begivenin (3)and I C {0, 1, ..., n}. Denote u; = U;cu;.
Also denote by IP; the Laurent differential polynomial set consisting of IP; (i € I) and
Dp, its symbolic support matrix. Let P} = {P}|i € I}. Forasubset/ C {0, 1,...,n},
the cardinal number of I is denoted by |I|.If |I| = rank(Dp, ), then Py, or {A4; |i € I},
is called a differentially independent set.

Elol:;ﬂ
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Lemma 4.18 Let P = {Py, ..., P,} given in (3) be a Laurent differentially essential
systemand I C {0, 1, ..., n}. If|I|—rank(Dp,) = 1, then ([P} ]l:m)q(y,u,; NQ{u;} =
sat(R).

Proof By Theorem 4.17, 7; = ([P}]:m)gqy,u;) N Qfu;} is of codimension [/] —
rank(Dp,) = 1. Then Z; = sat(Ry) C sat(R) for an irreducible differential poly-
nomial Ry € Qfu;}. By Lemma 2.3, R can reduce R to zero under any ranking. If
I =1{0,1,...,n}, then the lemma is proved. Otherwise, forany k € {0, 1, ..., n}\ I,
we claim that ord(R, u;) = —o0. Suppose the contrary, then under an arbitrary elim-
ination ranking satisfying uy > w; for i # k, Ry cannot be reduced to zero w.r.t
R, a contradiction to R; € sat(R). So R € Q{u;} and it is easy to check that
R € ([P7lm)gy,u;; N Q{us} = sat(Ry). Then sat(R) = sat(R;) and the lemma
is proved. O

Definition 4.19 Let I C {0, 1, ..., n}. Then we say I or P; is rank essential if the
following conditions hold: (1) |/| —rank(Dp,) = 1 and (2) |/| = rank(Dp, ) for each
proper subset J of I.

Note that a rank essential system is the differential analog of the essential system
introduced in [46]. Using this definition, we have the following property, which is
similar to Corollary 1.1 in [46].

Theorem 4.20 LetP = {Py, ..., P,} given in (3) be a Laurent differentially essential
system. Then forany I C {0, 1, ...,n}, |[I| —rank(Dp,) < 1 and there exists a unique
1 which is rank essential. If I is rank essential, then ord(R,w;) > 0 if and only if
iel

Proof Since n = rank(Dp) < rank(Dp,) + [P| — |P;| = n + 1 + rank(Dp,) —
[1], we have |I| — rank(Dp,) < 1. Since |/| — rank(Dp,) > 0, for each I, either
|I| — rank(Dp,) = O or |[I| — rank(Dp,) = 1. Using the fact that [{0, 1, ... ,n}| —
rank(Dp) = n, it is easy to check the existence of a rank essential set /. For the
uniqueness, we assume that there exist two subsets 11, I, C {0, 1, ..., n} which are
rank essential. Then, we have

rank(DP1]u12) < rank(DPll) + rank(DPlz) — rank(DP1]n12)
=|hl=1+|Ll=1—-|hNnhl =|hUbLl-2,

which means that Dp is not of full rank, a contradiction.

Let I be a rank essential set. By Lemma 4.18, the sparse differential resultant R of
[P involves only the coefficients of P’; (i € ). Forany i € 1, let I = I\ {i}. Since 1
is rank essential, we have ([P]?]Zm)(@{y’uh} N @{qu} = [0] and hence ord(R, u;) > 0
foranyi € I. l O

Remark 4.21 Let P = {Py,...,P,} given in (3) be a Laurent differentially essen-
tial system. We can obtain a rank essential set / C {0, 1, ..., n} as follows. Let J =
{0, 1,...,n}.Ifforall j € J, [J\{/j}| = rank(Dp,, ;). then J is rank essential. Other-
wise, by Theorem 4.20, there exists an jo € J such that |J\ {jo}| = rank(DPJ\UO))—F 1.
Repeating the procedure for J := J \ {jo}, we will eventually obtain a rank essential
system.
EOE';W
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Example 4.22 In Example 3.18, {Pg, P} is a rank essential set since they involve y;
only.

A more interesting example is given below.

Example 4.23 Let P be a Laurent differential polynomial system where

Po = uooy1y2 + uo1y3
Py = ui0y1y2 + 111535
Py = usoy1yz2 + u21y;

(0)

P; = u30y1(0) + U3y, @

+ u32y;

where o is a very large positive integer. It is easy to show that I” is Laurent differentially
essential and P = {Py, P{, P,} is the rank essential sub-system. Note that all y{, y», y3
are in IP. P is rank essential because y;y> can be treated as one variable.

The second application of Theorem 4.17 is to prove the dimension conjecture
for a class of generic differential polynomials. The differential dimension conjecture
proposed by Ritt [42, p. 178] claims that the dimension of each component of the
differential ideal generated by m differential polynomials in m < n variables is no
less than n — m. In [17], the dimension conjecture is proved for quasi-generic differ-
ential polynomials. The following theorem proves the conjecture for a larger class of
differential polynomials.

li
Theorem 4.24 Let P; = ujo + > uigMiy (i = 1,...,m; m < n) be generic dif-

k=1
ferential polynomials in n differential indeterminates Y and w; = (ujo, ..., U;).
Then [Py, ..., PulQquy,...u,){Y) IS either the unit ideal or a prime differential ideal of

dimension n — m.

Proof Use the notation introduced in the proof of Theorem 4.17 with M;p = 1.
Let Zp = [Py, ..., Pm]@{ul ..... .Y} and 71 = [Py, ..., Pm]@(ul,...,um){Y}- Since P;
contains a nonvanishing degree zero term u;, it is clear that 7o = Zop:m = Z; N
Qfuy, ..., uy, Y}

From the proof of Theorem 4.17, 7y is a prime differential ideal with 8 =
M1y oo Mas Sty UATs oo WAL - o5 Sy Umds - - -5 Uml,) @S a generic point. Note that
rank(Dp) < m and two cases will be considered. If rank(Dp) < m, by Theorem 4.17,
Ty = [P1,..., P11 N Q{uy,...,u,} is of codimension m — rank(Dp) > 0, which

means that 7 is the unit ideal in Q(uy, ..., u,){Y}. If rank(Dp) = m, by the proof
of Theorem 4.17, d.tr.deg Q(u)(¢1, ..., &n)/Q(u) = m and Z,, = [0] follows. Since
Zo = Z1NQ{uy, ..., u,, Y}and Zjis prime, it is easy to see that 7 is also a differential
prime ideal in Q(uy, ..., u,){Y}. Moreover, we have
n = d.trdegQu)(m1, ..., M, {15 - o5 §m) /Q(u)
= dtrdeg QN1 -y s L1 s S QWL G )
+d.tr.deg Q(u, ¢y, ..., &)/ Qu)
= d.trdeg QQu)(n1, ..., s Sy v v s Sn) / QUL G0y ooy Gu) +
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Hence, d.tr.degQu, ¢1, ..., &) (015 -5 Ma)/QW, &1, ..., &) = n — m. With-

out loss of generality, suppose 11, ..., n,—n, are differentially independent over
Qu, ¢1, ..., &m).Since Zo = Z1NQfuy, ..., wy, Y}, {y1, ..., Yn—m]} is a parametric
set of Zy. Thus, [Py, ..., PulQu,,....u,) (Y} is of dimension n — m. O

By Theorem 4.15, Theorem 4.17, and Corollary 4.16, properties 1) and 2) of The-
orem 1.1 are proved.

5 Basic Properties of the Sparse Differential Resultant

In this section, we will prove basic properties for the sparse differential resultant
R(uy, ..., u,) of the generic Laurent differential polynomials given in (3).

5.1 Necessary and Sufficient Conditions for the Existence of Non-polynomial
Solutions

In the algebraic case, the vanishing of the sparse resultant gives a necessary and
sufficient condition for a system of polynomials to have common nonzero solutions
in certain sense. We will show that this is also true for sparse differential resultants.

To be more precise, we first introduce some notations. Let A; = {Mo, ..., Mj;}
be the Laurent monomial sets of P; i = O0,...,n) given in (3). Each element
(Fo, ..., Fy) € L(Ap) x --- x L(A,) can be represented by one and only one point
(Y0, -+, V) € EPFL oo gt where v; = (vio, Vi1, - .., viy;) is the coefficient
vector of F;.! Let Z(Ay, ..., A,) be the subset of E0F! x ... x E*1 consisting
of points (vo, ..., v,) such that the corresponding F; = 0(i = 0, ..., n) have non-
polynomial common solutions. That is,

Z(Ag, ..., A)={(vo, ..., vy) € EVF x ... x g Fy=...=F, = 0 have

a common non-polynomial solution in (£")"}. (15)

The following result shows that the vanishing of the sparse differential resultant gives
a necessary condition for the existence of non-polynomial solutions.

Lemma 5.1 Suppose the Laurent differential monomial sets A; i =0, ..., n) forma
Laurent differentially essential system. Then Z(Ay, ..., Ap) C V(sat(Res Ao A,,))~

Proof LetPy, ..., P, be a generic Laurent differentially essential system correspond-
ing to Ay, ..., A, with coefficient vectors ug, ..., u,. By (10),

[Po, ..., P, 1N Q{uo, ..., u,} =sat(Res 4, .. 4,)-

For any point (vg, ...,v,) € Z(Ao, ..., An), let (Fp, ..., F,) € L(Ap) x --- X
L(A,) be the differential polynomial system represented by (vo, ..., v,). Let G be any

! Here, we can also consider the differential projective space P(/;) over £.
FoCT
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differential polynomial in sat(Res 4,, .. 4,). Then G(vo, ..., v,) € [Fp, ..., Fy] C
& {Yi}. Since Fy, ..., F, have anon-polynomial common zero, G (vy, . . ., V,) should
be zero. Thus, sat(Res 4, ... 4,) vanishes at (vo, ..., vy). O

Example 5.2 Consider Example 3.17. Suppose F = Q(x) and § = %. In this exam-
ple, we have Resp, p, p, # 0. But y1 = c11x + 10, y2 = c20x% + ¢21x + o consist
of a nonzero solution of Py = IP; =P, = 0 where c;; are distinct arbitrary constants.
This shows that Lemma 5.1 is not correct if we do not consider non-polynomial solu-
tions. This example also shows why we need to consider non-polynomial differential
solutions, or equivalently why we consider Laurent differential polynomials instead
of the usual differential polynomials.

Let Z(Ay, ..., A,) be the Kolchin differential closure of Z(Ay, ..., A,;) in
g+l » ... x l+1 Then we have the following theorem which gives another char-
acterization of the sparse differential resultant.

Theorem 5.3 Suppose the Laurent differential monomial sets A; (i =0, ..., n) form
a Laurent differentially essential system. Then Z( Ay, . .., Ay) =V(sat(Res Avson Ay )).

Proof Firstly, by Lemma 5.1, Z(Ag,...,A,) C V(sat(ResAo,m,An)). So
Z(Ag, ..., Ay C V(sat(ResAO’MA”)).

For the other direction, let n, ¢ be as defined in (9). By Theorem 3.9, Ty ,, is a prime
differential ideal with a generic point (n; ¢). Let (Fp, ..., F,,) € L(Ag) X -+ - X L(Ay)
be a set of Laurent differential polynomials represented by ¢. Clearly, n is a non-
polynomial solution of F; = 0. Thus, ¢ € Z(Ap,..., Ay) € Z(Ao, ..., An).
By Corollary 3.11, ¢ is a generic point of sat(Resg, . 4,). It follows that
V(sat(Res4,,..4,)) € Z(Ao, ..., Ay). As a consequence, V(sat(Res 4, . 4,)) =
Z(Ag, ..., Ap). O

The above theorem shows that the sparse differential resultant gives a sufficient
and necessary condition for a differentially essential system to have non-polynomial
solutions over an open set of [[/_, £(A;) in the sense of the Kolchin topology.

In the rest of this section, we will analyze structures of non-polynomial solutions
of the system (3). By Theorem 4.20 and Corollary 4.21,P; i =0, ..., n) in (3) can
be divided into two disjoint sets {P; |i € [} and {P; |i € {0, 1,...,n}\I}, where
I C{0,1, ..., n}isrank essential. In this section, we will assume that {0, 1, ..., n}is
rank essential, that is, any n of the P; (i = 0, ..., n) form a differentially independent
set, which is equivalent to the fact that each u; occurs in R effectively.

Firstly, we will give the following theorem which shows the relation between the
original differential system and their sparse differential resultant.

Theorem 5.4 Let P = (Po,...,IP,} given in (3) be rank essential and P}
o uikNit. Denote hi = ord(R, ), Qix = 5 Nig — 5 Nip (0 i < n. 1 <

Ui Uik

k<l andS=1-55 yPlo<i<ml<j<nk zo]. Then
Uio

Ty = (PG Bulm) gy gy = (R (Qiidosiznit skt 1:5™) gy g
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Proof Let J = (IR, (Qit)o=i=ni1<k=ii:S™) gy w.....u,y- BY Theorem 3.9, Ty y is

a prime differential ideal with a generic point 6 = (.7'7‘”5) given in (9). By Corollary
3.12,¢ = (u, &, ..., &) is a generic zero point of Zy , N Qfuy, ..., u,} = sat(R).

Since 7405 = FEI by (11), Qi (W, ¢o, - - -, &) = 0. S0 Qix € Ty .

Since P is rank essential, ord(R, u;) > 0. Substituting (Qlk + N,o (,, ))/aa(l,f)
Uio
for Nj; in each P}, we obtain P¥ = u;oN;o + Zk 1 u,k(th + N,o T ))/aj(l,fi).
Ui i0
So 5 (h,')Pi = Zk:l uik Qik + (zk:O uikW)NiO‘ Since Qir € IY,ua R =
Ui Uik

1
22’;0 uik% € Ly y. Since R; and R have the same degree and R is irreducible,
- ou;
k

there exists some a € Q such that R; = aR. It follows that P} € J. For any differ-
ential polynomial f € Zy ,, there exists a differential monomial M € m such that
Mf el[P,,...,Py] C J.Thus, f € J and Zy , € J follows. Conversely, for any

differential polynom1al g € J, there exist some differential monomial M and some
b € N such that M(H (h ))bg € [R, Qix] C Ly y. Since Ly y is a prime differential
Ui

ideal, g € Zy . Hence, IY,u =J. O

We conclude this section by giving a sufficient condition for a differentially essential
system to have a unique non-polynomial solution. Following notations in Sect. 3.2,
Ai = {Mio, Mj1, ..., Mj;;} are finite sets of Laurent differential monomials, where
M, = (YBilyir and oy € 7"+ s an exponent vector written in terms of degrees
I P A ...,yfs"), ...,y,(f’) Let 0 = max; {s;}. Then, every vector
;i in Z"6i+D can be embedded in Z°+D . For L ¢ Z"°*D let Spany (L) be the
7 module generated by L. Let e; be the exponent vector for y; in Z"*D whose ith
coordinate is 1 and other coordinates are equal to zero. Then we have the following
definition.

Definition 5.5 P = {Py, ..., P,} given in (3) is called normal rank essential if P is

rank essential and foreach j = 1,...,n,e; € Spany({ajx — o |i =0, ..., nk =
S L)),

Lemma 5.6 Let P = {Py, ..., P,} given in (3) be normal rank essential. Then?

Iy)uz ([Pg, e, PZ]:m)Q{Y,uO ) =sat(R, Siy1—T1, ..., Suyn _TH)Q{Y,H()‘...,HH}

.....

where S; and T; are certain nonnegative power products of o (h 3
Uig

Proof Let J = sat(R, S1y1 —T1, ..., Spyn — TW)Q(Y uo,...,u,}- It 18 €asy to verify that

J is a prime differential ideal. Since PP is rank essential h; = ord(R, u;) > O for each

Nig(p) _ Mix(n) _
Nio(n) Mio(n)

agiolk =1,...,0L;;i =0,...,n}), for j = 1 N, there exist ¢j;x € Z such that

i.Byequation (11), we have (h )/ a(h 5. Sincee; € Spany ({a;x —

2 Here R, S1y1 = T1, ..., Snyn — Tn is a differential chain under an elimination ranking satisfying u;; <
y1 < -+ < yp with similar properties to auto-reduced sets[25].
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Nig \ ik N; Ljik
ik k(i — o) = €. So, [; ¢ (N—,g) = y;. Thus, []; x (#EZ;) =nj=
[Tix ( a(I,f) 33(1:,) )tj . By Theorem 3.9, there exist S; and T; which are nonnegative
i0
power products of =7~ o (h 5 such that S;y; — T; € Zy y. Since o (h 5 & Ly w and Zy
is prime, S; & Iyu follows Thus, J C Zyy. To prove Iyu C J, for each k =
0,...,n,let Ry be the differential remainder of P} w.r.t. R, S1y1 —T1, ..., Spyu — Ty
under the given ranking. Then R, € Q{uy, ..., un}. And by (2), Ry € [R, S1y1 —
Ti, ..., 8 0 — T, P{] C Zy y. So Ry € Q{uy, ..., u,} NIy, = sat(R). Since Ry

is reduced w.r.t. R, Ry = 0 and P} € J follows. By Corollary 3.14, yl-(j) €J Clyn

for each i and j. Thus, Iy , C J. O
Theorem 5.7 Let P = {Py, ..., P,} given in (3) be normal rank essential. Let E be
a specialization of P; with coefficient vector v; (i = 0, ...,n). Then there exists a
differential polynomial set S C Qfuy, ..., u,} such that VIR)\ | V(S) # 0 and
SeS
whenever (vo, ...,v,) € VIR)\ U V(S), P; =0@G = 0,...,n) have a unique
SeS
common non-polynomial solution.
Proof By Lemma 5.6, Iy, = sat(R, Ay, ..., A,), where A; = Sy — T)(I =

). Let S = { 6(,,),(5)'"“( D™ 0=i =m0kl <<

n; m € N}. Firstly, we show that V(R)\ |J V(S) # @. Suppose the contrary, viz.
SeS
VR) ¢ U V(S). In particular, there exists one S € S such that S vanishes
SeS
at the generic point ¢ of sat(R). It is obvious that - (h) does not vanish at ¢. If
Uik

(S; )”"H( )( ™) Vanishes at ¢ for some m, (S; )m+1( )(m) € sat(R). Replacing S—

Sm+1 (m)

by y; — <%, we have € Ly - Since S; is a power product of certain aa(l,f s

Uik

S;"H ¢ IY,,_,. Then, yj.m) € Ty u, contradicting to Corollary 3.14.

Suppose (vo, ..., Vy) € VR)\ | V(S). Let T; = Tj(vo,...,Vy) and S; =
SeS

S;j(Vo, ..., Vn).Since = (h)(vo, ..., Vy) # Oforeachiandk, T;S; # 0.Letj; = %

Lik _ J

and denote y = (31, ..., y,). Foreachm e N, y "(m) (? )™ £ 0. Thus, y € (EM)".
J

Since Zy y = sat(R Al ..., Ap), H-P} € [R, Al, ..., Ay] where H is a product of

powers of - (h ;. Hence, ]P (y) M;(3) - P;(3) = 0, which implies that P;(5) = 0.

Thus, ¥ is a non-polynomial common solution of P;. On the other hand, if £ is a non-

polynomial common solution of P;, then § iy — T- vanishes at £ for each i. Hence,
& = y. As aconsequence, P; = 0 have a unique common non-polynomial solution. O

Theorem 5.7 can be rephrased as the following geometric form.
Corollary 5.8 Let Z(Ag, ..., Ay) C Elotl 5 oo 5 gt pe the set consisting of
Vo, . .., Vy) forwhich the corresponding Laurent differential polynomials F; = 0 (i =

Fo C 'ﬂ
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0, ...,n) have a unique non-polynomial common solution and Zi (Ao, ..., A,) the
Kolchin closure of Z1( Ao, ..., Ay). Then if Ay, ..., A, are normal rank essential,
Zi1(Ag, ..., Ay) = V(sat( ReSA(),...,An))-

Example 5.9 In Example 3.18, the sparse differential resultant R of Py, Py, P; is free
from the coefficients of P;. The system can be solved as follows: y; can be solved
fromPp = Py = 0and P, = ujg + ullyé is of order one in y, which leads to an
infinite number of solutions. Thus, the system cannot have a unique solution. This
shows the importance of rank essential condition.

Example 5.10 In Example 3.19, the characteristic set of [Py, Py, P2] w.rt. the
elimination ranking u;z < y» < yj is R,u“uooyé — UQLU10Y2, U01Y2Y1 + UO-
Here Ay, Aj, A; are rank essential but not normal rank essential, and the system
{Py, IP1, P>} does not have a unique solution under the condition R = 0.

With Theorem 5.3, property 1) of Theorem 1.2 is proved.

5.2 Differential Homogeneity of the Sparse Differential Resultant

Following Kolchin [30], we now introduce the concept of differentially homogenous
polynomials.

Definition 5.11 A differential polynomial f € F{zo,...,z,} is called differen-
tially homogenous of degree m if for a new differential indeterminate X, we have
fzo, Az1 ..o Azp) = A" f (20, 215 - - o5 Zn)-

The differential analog of Euler’s theorem related to homogenous polynomials is
valid.

Theorem 5.12 [30] f € F{zo, ..., zu} is differentially homogenous of degree m if
and only if

Zn:z k+r (k)af(Z07~--aZn)_ mf r=0
, Zj az;1<+r) 10 r#£0

Jj=0keN

Sparse differential resultants have the following property.

Theorem 5.13 The sparse differential resultant is differentially homogenous in each
w; which is the coefficient vector of P;.

Proof Suppose ord(R, u;) = h; > 0. Follow notations in Sect. 3.2. By Corollary

3.12, R(w; &, ..., &) = O. Differentiating this identity w.r.. uf.f) G=1,...10),
respectively, we have

EOE';W
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IR R (_ Mijmy TR Mgy RO (Mijmo, o TR Mij) oy
a“tj 3“1'0( MiO(U))+ Bu;O( [MIO('))J ) + du 0( [MIO('])J )+ (h )( ( )[M()( )J ! )_0(0*)
10
9R 3R Mijny R, Mo, 9R Mij () o (p; 1)
e 0 +6ul/.0( Miom) a,//o( D)+ <h)( (g1 =) =0 ax
10
9R TR (2 Mij(n 9R Mi; ) n;—2)y _
wpr T 0T 0 + (= Q) ma) o+ iy (— (Dl %) =0 @0
ij i0 Buio
R T R,
IR ij U0y — )
R+ 0+ 0 + 0 + ey (- (h Nt @) =0 tiw
duij’ d“i()l i0

In the above equations, % (k=0,...,h;; j =0,...,[;) are obtained by replacing

ujoby ¢ i =0,1,...,n)in each » (k) , respectively.

k+r) (k) 3R

Now, let us consider Zl}:o D0 (7w iy (k - Of course, it needs only to con-

sider r < h;. Foreachr < h; andeach j € {1, ...,1[;},

+1 -
0 = (rs) x (:)u,-j +(r 4 1%) x (r , )u;j + oo (hi*) x ( ) I(Jh )
r aR (r+1), aR (hi) thi—r) R 9R Mi;(n)
= Uu;; —+ s —— + -+ u.. 4+ —
(r) 4 M;;) ) au’g;ﬂ) r )i WQ;,-) 3“59( ’Mo(n))
JR 1 M;; ! 1 M;
+W(_(f-‘r )uij[ 11(77)] _(r+ ) :/ 11(77))+
duj r Mio(m) r Mio(m)
L R (_(hi)w[Mf./<n)]“”"‘>_(r+1)( hy )u [Mij(n)](hi_"”_
aufgi) r )Y L Mio(n) roJ\r+ 1) Y L MG
_(hi) (h,')u@,- —r) Mi_j(n))
r)J\ni) Y Mio(n)
_(r\, R r+ 1y, T AR i), (i) TOR ([ OR MU(??)
O (2 e (R ()
r+1 JR Ml](n) hi AR Mlj(r]) (hj —r)
+( r )au€6+1>( ’M,o<n>) T (r u <h>( ’Mo(m)
1
r+1
Itfollowsthatz ¢ )u,]d (,)+Z (T )u;]d (,+1)+ +Z L ( Duj;

b ()6 T () 6T -+ ()5

By Corollary 3.12,G = X Zl}:o (rj")uff)a IR _ ¢ sat(R). Since ord(G) <
Uij

(hi=r) 3R _

)
aij

L h )
ord(R), G can be divisible by R. In the case r = 0, > > u,(f) adl&) = m - R for
j=0k=0 Uij
some m € Z, while in the case r > 0, if G # 0, it cannot be divisible by R. Thus, G
must be identically zero. From the above, we conclude that

li
“ij (k+ ) R r=0
Jj=0k>0 d du ' " d
FoE'ﬂ
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By Theorem 5.12, R(uy, ..., u,) is differentially homogenous in each u;. O

With Theorem 5.13, property 2) of Theorem 1.2 is proved.

5.3 Poisson Product Formulas

In this section, we prove formulas for sparse differential resultants, which are similar
to the Poisson product formulas for multivariate resultants [37].

Denote ord(R, u;) by 2 (i =0, ..., n),andsuppose hp > 0.Letu = U!_yu; \{ugo}
and Qp = Q(u) (u(()%), e (ho ])) Consider R as an irreducible algebraic polynomial
R(u(hO)) in Qo[u( 0)] Ina sultable algebraic extension field of Qg, R (u(h(’)) =0 has
fo = deg(R, u(hO)) = deg(R, u(hO)) roots y1, . . ., Vi,- Thus

R(uo.uj,....0,) = A H(u“"” — ) (16)
where A € Q(uy, ..., un)[u([)hO]\u(()%O)]. For each 7 such that 1 < 7 < 19, let
Qr = Qo(ye) = Q) (uly ... uyd ", ve) (17)

be an algebraic extension field of Qg defined by R(u(h)) 0. We will define a
derivation operator §; on QQ; so that Q; becomes a §,-field. This can be done in a
very natural way. For e € Q(u), define ;¢ = 8e = ¢'. Define Siuoo = u(()’(; for
i=0,...,hg—1and

h
87%up0 = yr.

Since R, regarded as an algebraic polynomial R in u(()}(')(’), is a minimal polynomial of

Yz, SR = . (,, o does not vanish at u( 0 — = ;. Now, we define the derivatives of 8! 1o
00

for i > hg by induction. Firstly, since R(y;) = 0, 6:(R(y;)) = SR‘u(hO)—y Oz (ve) +
00 — /T
T| Go_, = 0, where T = R’ — SRugéOH). We define 8701400 to be S:(yr) =

i) . Supposing the derivatives of 8? o+ ugp with order less than j < i have
=Y

SR
been deﬁned, we now define Si“’“ ugo. Since RO = SRM&')OH) + T; is linear in u(()}éOH) s

we define 879" g to be —SL; 0D _ghotiy

In this way, (Qy, §;) is a differential field which can be considered as a finitely
generated differential extension field of Q(u). Recall that Q(u) is a finitely generated
differential extension field of Q contained in £. By the definition of universal differ-
ential extension field, there exists a differential extension field G C £ of Q(u) and
a differential isomorphism ¢, over Q(u) from (Q:, §;) to (G, §). Summing up the

above results, we have

FoE'ﬂ
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Lemma 5.14 (Q-, §;) defined above is a finitely generated differential extension field
of Q(u), which is differentially Q(u)-isomorphic to a subfield of £.

Let G be a differential polynomial in Q{ugp, uy, ..., u,} = Q{u, ugy}. For conve-

nience, by the symbol G (ko) , we mean substituting u(h°+') by 84 y: (i > 0)in G.
oy =Vt

(0)

Similarly, by saying G vanishes at ug," = yr, we mean G| = 0. It is easy to

Uy =Vt
prove the following lemma.

Lemma 5.15 Let G be a differential polynomial in Q{u, ugo}. Then G € sat(R) if

and only if G vanishes at u( 0 _ =y

When a differential polynomial G € Q(u){Y} vanishes at a point n € Q7, it is easy
to see that G vanishes at ¢, () € £". For convenience, by saying 7 is a point in a
differential variety V over Q(u), we mean ¢, (n) € V.

With these preparations, we now give the following theorem.

Theorem 5.16 LetR(ug, uy, ..., w,) bethe sparse differential resultant of Py, . .., P,
given in (3) with ord(R, ug) = ho > 0. Let deg(R, u( 0)) = to. Then there exist exten-
sion fields (Q, 8;) of (Q(u),8) and &y € Qr fort =1,...,1pandk = 1,...,1

such that
fo IO (h())
R=A H (uoo + ZUOkSrk) , (13)
=1 k=1

where A is a polynomial in Q(uy, .. .,un)[ugh()]\u(()%())]. Note that equation (18)
is formal and should be understood in the following precise meaning: (ugo

/! A h I
+ 200 k) 10 = 8M0ugy + 870 O, uokker).

Proof Since R is irreducible, Rrp = —%=| , # 0. Let &, = Re,/Reo
dugy lugy =ve
(p = 1,...,1lp), where R;, = aa(l;()) o) - Note that Ry, and &, are in Q..
Uy, 'Uoy =Vt

We will prove

Ve = —8M (uo1601 4 uonkra + - - - + uotyEzly)-

Multiplying ug, to (11) for p from 1 to ly, adding them together, and noting (9), we
have

ly lo
"R ( Nop(n)) 9R dR
uo, - = uo +§0 =
Z ”a <h°> ) ; " Mooty ) = 2= ug? T duly

p=1 p=1

By Corollary 3.12, f = Zp 1 uOPa (ho) + uooda(l,fo) € sat(R). Since f is of order
oo

not greater than R, it must be d1v151ble by R. Since f and R have the same degree,

there exists an a € QQ such that

Fo C 'ﬂ
@ Springer |_|_ :‘0 E|



Found Comput Math (2015) 15:451-517 487

& R R _ "
f= ZMOp—a ) +uoo—a oy = aR. (19)
p= oy Uoo

Setting u( 0 _ = y, in both sides of f = aR, we have le:l uopRep + ugoRzo = 0.
Hence, as an algebraic equation, we have

lp
uopo + z qusrp =0
p=1

(0)

under the constraint u,,” = y;. Equivalently, the above equation is valid in (Q«, §;).

Asaconsequence, y; = —8?0 (Zif:] uopérp). Substituting theminto (16), the theorem
is proved. O

Note that the quantities &;, are not expressions in terms of y;. In the following
theorem, we will show that if 4; (i = 0, ..., n) satisfy certain conditions, Theorem
5.16 can be strengthened to make &;, as products of certain values of y; and its
derivatives.

Theorem 5.17 IfIP = {IPy, ..., P,}isnormal rank essential, then there exist n.; € Q.
(t=1,...,00; j=1,...,n) such that
lo (ho)
Mok (1 ))
R=A uoo + Uk (20)
H ( Z Moo (1)
Po () ]“’0)
=A ,  Wwhereny = (N1, ooy Nen)-
H |:M00(771) i i o
Moreover, each ny (t = 1, ..., ty) is a common non-polynomial differential zero of
Py, ..., P,

Proof Since P is rank essential, each u; effectively occurs in R, so each h; > 0.

By Theorem 3.9, 0 = (n; ¢o, uot, - -, Uoiys - - - n» Unl, - - -, Upg,) 1S @ generic point

of Iy u- By Lemma 5.6, there exist S; and T; which are nonnegative power prod-

ucts of 2R such that S;y; — T; € Tyy. Thatis, n; = T;/S; for j = 1,....n,
Uik

where T] and Sj are obtained by substituting (uqp, .. ., Ung) = (g“o, .. 8p) in T

and S;, respectively. Since R is an irreducible polynomial, every . (h ; does not
Uik

T.
= y;. Let g = s_§|u<"o)_y, and n; = (9r1, ..., Nen). By (11),

vanishes at u( 0)

T\ ()7 2ok —00) jik

Noe(n) _ (N )ik _ R IR LS T(T\¢ ik
Noo(n) — H H(’I JrRTEO = au"’o)/a o > ,HI kl:IO Si a
ﬁl{o) / - (180) Let S be the differential polynomial set consisting of ” (Z) and
(S ()™ forall i = 0,....mik = 0. lij = 1...onandm e
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N. By Corollary 3.12, there exists a finite set S| of S and ¢ € N such that
n sy k _ )
= (18" (I T [(7/s)) )7 = 885 /2085 e sam). By
N j=1k=0 dugy dugg
Lemma5.15, H vanishes atu( 0) — = yr. And by the proof of Theorem 5.7, SNsat(R) =
lo
0. S0 & = YEIS. By Theorem 5.16, R = A[[Y_ (uoo + > uoée) ™. Thus,
‘ k=1
(20) follows.
To prove the second part of this theorem, we need first to show that 81517, j # 0 for
each k > 0. Suppose the contrary, that is, there exists some k such that ¥ e = 0.

7 T;\ (k) k1 Tj\ )
From n;; = | « L h = 0. Thus, S 2 € sat(R
ej =55 |L,§)00) Ml7j (S_,) |u(()00>=yr (55 ) R).
It follows that n;k) = (?)(k) = 0, a contradiction to the fact that »; is a differential
J
indeterminate.
: Nik(o) _ 3
Following the above procedure, we can show that Noom) = (,, 5 / (h 5 where
36(1’}) = % (o) . Similar to (19), we have Zk _o Uik (1;) = bR for some b in
Ui duy' Tugy =y u

Q. So, for each i # 0, Zk‘zo MikW = 0. It follows that for each i # 0, P;(n;) =

ZZ:O uirNix(ny) = N’O("’ (Zk -0 1k (,, ) = 0. So each 7, is a common non-
(h,')

polynomial differential zero of Py, ..., P,. O

Under the conditions of Theorem 5.17, we further have the following result.

Theorem 5.18 The elements n, (t =1, ..., ty) defined in Theorem 5.17 are generic
points of the prime ideal ([P, ..., P)]:m)q@)y), where i = U/_ u;.

Proof Let J = ([P}, ..., PR l:m)qy gy and Jo = [Py, ..., Phl:m) gy, 4)- Similar
to the proof of Theorem 3.9, it is easy to show that Jy is a prime differential ideal.
Since IP is rank essential, Jo N Q{a} = [0]. Thus, 7 = ([JoDg)y; is a prime
differential ideal and J N Q{Y, a} = Jy. Let & = (&1, ..., &,) be a generic point of

J. Then (&; @) is a generic point of Jp. Let 8 = — 22021 uok Nok (§)/Noo(&). Then

(&; B, uo1, . .., uoy; ) is a generic point of Zy y = ([P, PY, ..., Py lm) gy, a)-
Since sat(R) = Zyy N Qfug, 0}, ¥y = (B, uot, ..., ugl,; W) is a generic point of
sat(R). By Lemma 5.6, for j = 1,...,n,S8;y; —Tj € Iy y. Then, §; = %(y).
J

By Theorem 5.17, n; is a common non-polynomial solution of P} = 0(G =

1, ..., n) and thus also a differential zero of 7. Recall n;; = g—-;}u(h())_y If f isany dif-
r 00 /T
ferential polynomial in Q(@){Y} such that f(n,) = 0, then f(g—:, e g—”)|u(h0) =
noTHgy =Vr

0. There exist a; € N such that g = H/ S?’f(g—i,..., L:) € Qfug, u}. Then

g|u<h0>_y = 0. By Lemma 5.15, g € sat(R) while S; & sat(R). As a conse-
00 — 77T

quence, g(y) = 0 and S;(y) # 0. It follows that f(§) = f(&1,...,&) =
f(g—;(y), e T—Z(y)) = 0 and hence f € J, since & is a generic point of 7. Thus,
1. is a generic point of 7. O

Fo C 'ﬂ
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With Theorems 5.16, 5.17, and 5.18, property 3) of Theorem 1.2 is proved.

5.4 Differential Toric Variety and Sparse Differential Resultant

In this section, we will introduce the concept of differential toric variety and establish
its relation with the sparse differential resultant.
We will deal with the special case when all the A; coincide with each other,

ie, Ap = --- = A, = A. In this case, A is said to be Laurent differen-
tially essential when Ay, ..., A, form a Laurent differentially essential system. Let
A= (My = (Ylheo pmy = (Ylehear My = (Yl°))%} be Laurent differentially
essential where o € 71+D Then by Definition 3.6, [ > n and there exist indices
ki,...,k, € {1,...,1} such that %S]);f(: e (g;;]]);f: are differentially independent
over Q. Let

P; = ujoMo +uiyytMy+---+uyM; (@=0,...,n) 21

be n + 1 generic Laurent differential polynomials w.r.t. A.
Consider the following map

pa: (EN' — PO

defined by

GG Ea) = (€D, gD, @D (22)
where P(/) is the [-dimensional differential projective space over £ and & =
(€1, ..., &) € (). Note that ((£lohyoo (glehyer | (glelyr) s never the zero vec-

tor since & € £” forall i. Thus, ¢ 4 is well defined on (£")", though the image of ¢ 4
is not necessarily a differential projective variety of P(/). Now we give the definition
of differential toric variety.

Definition 5.19 The Kolchin projective differential closure of the image of ¢ 4 is
defined to be the differential toric variety w.r.t. A, denoted by X 4. That is, X4 =

dA(EM).
Then we have the following theorem.

Theorem 5.20 X 4 is an irreducible projective differential variety over Q of dimen-
sion n.

Proof Denote PY = 22=0 uixNy i =0, ...,n) and let
J = ([Noz1 — Ni1zo0, - .., Nozi — Nizol:m)QY:z9.21.....21}

where m is the set of all monomials in Y. Let  be a generic point of [0]g(y; and

v a differential indeterminate over Q(n). Let 6 = (v, %(‘)EZ; v, ..., ]]g(’) ((',7;)) v). We claim

that (n; 0) is a generic point of 7 which follows that 7 is a prime differential ideal.
Indeed, on the one hand, since each Nyz; — N;jzo (i = 1, ...,1) vanishes at (n; 6) and
n annuls none of the elements of m, (n; ) is a common zero of 7. On the other hand,

FoC'T
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for any f € Q{Y; zo, z1, ..., z7} which vanishes at (n; 6), let f| be the differential
remainder of f w.r.t. Noz; — Nijzo (i = 1, ...,[) under the elimination ranking z; >

. >z > zo > Y. Then fi € Q{Y; zo} satisfies that N§ f = f1, mod [Noz1 —
Ni1zo, Noza — Nazo, ..., Nozi — Njzol. Since f(n;0) = 0, fi(nt, ..., nu, v) = 0,
and f1 = 0 follows. Thus, f € J and the claim is proved.

Let 71 = J N Q{z0,21,..., 2z} Then J; is a prime differential ideal with a
generic point 6. Denote z = (29, 21, ...,2). For any f € Ji:z, since zof € J1,
zof vanishes at 6 and f(0) = O follows. So f € Ji, and it follows that [J;:z =
J1- And for any f € J; C J and any differential indeterminate A over Q(n, v),
let f(rz) = > ¢(%) fy(z) where ¢ (1) are distinct differential monomials in A and
fo(@ € Q{z}. Then f(A0) =0 = Z¢(A)f¢(9). So each fy(0) = 0and f € Ji
follows. Thus, f(Az) € Q{A}J;. By Definition 2.2, 7| is a differentially homogenous
differential ideal. Then V = V(J7) is an irreducible projective differential variety
in P(/). Since 6 is a generic point of V and A is differentially essential, dim(V) =
d.tr.deg Q(%é—%, cee %)/Q = n. If we can show X 4 = V, then it follows that
X 4 is an irreducible projective differential variety of dimension 7.

For any point & € (E™)", it is clear that (§; No(§), N1(§), ..., Ni(§)) is a dif-
ferential zero of J and consequently (No(§), N1(§),...,Ni(§)) € V(J) = V.
So ¢ A(E) = (No(§), N1(§),.... Ni(§)) € V. Thus, p4((€")") € V and X4 =

(€M) < V follows. Conversely, since ¢ 4(n) = (1, x&gz; e, 1]\\%((77;) € X 4is
a generic pointof V, V C X 4. Thus, V = X 4. O

Now, suppose 2o, - . . , 21 are the homogenous coordinates of P(/). Let
Li = uiozo +unzi+---+uyz (@=0,...,n) (23)

be generic differential hyperplanes in P(/). Then, clearly, P; = L; o ¢ 4. In the follow-
ing, we will explore the close relation between Res 4 and X 4, or more specifically,
the differential Chow form of X 4. Before doing so, we first recall the concept of
projective differential Chow form [33].

Let V be an irreducible projective differential variety of dimension d over
Q with a generic point & = (&, &1,...,&). Suppose & # 0. Let L; =
Zi:o uixzk (i =0, ..., d)bed+1 generic projective differential hyperplanes. Denote

&= — Zi:l uikso_lé‘k i=0,...,d)and w; = (ujp, ..., u;;). Then it is proved in
[33] that the prime ideal I((Zo. . .., {4)) over Q{Uju;\{u;o}) is of codimension one.
That is, there exists an irreducible differential polynomial F € Qfuy, ..., uy} such

that I((Zo, uo1, - .., uors - . -5 Ca, Udi, - - -, uar)) = sat(F). This F is defined to be the
differential Chow form of V(Z) or Z. We list one of its properties which will be used
in this section.

Theorem 5.21 [33, Theorem4.7] Let F (ug, uy, .. ., ug) be the differential Chow form
of V withord(F) = h and Sp = % . Suppose that u; are differentially specialized

Hoo
over Qto setsv; C £ and P; are obtained by substituting w; by v; in?; (i =0, ..., d).
IfP;=0@G=0,...,d)meet V, then sat(F) vanishes at (vo, ..., V4). Furthermore,

if F(vo, ..., vq) = 0and Sp(Vo, ..., Va) # 0, then the d + 1 differential hyperplanes
P,=0@G=0,...,d) meetV.
FoCT
b
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The following theorem shows that the sparse differential resultant is closely related
to the differential Chow form of X 4.

Theorem 5.22 Let Res 4 be the sparse differential resultant of Py, ..., P, given in
(21). Then Res 4 is the differential Chow form of X 4 with respect to the generic
hyperplanes Ly, ..., L, given in (23).

Proof By the proof of Theorem 5.20, X 4 is an irreducible projective differen-

. . . . . . . Ni(n) Ni(m) R
tial \;arlety ;)vf dimension n with a generic point (1, No(n)® * m). Let ¢ =
_ZkzluikNSEZ; (it =0,....n) and & = (%o, uo1, ..., Uol; - -5 Cns Unls - - -, Unl)-

Then sat(Chow(X 4)) = I[(¢), which is the vanishing differential ideal of ¢ in
Q{uy, ..., u,}. And by the definition of sparse differential resultant, sat(Res 4) =
I(¢). By Lemma 2.3, Chow(X 4) and Res 4 can only differ at most by a nonzero
element in Q. Thus, Res 4 is just the differential Chow form of X 4. O

We give another characterization of the vanishing of sparse differential resultants
below, where the zeros are taken from £ instead of £7.

Corollary 5.23 LetL; = viozo+vi1z1 +---+vyzy =031 =0,...,n) be projective

differential hyperplanes with vi = (vjo, ..., Vi) € EL. Denote ord(Resyq) = h

and SR = %)A. If X g meetsL; =0( =0,...,n), then Res4(vo, ..., v,) = 0.
oo _

And if Res o (vg, ..., V,) = 0 and SR(vo, ..., V) # 0, then X g meets L; = 0(i =

0,...,n).

Proof 1Tt follows directly from Theorems 5.22 and 5.21. O

Example 5.24 Let A = Ay, where Ay is given in Example 3.21. Following the proof of
Theorem 5.20,let 7 = [y121 — yiz(), Y12 — y%z()]:lm. Itis easy to show that X 4 is the
general component of z1 2o — (z0zh —z(z2), thatis, X 4 = V(sat(z122— (2025 —2(22)))-
And Res 4 is equal to the differential Chow form of X 4.

By Theorems 5.20 and 5.22, property 4) of Theorem 1.2 is proved.

6 A Single Exponential Algorithm to Compute the Sparse Differential Resultant

In this section, we give an algorithm to compute the sparse differential resultant for a
Laurent differentially essential system with single exponential complexity. The idea
is first to estimate the order and degree bounds for the resultant and then to use linear
algebra to find the coefficients of the resultant.

6.1 Order Bounds of Sparse Differential Resultants in Terms of Jacobi Numbers

In this section, we will give an order bound for the sparse differential resultant in terms
of the Jacobi number of the given system.

Let A = (a;;) be an n x n matrix where g;; is an integer or —o0. A diagonal sum

of A is any sum )!_, aj,(;) Where o a permutation of 1,...,n. If Bisanm x n

EOE';W
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matrix with w = min{m, n}, then a diagonal sum of B is a diagonal sum of any w x w
sub-matrix of A. The Jacobi number of B is defined as the maximal diagonal sum of
B, denoted by Jac(B).

Let P = {Py,...,P,} and P= {Py. ..., Py} be given in (3) and (5), respectively.
Letord(P}, y;) =¢;; (i =0,...,n;j =1,...,n) and ord(P}, Y) = ¢;. We call the
(n + 1) x n matrix E = (e;;) the order matrix of Py, ..., P,. By E%, we mean the
sub-matrix of E obtained by deleting the (i + 1)th row from E. Let ]P’A = ]P’\{IP’N}
We call J; = Jac(E;) the Jacobi number of the system ]P~ also denoted by Jac(]P ).
Before giving an order bound for the sparse differential resultant in terms of J acob1
numbers, we first give several lemmas.

Given a vector k = (kg, k1, ..., k,) € Z’le, we can obtain a prolongation of P
n
plkl — U(I[D?’)[ki]. (24)
i=0
Lett; = max{eg;+ko, e1j+ki, ..., enj+ky). Then P% is contained in the polynomial
ring Q[u®!, YIKI], where ulkl = u7_ [k and YKl = Ui 1yy ]
Denote v(IP’ 1) to be the number of Y and their derivatives appearing effectively
in PIX!. In order to derive a differential relation among u; (i = 0, ..., n) from P!, a
sufficient condition is R R
[PK| > »(@PKl) 4+ 1. (25)

Note that v(@[k]) < |Y[E]| = Z;l‘:l (tj+1). Thus, if @[k]l > ylkl + 1, or equivalently,

n
ko+ki+ -4k = > max(eo; + ko, e1j +ki, ... enj + ki) (26)
j=1

is satisfied, then so is the inequality (25).

Lemma 6.1 LetPbea Laurent differentially essential system andk = (ko, k1, ..., ky)
€ Z'ggl be a vector satisfying 26. Then ord(R, w;) < k; foreachi =0, ...,n

Proof Denote m!¥! to be the set of all monomials in variables ylkl, Suppose Z =
(Bl K] —
{f € QYK u¥jjam e m® Mf € (PX))}. Denote U = ulkl\ U, ul[gi].
Assume ]P’l'." = 2220 wikNig i = 0,...,n). Let & = —(ZZZI uix Nix/ Nio) D for
i=0,1, ,n; 1 =0,1, ,ki. Denote { = (U, Sokgs - -5 800, - - s Snkys - -+ > $n0)-
Itis easy to show that (Y[k ;) is a generic point of Z. Indeed, it is clear that each poly-
nomial in 7 vanishes at (Y[k] 7). Andif fisan arbltrary polynomial in Q[Y[k] ulkh
such that £ (YK £) = 0, substitute ul(lo) = ((PY - Zk:l u,kN,k)/Nlo)( ) into £, then
we have ]_[:':0 Nl%f = f1, mod (ﬁli[k]), where f] € QrYk! u1. Clearly, f1 = 0 and
f € T follows.

Fol:'ﬂ
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Let Z; = Z N Q[u!¥]. Then Z, is a prime ideal with ¢ as its generic point.
Since Q(2) € QY U), Codim(Zy) = |U| + 3[_o(ki + 1) — tr.deg Q(0)/Q >
|U| + |PX]| — tr.deg QY U)/Q = [P*I| — |YK| > 1. Thus, Z; # (0). Sup-
pose f is any nonzero polynomial in Z;. Clearly, ord(f,u;) < k;. Since Z1 C
Iy u N Qfug, ..., u,} = sat(R), f € sat(R). Note that R is a characteristic set
of sat(R) w.r.t. any ranking by Lemma 2.3. Thus, ord(R, w;) < ord(f,w;) <k;. O

Lemma 6.2 Let P be a Laurent differentially essential system and J; > 0 for each
i=0,...,n Then 21}:1 max(eoj + Jo, - enj + Jn) = Do Ji.

Proof Let E = (e;;) be the (n + 1) x n order matrix of f@, where ¢;; = ord(P}, y;).
Without loss of generality, suppose Jo = e11 + €22 + - + enn-

Firstly, we willAshow that for each k # 1, e;1 + J1 > ex1 + Ji. Since J is the
Jacobi number of IP’,; and k # 1, J; has a summand of the form e;,,. Let m be the
biggest s such that ey, +ep, p, +- - -+ep,_, p, is a partial sum of successive summands
in Ji and denote Ty = e1p, + €p p, + -+ €p,_p,- Suppose Ji = Tp + T7. Since
Ji is a diagonal sum, p; # p; for 1 <i < j. For otherwise, J; contains e, ,, and
€p; 1p; 3 summands (po = 1), a contradiction. Also note that p; ~ Ofor1 <i <m.
Now we claim that p,, is either equal to 1 or equal to k. Indeed, if p,, = 1 or p,, =k,
Ty cannot be any longer and these two cases may happen. Butif p,, # 1 and p,, # k,
then we can add another summand e, .., to Ty, which contradicts the fact that Ty
is the longest one. So p,, = 1 or k. Now three cases are considered.

Case )If py =1, Jy =e11 + Ty and egy + Jr = e11 +ex1 + T1. Since ex1 + T
is a diagonal sum of@, ex1 +T1 < Ji. Thus, e1 + J1 > er1 + Ji.

Case 2) If pj, = 1 form > 1, Ty = e1p, +epp, + - +ep,_ 1. Since Jg =
e+ +eu, To < er1 +epp, + -+ ep,_ip,_ - For otherwise, since p; # 0,
To + 2 ke, i\p1..pm_1} €k 18 @ diagonal sum of ﬁP% which is greater than Jo,
a contradiction. Then ex1 + Jx = ex1 +Top +T1 < ex1 +e11 +epp + -+
€pm_ipmr T T1 < e11 + Ji, where the last inequality follows from the fact that
ekl +epp + - +ep,_p,_ + T1is adiagonal sum off@i.

Case 3) If pyy =k, Ty = e1p, +e€p,p, + -+ ep,_ k- Then, similar to case 2), we
can show thatex| +e1p, +€ppy+--+€p,_ 1k < et1+ek+epp - Fep_ it
Thus,

ekt + Jk = ex1 +eip teppy +ootep, k+ T
S ek tent+epp t+otep, p, T
<en+ I

Similarly, we can prove that for each j, e;; +J; > exj + Ji withO < k < n. Thus,
we have

n
> max(eg; + Jo. e+ T =enn+ Ji+en+ o+ +em+ Iy
j=1

=Jo+ i +-+ L

m}

Corollary 6.3 Let P be a Laurent differentially essential system and J; > 0 for each
i=0,...,n. Thenord(R,w;) < J; i =0,...,n).

FolCT
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Proof 1t is a direct consequence of Lemma 6.1 and Lemma 6.2. O

The above corollary shows that when all the Jacobi numbers are not less that 0, then
Jacobi numbers are order bounds for the sparse differential resultant. In the following,
we deal with the remaining case when some J; = —oo. To this end, two more lemmas
are needed.

Lemma 6.4 [9,32] Let E be an m x n matrix whose entries are 0’s and 1’s. Let
Jac(E) = J < min{m, n}. Then E contains an a x b zero sub-matrix with a + b =
m—+n—J.

Lemma 6.5 Let P be a Laurent differentially essential system with the following (n +

1) x n order matrix
E— E11 (—00)rx: ’
Ey  Ex

wherer +t > n+ 1. Thenr +t = n+ 1 and Jac(E2;) > 0. Moreover, when regarded
as differential polynomialsin yy, ..., yr—1, {Po, ..., Pr_1} is a Laurent differentially
essential system.

Proof The structure of E implies that the symbolic support matrix of IP has the fol-

lowing form:
B11 0x;
Dp = .
F (321 B

Since P is Laurent differentially essential, by Corollary 4.16, rk(Dp) = n. Since
rank(Dp) < rk(Biy) + rk((321 Bzz)), wehaven < m—t)+n+1—-r) =
2n+1—(r +1t). Thus,r +t < n+1,and r +t = n + 1 follows. Since the
above inequality becomes equality, Bj; has full column rank. As a consequence,
rank(Dp) = rank(Bj;) + rank(B»;). Hence, B> is a t X t non-singular matrix.
Regarding Py, ..., P,_; as differential polynomials in y, ..., y,—1, By is the sym-
bolic support matrix of {Pg, ..., P,_1} which is of full rank. Thus, {Pg, ..., P,_1}is
a Laurent differentially essential system.

It remains to show that Jac(E22) > 0. Suppose the contrary, i.e., Jac(Epy) = —oo.
Let E be at x ¢ matrix obtained from E,; by replacing —oo by 0 and replacing all
other elements in E5, by 1’s. Then Jac(E_zg) < t,and by Lemma 6.4, E 15 contains an
a x b zero sub-matrix with a + b = 2t — Jac(E) > t + 1. By interchanging rows
and interchanging columns when necessary, suppose such a zero sub-matrix is in the
upper right corner of E». Then

Eory = C11 (=00)axb
27\ ’

where a + b >t + 1. Thus,
D11 Ouxp
By = ,
2 (D21 105%)
Elol:;ﬂ
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which is singular for a + b > ¢ + 1, a contradiction. Thus, Jac(E22) > 0. O
Now, we are ready to prove the main result of this section.

Theorem 6.6 Let P = {Py, ..., P,} given in (3) be a Laurent differentially essential
system and R the sparse differential resultant of P. Then

—00 if Ji =—o0,

ord(R, u;) = hi< Ji if Ji>0.

Proof Corollary 6.3 proves the case when J; > 0 for each i. Now suppose there exists
atleastone suchthat J; = —oo. Withoutloss of generality, we assume J, = —oo and
let E, = (eij)o<i<n—1;1<j<n be the order matrix of IP;. By Lemma 6.4 and similarly
as the procedures in the proof of Lemma 6.5, we can assume that E), is of the following

form
E (13"11 (—=00)rxi
" Ey  Exn ’

where r 4+t > n + 1. Then the order matrix of P is equal to

E— E11 (—00)rxs
E» E>

Since P is Laurent differentially essential, by Lemma 6.5, r + ¢ = n + 1 and

Jac(Ep) > 0. Moreover, regarded as differential polynomials in yi,..., y-—1,
P =~{]P’0, ..., P._1} is Laurent differentially essential and E|; is its order matrix.
Let J; = Jac((E11);)- By applying the above procedure when necessary, we can

suppose that J; > O for eachi = 0,...,r — 1. Since [P] N Qfug, ..., u,} =
[P]TN Q~{uo, ...,u_1} = sat(R), R is also the sparse differential resultant of the

system P and u,, .. s Uy will not occur in R. By Corollary 6.3, ord(R, u;) < J;.
Since J; —Jac(E22)+ J;> Jifor0<i<r—1,ordR,w) < JiforO<i <r—1
and ord(R, w;) = —ocofori =vr,...,n. O

Corollary 6.7 LetP be rank essential. Then J; > Ofori =0, ..., nandord(R, u;) <
Ji.

Proof From the proof of Theorem 6.6, if J; = —oo for some i, then P contains a
proper differentially essential sub-system, which contradicts Theorem 4.20. Therefore,
J; >0fori =0,...,n. |

By Theorem 6.6, J; > 0 is a necessary condition for u; appearing in R. The
following example shows that this condition is not sufficient.

Example 6.8 Let P = {Py, P1, P>, P3} be a Laurent differential polynomial system
where
Po = wuoo + uory1y|y255

Pi = wuio+unyiyy2yy
Py = wupo+uaiyr +uny
P3 = w30 +uz1y| +uznys.

FoE'ﬂ
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Then, the corresponding order matrix is

1 2 —00

1 2 —00
E=10 0 -

1 —o0 0

It is easy to show that P is Laurent differentially essential and {Pg, P1} is the rank
essential sub-system. Here R = ugou11 — uoiu19. Clearly, ord(R, up) = ord(R, uy)
= 0 and ord(R, up) = ord(R, u3) = —oo, but Jo =2, J1 =2, J, =3, J3 = —o0.

We conclude this section by giving two improved order bounds based on the Jacobi
bound given in Theorem 6.6.

For each j € {1,...,n}, let 0; = min{k € NlEIis.t.deg(Pf,y;k)) > 0}. In

. ;) .
other words, o ;s the smallest number such that y . " occurs in {P}, ..., P} Let

B = (e;j — Qj) be an (n + 1) x n matrix. We call J; = Jac(B;) the modified Jacobi
number of the system ;. Denote y = Z'}Zl 0;. Clearly, Ji=1Ji— y. Then we have
the following result.

Theorem 6.9 Let P be a Laurent differentially essential system and R the sparse
differential resultant of P. Then

—00 if Ji=—oo,
ord(R, u;) = [hi <Ji—y if Ji=0.

- k—o .
Proof LetP; be obtained from IP; by replacing y;k) by y](. o)

inP; fori =0, ..., n and denote P= {Po, R I@’n}. Since

(J = ,~--,n;kZQj)

weobtainrk(Dp) = rk(Dp) = n.Thus,Z = [If”]ﬂ(@{uo, ..., U, }isaprime differential
ideal of codimension 1. We claim that 7 = sat(R). Suppose P; = u;oM;o + T; and
P; = ujoMio+ T;. Let & = —T;/M;p and 6; = —7~}-/1\~4i0. Denote u = U!"_u; \{u;0}.
Then ¢ = (u, o, ..., ¢y) is a generic point of sat(R) and 6 = (u, 6y, ..., 0,) is
a generic point of Z. For any differential polynomial G € sat(R), G(¢) = 0 =
(Z¢ ¢ (Y)Fp(u))/N(Y) where ¢ (Y) are distinct differential monomials in Y and so
is N(Y). Then Fy(u) = 0 for each ¢. Thus, G(6) = (3, ¢(Y) Fy(w))/N(Y) = 0
and G € 7 follows. So sat(R) € 7. Similarly, we can show that 7 C sat(R). Hence, R
is the sparse differential resultant of P. Since Jac (]f”;.) = Jac(P;) — Y, by Theorem 6.6,
the theorem is proved. O
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Remark 6.10 Letk = (e—eg, e—ey, . .., e—e,) wheree = >"_; ¢;. Clearly, [PK| =
ne+n+1 =Yl +1 > | Y|+ 1. Then by Lemma 6.1, ord(R, w;) < e—¢; < s —s;.
Here s; is the order of P; i = 0,...,n)ands = >/ (s;i. If L; = ¢ — ¢; — y(P)
where y (P) = Z’}:l(gj +e;)and e; = min;{e; — ord(IP}, y;)|ord(P7, y;) # —oo}.
By [43], (Lo, ..., Ly) also consists of a solution to 26. Then deg(R, u;) < L;. One
can easily check that J; < L; < e — e for each i, and the modified Jacobi bound is
better than the other two bounds as shown by the following example.

Example 6.11 Let E = (e;j)o<i<n,1<j<n be the order matrix of a system IP:

5 —o0 0

5 0 —00
E= 0o 3 5

5 2 —00

Then {Jo, Ji, J2, J3} = {12,12,7,10}, {Lo, L1, L2, L3} = {13, 13,13, 13}, {e —
ep, e —ey,e —ex, e — ez} = {15,15, 15, 15}. This shows that the modified Jacobi
bound could be strictly less than the other two bounds.

Now, we assume that P is a Laurent differentially essential system which is not
rank essential. Let R be the sparse differential resultant of P. We will give a better
order bound for R. By Theorem 4.20, [P contains a unique rank essential sub-system
P;. Without loss of generality, suppose I = {0, ...,r} with r < n. Let E; be the
order matrix of P; and fori = 0, ...,r, let (E 1);. be the matrix obtained from Ej;
by deleting the (i + 1)th row. Note that (E;); is an r x n matrix. Then we have the
following result.

Theorem 6.12 With the above assumptions, we have

N ) hi 2 JaC((E]);.) i=0,...,r,
Ord(R’ul)_[—oo i=r+1,...,n.
Proof 1t suffices to show that ord(R,u;) < Jac((Ej);) for i = 0,...,r. Let
L; = ujo + Z'}zl ujjyj fori =r +1,..., n. Since Py is rank essential, there exist
]X,’—l'z (i =1, ...,r) such that their symbolic support matrix B is of full rank. Without
loss of generality, we assume that the rth principal sub-matrix of B is of full rank.
Consider a new Laurent differential polynomial system P = P; U {L, 11, ..., L,}.

This system is also Laurent differentially essential since the symbolic support matrix

N . . . .
Nl_.ko]’ . % YVr41, - - - yn 1s of full rank. And R is also the sparse differential

resultant of @, for IP; is the rank essential sgb—system of . The order vector of L;
is (0,...,0) fori =r +1,...,n. SoJac(P;) = Jac((Ey);) fori = 0,...,r. By

Theorem 6.6, ord(R, u;) < Jac((Er);) fori =0,...,r. O
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Example 6.13 The order matrix of Py, P1, P>, P3 given in Example 4.23 is

S OO O
S OO O
S = = O

Here R = ugiuio((uaiuio) uzoury — uaiuio(uaoun)’) — ugruioudgu?,. Clearly,
ord(R,up) = 0,ord(R,u;) = ord(R,uy) = 1, and ord(R,u3) = —oo. But
Jo=Ji=Jh=0+1,J3 =1,and ordR,u;) < J; fori = 0, 1, 2. If using
Theorem 6.12, then E; consists of the first three rows of E and Jacobi numbers for
Ej are 1, 1, 1, respectively, which give much better bounds for the sparse differential
resultant.

With Theorem 6.6, property 5) of Theorem 1.2 is proved.

6.2 Degree Bounds of Sparse Differential Resultants

In this section, we give an upper bound for the degree of the sparse differential resultant,
which is crucial to our algorithm to compute the sparse resultant. We will recall several
properties about the degrees of ideals in the algebraic case.

Let K be a field and K its algebraic closure. Let Z be a prime ideal in K[X] =
Klxi,...,x,] withdim(Z) =dand V C K" be the irreducible variety defined by
7. The degree of 7 or V, denoted by deg(Z) or deg(V), is defined as the number of
solutions of the zero-dimensional prime ideal (Z, Ly, ..., Ly)k,[x] in the algebraic
closure of Ky, whereIL; = Mi0+z7:1 ujjxj (i =1,...,d)ared generic hyperplanes
and Ky = K((uij)1<i<n;0<j<n) [23].

The following result gives a relation between the degree of an ideal and that of its
elimination ideal, which has been proved in [34, Theorem2.1] and is also a consequence
of [21, Lemma 2].

Lemma 6.14 Let T be a prime ideal in K[X] and 7, = 7T N K[xy, ..., x,] for any
1 <r < n.Thendeg(Z,) < deg(Z).

The notion of degree can be defined for more general sets of K" other than varieties.
A constructible set of K is a Boolean combination of varieties in K", that is, a finite
union of quasi-varieties in K'.Let X c K" be constructible and Vi, ..., V; be the set
of the irreducible components of the Zariski closure of X. The degree of X is defined
to be the sum of the degrees of V;, that is, deg(X) = Zé:l deg(V;). The following
lemma shows how degree behaves under intersections.

Lemma 6.15 [2]_, Theoreml] Let Vi,...,V,(r > 2) be a finite number of con-
structible sets in K. Then deg(V, N ---NV,) < [T, deg(V)).

We now give a degree bound for the sparse differential resultant. The idea is to
express (R) as the elimination ideal of certain algebraic ideals generated by ]P’EJ ) and
use Lemmas 6.14 and 6.15 to estimate the degree of R.
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Theorem 6.16 Let P = {Py,...,P,} be a Laurent differentially essential system
givenin (3) withord(PY, y;) = e;j and deg(P}, Y) = m;. Suppose P} = ZZ:O Uik Nik
and J; is the modified Jacobi number of {Py, ..., PyI\{P}}. Let R(up, ..., u,) be
the sparse differential resultant of P. Suppose ord(R, w;) = h; for each i. Then the
following assertions hold:

1) deg(R) < [T/_g(mi + D'+ < (m + 1DZi=0+D, where m = max; {m; ).
2) R has a representation

n

n h; )

i=0 i=0 j=0

where G;; € Q[u{)h"], e uLh”], ygt‘], el y,[f”]] with t; = max_{h; + e;;} such
that
deg(Gij(PHWD) < [m + 14 X1 (hi + 1)deg(Nip)]deg(R).

Proof 1)LetTy , = ([]P’g, e Pz]:m)Q{Y,uo lln}.By(lO),Iy,uﬂ Qfug, ..., u,} =

.....

sat(R). By Theorem 3.9, 60 = (1; o, uot, - . ., Uoly; - - - 5 Sns Unl, - - -, Upl,) 1S @ generic
point of Zy . Clearly, P = {P},...,P}} is a characteristic set of Ty, w.r.t. the
elimination ranking u,o > --- > w19 > ugp > u > Y. Taking the differential

remainder of R w.r.t. P, by (2)

n  hi
[TViR =2 Gu(®)"

i=0 k=0

for some a; € Zx¢. Lett; = max?zo{h,- +e;j}and Y [t — = {y; ”] ey y,[zt"]}. Denote
mlt to be the set of all monomials in Y, which is a multlphcatlve set. Let

J = (@l .., @)hn]):mlt

be an algebraic ideal in R = Q[Y!Y, uj thol * w1y where (P¥)) are treated as

polynomialsin R. ThenR € 7. Letntl = (n[’l oy and @ = U, (up\fuio ).
Then, it is easy to show that J is a prime ideal in R with a generic point
(g ") and

JNQui, . ul = (R).

ducible component of V(((]P’N)(k))qu, 0<k<h) By Lemma 6.15, deg(J)
< [T Hzizo(m, -+ 1). Since J N @[u[ho ..ulmhy = (R), by Lemma 6.14,
deg(R) < deg(J) < [1/_o(mi + DMt < (m + 1HZi=Ui+D follows. The last
inequality holds because #; < J; by Theorem 6.9.

FoE'ﬂ
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2)InR,letu;o (i =0,...,n)bereplaced, respectively, by (P?—ZZ:1 uikNix) /Nio

and let R be expanded as polynomials in [P} and their derivatives with coefficients

in Q{Y*;u,...,u,}. We obtain R = qu MW U0, . tn0) = g -
M

By 30 uokN By =5tk N 2, & o
s Bt By (53 Gue® + 1)/ f1 5,
where gy € Q, a; € N, Gj e Q[ulh(’] [ ] Y and T € Qfu, Y} is free

from u;9. So 1‘[ NiR = Z Z Giu(PH® +T,and T € Ty, N Qfu, Y} = {0}
i=0k=0
follows. Thus T = 0 and we obtain a representation for R of the form (27).
To obtain degree bounds for this representation of R, we take each monomial M in
R to estimate degrees of the terms after performing the above substitution for u;¢. Let

hi k)\d: . hi
M = M ug, ..., u) = v’ [, Hk:_o(“z(o))d’k with |y | +.Z?:0 2 ko dik =
deg(R), where u” represents a monomial in u and their derivatives with exponent
vector y. In M, substitute u;y by (IP’I; — ij:l MikNik)/Nio, that is,

n hi li (k) dif
M ugo, ..., un0) =’ [ [] (((IP’lN -> “ikNik)/NiO) )
k=1

i=0k=0

When expanded, the denominator is of the form []/_y N 2k Dl and every term of

the numerator has total degree |y |+ > 7 Zkzo[deg(Pi ,w; UY) +k-deg(Nio)ldix as
polynomials in u([)hO] uLh"] and Yl So by multiplying R by certain power prod-
ucts of N;g, we can clear the denominators in this representation of R. Since for each
M inR, ZZ;O (k+ l)d,k < (h; + 1)deg(R). Thus, take a; = (h; 4+ 1)deg(R) and mul-
tiply R by H?—o zO’ following the same procedures in the above paragraph then we
obtain [T/_y Nij-R=>"" ()Z/ "0 Gij (PY)Y where Gj € Qrulf!, ..., ull™), iy,
Since for each M, every term of [];_j N}, . M after performing the substitution for

u;o has degree bounded by |y |+ >/, Zk:o [deg(]P’}“, wUY)+k- deg(N,'o)]d,'k +

S aideg(Nig) — 3o S0 (k + Ddi - deg(Nig), we have

deg(Gyj ()
n h[
< maxM{ Iyl + Z [deg(P}, u; UY) + k - deg(Njo) |dix
i=0 k=0
n h,‘

+ > aideg(Ni) = D > (k + D - deg(Nio) |

i=0 i=0 k=0

= maxy {|y| + Z Z [(mi + Ddix + Za,deg(zv,o) Z Zdzk deg(Nio)}

i=0 k=0 i=0 k=0
n h;
< maxy {(m + 1) (Iy1 + DD dix) +Zaldeg(Nzo)}
i=0 k=0 i=0
Fol:'ﬂ
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= [m+ 1+ D (hi + 1)deg(Nio)ldeg(R).
i=0

O

Example 6.17 In Example 3.19, Jo =2, J; = Jo, = land mg = m| = mp = 2.
The expression of R shows that g = ord(R, ug) = 1 < Jo, h; = ord(R, u;) =0 <
Ji (i =1,2) and deg(R) = 5 << 3* =[] (m; + Dhit!,

With Theorem 6.16, properties 6) and 7) of Theorem 1.2 are proved.

6.3 A Single Exponential Algorithm to Compute Sparse Differential Resultants

If a polynomial R is a linear combination of some known polynomials F;(i =
1,...,s), thatis, R = Zle H; F;, and we know the upper bounds of the degrees
of R and H; F;, then a general idea to estimate the computational complexity of R is
to use linear algebra to find the coefficients of R.

For the sparse differential resultant, its degree bound and the degrees of the expres-
sions in the linear combination are given in Theorem 6.16.

Now, we give the algorithm SDResultant to compute sparse differential resultants
based on linear algebra techniques. The algorithm works adaptively by searching for
R with an order vector (ho, ..., h,) € N*T! with h; < J; by Theorem 6.16. Denote
o= >"_ohi. We start with 0 = 0. And for this o, choose one vector (ho, ..., hy,) at
a time. For this (hg, ..., h,), we search for R from degree d = 1. If we cannot find
an R with such a degree, then we repeat the procedure with degree d + 1 until d >
[Ti—o(mi + D)%+1 In that case, we choose another (ho, . . ., hy,) with >iohi =o.
But if for all (ho, ..., h,) with h; < J; and Z?:o h; = o, R cannot be found, then
we repeat the procedure with o + 1. In this way, we will find an R with the smallest
order satisfying Eq. (27), which is the sparse resultant.

Theorem 6.18 Let P = {Po, ..., Py} be a Laurent differentially essential system
given in (3). Denote P = {Py, ..., Py}, J; = Jac(Py), J = >0 Ji and m =
max_,deg(P}, Y). Algorithm SDResultant computes the sparse differential resultant
R of P with the following complexities:

1) In terms of a degree bound D of R, the algorithm needs at most
[(m(J+n+2)+1)D]O(”+l)

nl‘l

o(
is the size of the system.

2) The algorithm needs at most O ((J +n +2)°C /) m + 1) O THDHnt2) fymy
Q-arithmetic operations.

Q-arithmetic operations, where | = Z:':O(li +1)

Proof Thealgorithmfindsa P € Q{uy, ..., u,}satisfying (27), which has the smallest
order and the smallest degree among those with the same order. Existence for such a
differential polynomial is guaranteed by Theorem 6.16. Such a P is in sat(R) by (10).
Since each differential polynomial in sat(R) not equal to R either has greater order
EOE';W
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Algorithm 1 — SDResultant(Py, ..., P,)

Input: A generic Laurent differentially essential system P, ..., Pj.
Output: The sparse differential resultant R(ug, ..., u,) of Py, ..., P,.

L.Fori =0,...,n,setPy = ZQ:O uir Ni with deg(N;) < deg(N;k).
Sete;; = ord(PY, y;), m; = deg(PY, Y), m;o = deg(Njo, Y), u; = coeff(P;) and |u;| = I; + 1.
Set E = (e;j) and compute J; = Jac(Elc).

2.SetR =0,0 =0, m = max; {m;}.

3. While R = 0 do
3.1. For each vector (hg, ..., hy) € N"* with Z?:O hi =oand h; < J; do

3L U = U_gul 1 = maxt_ (hy ey, YO = (U1 ylindy g =,
3.1.2. While R = 0 and d < []/_(m; + D+ do
3.1.2.1. Set R to be a homogenous GPol of degree d in variables U.
3.1.2.2. Set ¢y = coeff(Rq, U).
3.1.23.5et G;;(i =0,...,m; j =0,..., h;) to be GPols in variables Yt and U
of total degree [m + 1+ X1 (h; + Lymjold —m; — 1.
3.1.2.4. Set ¢;; = coeff(G;;, YT U V).
3.1.2.5. Set P to be the set of coefficients of H?:O Ni(gi+l)dR0(u0, Lo uy)—
> Z};‘: 0 Gij (P?)(j ) as a polynomial in variables Yt and U.
3.1.2.6. Note that P is a set of linear polynomials in Z[cg, ¢;;].
Solve the linear equation P = 0 in ¢¢ and ¢;;.
3.1.2.7. If ¢ has a nonzero solution, then substitute it into Rq to get R and go to
Step 4, else R = 0.
3.1.2.8. d:=d+1.
3.2. o:=0+1.
4. Return R.

/*/ GPol stands for generic algebraic polynomial.

/¥ coeff(P, V) returns the set of coefficients of P as an ordinary polynomial in variables V.

than R or has the same order but greater degree than R, P must be R (up to a factor
in Q).

We will estimate the complexity of the algorithm below. Denote D to be the degree
bound of R. By Theorem 6.16, D < (m + 1)Zi:0(Ji+1) = (m+ 1)+ where J =
> Ji. Ineach loop of Step 3, the complexity of the algorithm is clearly dominated
by Step 3.1.2, where we need to solve a system of linear equations P = 0 over Q

in ¢g and ¢;;. It is easy to show that |¢g| = ‘”Li*l and |¢;;| = (DI Litly)
J y Li—1 J Li+Ly

n n
where Ly = [U| = > (h; + D(; + 1), Ly = Y] = > (max;{h; + ¢;;} + 1) and
i= Jj=1
d=[m+1+ Z?:O(hi + 1)mjold. Then P = 0 is a linear equation system with
Wi = (dJLrlLSI) + Z?:()(h; + (@ —me—]}r-:I;1+L2) variables and W, = (d_lZ.LJrlZZLZ)
equations. To solve it, we need at most (max{W;, W>})® arithmetic operations over
Q, where w is the matrix multiplication exponent and the currently best known w is
2.376.

The iteration in Step 3.1.2 may go through 1 to []/_,(m; + DhFL < (m +
I)ZLO( Ji+D and the iteration in Step 3.1 at most will repeat ]_[7:0( J; + 1) times. And
by Theorem 6.16, Step 3 may loop from 0 = 0 to >_"_, J;. In the whole algorithm,

Elol:;ﬂ
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n n
Li<2(Li+DU+1D) <IT+1 Ly =YY < > (max;{Ji + e} +1) = T+n
i=0 j=1
by Lemma 6.2, and d; < [m + 14+ >/ (J; + Dm;o]lD = (m( J+n+2)+ l)D.
Thus W, < (D+1J+171) + zn O(J' + 1)((m(1+n+2)+1)D7m,-71+l J+Z+J+n) and
5 = = 1

1T+-1 A R
D
max{Wi, Wo} < (J+n +2)(" }il—]l- e )
Hence, the whole algorithm needs at most
o i [1_gm;+Dti+! -
> X > (max{Wy, Wp})~"
0=0  hi<J; d=1
X hi=o
- 2.376
m(J+n+2)+ 1D +1T+1+ T+n
S(E)(z+ )) [( +n+ )( ool )}

%.376(2?:0( Ji+D 2.376(1 J+I+ T4+n)

<(J+n+2) 1

(J+n+ 1!

nn

)" D [(m(T+n+2)+1)D]

2.376(1 41+ J+n)

< (T+n+2)3376 D -[(m(J+n+2)+1)D]

Q-arithmetic operations. In the above inequalities, we assume [m(J+n+2)+1]D >
[J+1+ J+n.

Since! > 2(n+1), the complexity boundis O ([(m(J + n + 2) + 1) D] /n").
Our complexity assumes an O (1)-complexity cost for all field operations over Q. Thus,
the complexity follows. Now 1) is proved. To prove 2), we just need to replace D by
the degree bound for R in Theorem 6.16 in the complexity bound in 1). O

ol J+1)

Example 6.19 Letn = 1,Py = ugo+uo1y’,and Py = ujg—+uy1y’. We use this simple
example to illustrate Algorithm SDResultant. Here, m;o = 0,m = 1,Jp = J; = 1.In
step 3.1, 0 = 0 and (K9, k1) = (0,0). So U = {ugo, uo1, 410, u11} and Yt = {y,y'}.
We first execute steps 3.1.2.1 to 3.1.2.7 for d = 1. Set Ry = corugo + co2uor +
cozu10 + cosuqr and ¢o = (co1, €02, €03, co4). Set Gio = cjo1 and ¢;o = (cio1) for
i =0, 1. Instep 3.1.2.5, since Ry — GooPy — G101 = (co1 — coo1)ugo + co2to1 +
(co3 — cro1)u10 + coau11 — cooruoly’ — croru11y’s P = 0 consists of equations
{cor — coo1 =0, co2 =0, co3 —c101 =0, co4 =0, coo1 =0,c101 =0}.P=0hasa
unique solution ¢ = (0, 0, 0, 0) and c;o; = 0. Then R = 0.

Next, we execute steps 3.1.2.1 to 3.1.2.7 for d = 2. Set Ry = coruogou10 +
coauooU11 + co3uoiuio + coatoruil + 6051430 + cosuoouor + Co7u(2)1 + Cosu%o +
coououll + CO,IOM%l, and ¢g = (co1,...,co0,10). Set {M, ..., Mag} to be the set
of monomials in U and Y of degree not greater than 2. Let G;9 = Z?i] ciojM;
and ¢;o = (cio1, ..., cio,28) fori = 0, 1. Regarding T = Ro — GoolPo — G101 as
polynomials in U and YU, let P be the set of coefficients of 7', which are linear
polynomials in Q[c, ¢go, €10]. Then P = 0 consists of at most (140) linear equa-
tions in 66 variables ¢, ¢gg, and ¢j¢ with integral coefficients. Solving P = 0, we
obtain ¢g = (0, ¢, —¢,0,0,0,0,0,0,0), where g € Q. Thus, the algorithm returns
R = ugou11 — uoru1o.

Remark 6.20 By Remark 4.21, we can compute arank essential set / and the algorithm

can be improved by only considering the Laurent differential polynomials IP; (i € 1)
in the linear combination of the sparse differential resultant.
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Remark 6.21 1f the given system is algebraic, then the complexity bound given in 1)
of Theorem 6.18 is essentially the same as that given in [45, p. 288] since D > m and
D > n.

With Theorem 6.18, Theorem 1.4 is proved.

6.4 Degree Bounds of Differential Resultants in Terms of Mixed Volumes

The degree bound given in Theorem 6.16 is essentially a Bézout type bound. In this
section, a BKK style degree bound for the differential resultant will be given, which
is the sum of the mixed volumes of certain polytopes generated by the supports of
certain differential polynomials and their derivatives.

We first recall results about degrees of algebraic sparse resultants given by Sturmfels

[46]. Let K[X] = K[xy, ..., x,] be the polynomial ring defined over a field /. For
any vector « = (ai, ...,a,) € Z", denote the Laurent monomial x{" x5 - - - x," by

X*. Let By, ..., B, C Z" be subsets which jointly span the affine lattice Z". Suppose
0=(0,...,0) € B; foreachi and |B;| =1; + 1 > 2. Let

Fi(x1,...ox) =cio+ D, cioaX® (=0,1,....n) (28)
aeBi\{0}
be generic sparse Laurent polynomials defined over B; (i =0, 1, ..., n). Here, B; or

{X* | a e B;}arecalled the support of IF;. Denote ¢; = (cia)qe; and ¢ = U; (¢;\{cio})-
Let Q; be the convex hull of B; in R”, which is the smallest convex set containing ;.
We call Q; the Newton polytope of IF;, denoted by NP(IF;). In [46], Sturmfels gave the
definition of algebraic essential set and proved that a necessary and sufficient condition
for the existence of sparse resultants is that there exists a unique subset {3;};< 1 which
is essential. Now, we restate the definition of essential sets in our words for the sake
of later use.

Definition 6.22 Suppose Fo, ..., I, are generic sparse Laurent polynomials of the
form (28).

e A collection of {B;}ic1, or {F;}ic1, is said to be algebraically independent if
tr.deg Q(c)(F; — cioli € 1)/Q(c) = |I]. Otherwise, they are said to be alge-
braically dependent.

e A collection of {B;};c 1 is said to be essential if {I5;};c1 is algebraically dependent
and for each proper subset J of I, {13;};c; are algebraically independent.

In the case that {By, ..., B,} is essential, the degree of the sparse resultant can be
described by mixed volumes.

Theorem 6.23 ([46]) Suppose that{By, ..., By} isessential. Foreachi €{0,1,...,n},
the degree of the sparse resultant in ¢; is a positive integer, equal to the mixed volume

M(Qo. .. Qo1 Qi ooy Q) = > Eher| >0
veni—1i41,..n} jel
Elol:;ﬂ
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where vol(Q) means the n-dimensional volume of Q C R" and Y el Q; is the
Minkowski sum of Q; (j € J).

The mixed volume of the Newton polytopes of a polynomial system is important
in that it relates to the number of solutions of these polynomial equations contained
in (C*)", which is the famous BKK bound [2].

The following lemma shows that the BKK bound is always smaller than the Bézout
bound.

Lemma 6.24 Let f1, ..., fu be polynomials in Clxy, ..., x,] and Q; be the Newton
polytope of f; in R". Then M(Qy, ..., Q) <[]/, deg(fi).

Proof Let A be the standard unitary simplex of R". Then for each i, Q; C d;A,
where d; = deg(f;). By the monotonicity of the mixed volume, M(Qy, ..., Q,) <
MdA, ... dyA) =17l di - M(A, ..., A =TT, di. O

In the rest of this section, the degree of algebraic sparse resultants will be used to
give a degree bound for differential resultants in terms of mixed volumes. A system of
n+ 1 generic differential polynomials with degrees my, . .., m, and orders sg, .. ., Sy,
respectively, of the form

Pi=uno+  ». (Y @=0....n), (29)

n(s;+1)
a ey

1<lal <m

clearly forms a differentially essential system, and their sparse differential resultant
is exactly equal to their differential resultant defined in [17]. So Theorem 6.16 also
gives a degree bound for the differential resultant. But when we use Theorem 6.16 to
estimate the degree of R, not only BeZout bound is used, but also the degrees of P; in
both Y and u; are considered.

The following theorem gives a BKK style upper bound for degrees of differential
resultants, the proof of which is not valid for sparse differential resultants.

Theorem 6.25 Let P; (i = 0, ..., n) be generic differential polynomials in Y with

order s;, degree m;, and coefficient vector u;, respectively. Let R(ug, ..., u,) be
the differential resultant of Py, ..., P,. Denote s = Y !_si. Then for each i €
{01 1,...,”},

§S—S;

deg(R,u;) < ZM((sz)j;si,oslgs—s,-, Qi0s -+ s Qik—1> Qiskt1s - - > Qivs—s;)
k=0
(30)

where Q j; is the Newton polytope of ]P’y) as a polynomial in y%s], R y,[fj.

Proof By [17, Theorem6.8], ord(R, u;) =5 — s; (i = 0, ..., n) and (R) = (Py ),
. ,IP’LS_S"])HQ[u([;_‘YO], e u,gs_s"]].RegardeachPEk) (i=0,....n,k=0,...,s—
s;) as a polynomial in the n(s 4 1) variables YI! = {y1, ..., y,, Vs woos Vpsooos y{‘v),
FoC
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. y,(,s)}, and we denote its support by B;x. Let IF;; be a generic sparse polynomial
with support B;. Denote ¢;; to be the set of coefficients of Fjz, and in particular,
suppose cjxo is the coefficient of the monomial 1 in F;;. Now we claim that

Cl)l_S’ ={Bix10<i<n;0<k<s—s;}isan essential set.

C2)B={Bix|0<i<n;0<k<s—s;} jointly span the affine lattice Z"¢+D.

Note that |E| = n(s+1)+1. To prove C1), it suffices to show that for each fixed pair
(i, k), E\{Bik} is algebraically independent over Q(¢) where ¢ = U?_ Uf{;f)" cix\{ciko}-
Without loss of generality, we prove that for a fixed k € {0, ..., s — so},

Sk ={(FjD1<j<n:0<1<s—s;+ Foos -+ s Foe—1, Fo k1, ... Fos—0}

is an algebraically independent set.
Clearly, {y1, ..., Yn, ¥} s ooy Ypsvv s y}s"ﬂ), o, y,(,si+l)} is a subset of the support

of IF;;. Now we choose a monomial from each [F;; and denote it by m (IF;;). Foreach j €
s+

(I....nyandl € (0.....s—s;}letm(F;) = y;" . So (m(Fj0)1<j<mozis—s, ) =

Y[s]\{y{s'_”, oyl iy By convention, whenever some s; = 0, yi.sjfll = ¢. For

the fixed k, there exists a t € {0,1,...,n — 1} such that either ZLI si < k <

Zi’:ll si—1forsomet € {0,1,...,n=2}or > [_,si <k < Zf:ll sifort =n—1.

Here when 7 = 0, it means 0 < k < s; — 1. Then for [ # k, let
) 0O<l<si—1
yimsn s <l <si+s—1

F, S s sl <k
m(For) = .L('l_:lzizlsi_l) k+l<i<>y

(Z—Ztl si—1) T+1 T+2
Yoz il sit1<I< >0

n—1

yr(zl_ZlEl v SIS+l <l si=5—150

It is easy to see that {m(Fo)|l # k} = {y%‘”_]], T S0 m(Sy) =
(m(Fi)|Fy; € St} is equal to Y1, which are algebraically independent over Q.
Thus, the n(s + 1) members of Sy are algebraically independent over QQ(c¢). For if
not, IF;; — ¢jjo are algebraically dependent over (Q(c). Now specialize the coefficient
of m(F;;) in F;; to 1, and all the other coefficients of IF;; — c;jjo to 0, by the algebraic
version of Lemma 2.1, {m(IF;;) | F;; € Sy} are algebraically dependent, which is a
contradiction. Thus, claim C1) is proved.

Claim C2) follows from the fact that {1, y}” |1 < j < n}iscontained in the support
of F,s—s,. From C1) and C2), the sparse resultant of (IF;x)o<i<n.0<k<s—s; €Xists and we
Theorem 6.23, deg(G., ¢ix) = M((Q)1) j4i0<i<s—sj» Qi0s -+ Lik—1 Qiksls- -
Qi,s—x,-)-

Elol:;ﬂ
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Now suppose & is a generic point of the zero ideal (0)g)yisiy- Let Sk =
—Fi(®) + ciwo and Ty = —PV@) + u% = 0,....mk = 0,....5 — 5).
Clearly, ¢;; and ¢;; are free of cjro and ”lo , respectlvely. It is easy to see that
(é c, {00, .. ;0 s—s505 -+ -5 Cn0s - - - Cn,s—s, ) 15 @ generic point of the algebraic prime

_____ 1 (0=t ansomts s, T while (&; U;’zo(ui\{uio})[s—s,-]’

Z00» - - {0 s—s0r - 0 - {n s—s,) 18 a generic point of the algebraic prime
ideal ((IP’ )0<l<n 0<k<s—s; )Q[Y [s 00 gl=snly: If we regard G as a polynomial
in ¢;xo over Q(c), then G is the vanrshrng polynomial of (£oo, - .., £0,s—sgs - - - » $n0,
<y Cns—s,) over Q(c). Now specialize the coefficients ¢;x of F;; to the cor-

IPEk). Then each ¢ is specialized to ¢,;. In partic-

l%) which are algebraically independent over the

responding coefficients of
ular, cjro are specialized to u
field Q(&, U?:Oul[s_s"]\ul[,f)_s" ]). We claim that there exists a nonzero polynomial
HU_gul NS0 a0 e, ulT) e Quui T L
uls~ é”]] such that
C3) H(U'_ul* i\ l5 ] EOO,.. s C0.5—s0s -+ > Ens -+ s pss,) = 0 and
C4) For each i, deg(H, u[s sily < deg(G, Ui_a €ik)-
In the following, we construct H by spec1ahz1ng elements of ¢ one by one in
G. For each v € ¢, denote u to be its corresponding coefficient in ]P’(k) First

specialize v to u and suppose g is_specialized to g,k correspondingly. Clearly,
G(c\{v}, u; §00»~- §0,s 50> $n0» « + - {n §— r,l) =0.IfG = G(c\{v}, u; cooo, co10.
, €0,5—50,05 -« - s Cn00> Cn10 - - - » Cn,s—s,,0) 7 0, denote G by H;. Otherwise, tnere
exists some a € N such that G (v —u)*Gy with G |y=y # 0. But G(c\{v}, u; {oo,
§0 S—50> {nO, .. gn s— An) =0= (- M)aGl(C\{U} u; ;009 ceey 40,57,\‘07 £no,
Cn s— s,,) so G| (c\{v} u; COO’ .- CO,S 50> $n0s +++» Cnys— s,,) = 0. Denote G |y=y
by H,. Clearly, deg(Hj, u [S sil U Ukc,-k) < deg(G, Ukc,-k) for each i. Continuing
this process for |¢| times until each v € c is specialized to its corresponding ele-
ment u#, we will obtain a nonzero polynomial H‘c|(U 0(ul\{u,0})[s sil: 000, €010,
+2€0,5—50,05 -+ - » Cn00> Cn10s - - - » Cn,5—s,,0) Satisfying Hye| (U!_ o(llz\{uzo})[v 5ils 200,
.,Eo,s,so, C00s - - ;‘n — s,,) =0 and moreover, for each i, deg(H,¢|, u .Y si] U Uk
{ciko}) < deg(G, Ugcir). Since the uio are algebraically independent over the field
Q. Uiy @i\ uio) ), H = Higl|,, 0 € QLug ™", uy™"/Tis a polyno-
mial satisfying C3) and C4). '
FromC3), H € (P50, ... B ™). Since (L1, ..., P " )nQuli =, ...,
u’ "] = (R) and R is irreducible, R divides H. Then deg(R,ul’ ) <

§—S;

deg(H, ul’ ™) < deg(G. Uren) = 2 deg(Goca) = Z M((Qj)j#i0<1=s—s;
Qi0, -+ s Qik—1, Qikt1s -+ Qt,s—s;)~ O

As acorollary, we give another Bézout type degree bound for the differential resultant,
which is better than the bound given in Theorem 6.16 in that only the degrees of IP; in
Y are involved.

FoE'ﬂ
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Corollary 6.26 Let P; (i =0, ..., n) be defined in (29) and s = zl’.’zo si. Then for
eachi € {0,1,...,n}, deg(R, lll) < 5= s,+1 H, oms s+l

Proof By the proof of Theorem 6.25, {Bix |0 < i < n;0 < k < s — s;}
is an essential set. Thus, for each fixed k € {0,...,s — s;}, the polynomi-
als in Sy together generate an ideal of dimension zero in Y!*I. By Lemma 6.24,

—sj+1
M((Qj0)j#i0<t<s—s;+ Qi0s - - -» Qik—1> Qikr1s --» Qis—s;) < mL,H’];o mj AR
Hence, by Theorem 6.25,

S—S;

degR,w;) < ZM((le)j;éi,Oflgsfsjv Qi -+ s Qik—1s Qikt1s -+ -» Qirs—s;)
k=0
S—S;

<Z H ssj+1_5—51+1l—[ ss/+1

m}

Example 6.27 Consider two generic differential polynomials of order one and degree
two in one indeterminate y:

Py = uoo + uo1y + g2y’ + uozy* + uoayy' + uos(y)?,
P = uio +uny +uny +uzy* +uiayy +uis(y)>

Then the degree bound given by Theorem 6.16 is deg(R) < (2 + 1)* = 8l.
The degree bound given by Corollary 6.26 is deg(R,ug) < 2* = 16 and
hence deg(R) < 32. The degree bound deg(R,ug) given by Theorem 6.25 is
M(Qio, Qi1, Qoo) + M(Qio, Qi1, Qo1) =4+ 6 = 10 and consequently deg(R) <
20, where Qo1 = Qio = conv{(0,0,0),(2,0,0),(0,2,0)}, Qo1 = Q11 =
conv{(0, 0, 0), (2,0, 0), (0,2,0), (0,0,1),(1,0,1), (0,1, 1)}, and conv(-) means
taking the convex hull in R3.

With Theorem 6.25, Theorem 1.3 is proved.

7 Conclusion

In this paper, we first introduce the concepts of Laurent differential polynomials and
Laurent differentially essential systems and give a criterion for a set of Laurent dif-
ferential polynomials to be differentially essential in terms of their supports. Then
the sparse differential resultant for a Laurent differentially essential system is defined
and its basic properties are proved, such as the differential homogeneity, necessary
and sufficient conditions for the existence of solutions, differential toric variety, and
Poisson product formulas. Furthermore, order and degree bounds for the sparse differ-
ential resultant are given. Based on these bounds, an algorithm to compute the sparse
differential resultant is proposed, which is single exponential in terms of the Jacobi
number and the size of the Laurent differentially essential system.

Fo C 'ﬂ
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In the rest of this section, we propose several questions for further study.

It is useful to represent the sparse differential resultant as the quotient of two
determinants, as done in [11,15] in the algebraic case. In the differential case, we
do not have such formulas, even in the simplest case of the resultant for two generic
differential polynomials in one variable [49] or a system of linear sparse differential
polynomials [43]. In [43], for a sparse linear differential system S, Rueda gave an
enlarged system S; of S such that S; has a matrix representation and the sparse
differential resultant of S can be obtained from the determinant of S;. The treatment
in [6] is far from complete. For instance, let Py and P; be two generic differential
polynomials given in Example 6.27. Then, the differential resultant for Py and P;
defined in [6] is zero, because all elements in the first column of the matrix M (8, n, m)
in [6, p. 543] are zero. Although using the idea of Dixon resultants, the algorithm in
[48] does not give a matrix representation for the differential resultant.

There exist very efficient algorithms to compute algebraic sparse resultants [ 14—16],
which are based on matrix representations for the resultant. How to apply the princi-
ples behind these algorithms to compute sparse differential resultants is an important
problem. A reasonable goal is to find an algorithm whose complexity depends on
deg(R), but not on its degree bound in the worst case.

Let A be the factor in the Poisson formula (16). In the algebraic case, the cor-
responding A is a product of sparse resultants associated to the faces of the system
supports [37]. It would be interesting for future work to analyze whether an analogous
expression could be given in the differential case. On the other hand, to obtain Poisson
product formulas in Theorem 5.18, we assume the Laurent differential polynomial
system is normal rank essential. In the algebraic case, a Poisson product formula valid
for arbitrary supports has been proved recently in [12]. It is desirable to see whether the
assumption on the input supports can be weakened to derive similar Poisson formulas.

The degree of the algebraic sparse resultant is equal to the mixed volume of certain
polytopes generated by the supports of the polynomials [37] or [19, p. 255]. A similar
degree bound is given in Theorem 1.3 for the differential resultant. We conjecture
that the bound given in Theorem 1.3 is also valid for the sparse differential resultant.
Precisely, let P = {Py, ..., P,} be a Laurent differentially essential system obtained
from (29) by setting certain coefficients u;, to zero. Then, the degree bound given in
Theorem 1.3 is also a degree bound for the sparse differential resultant of .

In the algebraic case, it is shown that the sparse polynomials P; (i =0, ..., n) can
be re-parameterized to a new system S; (i = 0, ..., n) with the help of the Newton
polytope associated with P; such that the vanishing of the sparse resultant gives a
sufficient and necessary condition for S; (i = 0,...,n) to have solutions in CN,
where C is the field of complex numbers [10, page 312]. It is interesting to extend this
result to the differential case. To do that we need a deeper study of differential toric
variety introduced in Sect. 5.4.

In the algebraic case, it is well known that the resultant vanishes if and only if
the corresponding system of homogenous polynomials has common solutions in the
projective space [22]. To extend this result to the differential case, several issues should
be considered. First, the basis of differentially homogenous polynomials in F{Y} of
degree d, regarded as a vector space V(n,d) over F, is generally not differential
monomials. For instance, the vector space V (1, 2) is of dimension 4 and has a basis
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yé, ylz, YoY1, Y0¥1 — Y1, and it can easily be verified that this vector space has no basis
consisting of purely differential monomials. Furthermore, the structure of V (n, d) is
still unknown for n > 1 [39]. As a consequence, the sparse differential resultant for
a generic differentially homogenous polynomial system cannot be defined properly.
Second, in the differential case, the corresponding result might not be valid due to
the reason that the projective differential space is not differentially complete [31]. In
algebraic geometry, the fact that the projective space is complete plays a crucial role
in the proof.

Finally, as mentioned in Sect. 1, the algebraic multivariate resultant has many
applications. It is interesting to see whether sparse difference resultant can be used to
achieve similar goals in the differential case.
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8 Appendix: Reduction of Laurent Differential Monomial Sets to T-shape

In this section, an algorithm TSHAPE(D) (on page 55) is given to reduce the symbolic
support matrix D for a set of Laurent differential monomials to a matrix in T-shape
with Q-elementary transformations defined in Sect. 4.1.

We first present the main idea of the algorithm. Let By, . . ., B, be m Laurent differ-
ential monomials in Y and D = (d; ;) x» the symbolic support matrix of By, ..., By,
where d;; € Q[x;]. We still denote by D the matrix obtained from D by performing Q-
elementary transformations. We assume that m < n and hence p = max(m, n) = n.
The case m > n can be shown similarly.

Let Dy be a sub-matrix of D. Then the complementary matrix of Dy in D is the
sub-matrix of D obtained by removing all the rows and columns associated with D
from D.

The algorithm consists of three major steps. In the first step, a procedure similar to
the Gaussian elimination will be used to construct a reduced square sub-matrix of D
such that its complementary matrix in D is a zero matrix. Precisely, choose a column of
D, say the first column, which contains at least one nonzero element. Then, choose an
element, say d1, of this column, which has the largest degree among all elements in the
same column. If there exists a d;1, i > 1 such that deg(d;;) = deg(di1), then replace
dij by dij — ?Tidlj for j = 1,...,n, where g; and a; are the leading coefficients of
d;1 and dy 1, respectively. This is a Q-elementary transformation of Type 2. Repeat the
above procedure until the first column is in reduced form, that is, deg(d;;) < deg(di1)
fori =2, ..., m. Consider the lower right (m — 1) x (n — 1) sub-matrix D; of D and
repeat the above procedure for D. In this way, we will obtain a reduced square matrix
whose complementary matrix is a zero matrix Z at the lower right corner of D.

Although similar to Gaussian elimination, the result obtained in this step is actually
different. In the Gaussian elimination d;; = 0 fori = 2, ..., m, while in this step we
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DCZ.

Dc1. 1% ]

(a) Sub-matrices for m <n  (b) Sub-matrices for m > n  (¢) Two zero sub-matrices

D5 | DS

(d) D3 and Dy (e) Compute D5 (f) Interchanging rows

Fig. 2 Matrix forms in Algorithm 2, the blue parts are reduced ones (Color figure online)

can only achieve deg(d;;) < deg(dy;) fori =2, ..., m. As a consequence, from the
matrix obtained in step 1, we cannot obtain the rank of D explicitly. For an illustration,
refer to Example 8.1.

In the second step, we first check whether D is in T-shape. Let the zero matrix Z
obtained in the first step be ani x j matrix and r = i + j the O-rank of Z. If the last
J columns of D are zero vectors, then D is a T-shape matrix of index (0, n — j).

Ifr > n+1, then D cannot be of full row rank and we consider this case in step three.
Otherwise, let D¢ be the lower right (m + r — max(m, n)) x (n +r —max(m, n)) =
(m 4+r —n) x r sub-matrix of D, D¢ the lower lefti x (n +i —max(m,n)) =i x i
sub-matrix of D¢, and D¢7 the upper right (m + j —max(m, n)) X j = (m+j—n) X j
sub-matrix of D¢. In Fig. 2a, b, D¢ is represented by the pink area. Here, D¢ is chosen
to be the minimal (m — g) X (n — g) sub-matrix of D at the lower right corner, which
may be of full rank. Note that the complementary matrix of D¢ is a reduced square
matrix.

Let Dj =TSHAPE(D(¢;) and Dy =TSHAPE(D(;). Note that the Q-elementary
transformations of these sub-procedures are for the whole rows and columns of D. By
doing so, the sub-matrix consisting of the first » — r columns of D remains to be a
reduced one.

If D and D, are reduced matrices, we can obtain a reduced matrix for D by suitable
column interchangings. Otherwise, either D or D> is not of full rank. Assume D is
not of full rank. Then merging the zero sub-matrix of D and Z, we obtain a zero
matrix with O-rank larger than that of Z (Fig. 2c). Repeat the second step for D with
this new zero sub-matrix.

In the third step, D contains a “large” zero sub-matrix and a T-shape matrix of D can
be constructed directly as follows. Let the zero matrix Z at the lower right corner of D
be ani x j matrix and r = i 4 j. Let D¢3 be the lower left i x (n — j) sub-matrix of
D and D3 = TSHAPE(D(3). In this case, D¢3 has more rows than columns. We can
assume that D3 is of full column rank. Otherwise, a sub-matrix of D3 can be used as Ds.
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Let D¢y be the upper right (m — i) x j sub-matrix of D, D4 = TSHAPE(D¢4),
and s = rank(D4) (see Fig. 2d). If Dy is of full row rank, then by suitable col-
umn interchangings, we can obtain a T-shape matrix. Otherwise, let the lower left
(m — s) x (n — j) sub-matrix of D be D¢s, and D5 = TSHAPE(D(5), which is a
reduced matrix with full column rank, see Fig. 2e. Now, by suitable column inter-
changings, we can obtain a T-shape matrix (see Fig. 2f).

We now use the following example to illustrate the first two steps of the algorithm.

Example 8.1 Let By = y1y{y5'y3y5, B2 = i D*y 05)°)303), Bs = i)’
¥y (33 ¥3(¥5)3 . Then, the symbolic support matrix is

x; +1 xg’ x3+ 1
D=|2x+3 2x)+x7 2x3+3
3x1+2 3x34+x2 3x3+3

We will use this matrix to illustrate the algorithm.

x;+1 x% x3+1 x1+1 x3+41 x%

(a) ) () 2
D= 1 x5 1 — 1 1 x5
-1 X2 0 -1 0 X2

In step 1, we use dj; = x1 + 1 to reduce the degrees of 2x; + 3 and 3x; + 2 with

Q-elementary transformations of Type 2 to obtain the matrix after g We need do
nothing more in step 1 and obtain a 1 x 1 zero matrix at the lower right corner of the
matrix.

Now, go to the second step of the algorithm. We have r = 2 < max(m, n) +1 = 4.
D¢ is the lower right 2 x 2 sub-matrix of D, D¢y = (x2), and D¢y = (1). Since
both D¢ and D¢ are reduced, we interchange the second and third columns of D to

. . b S . .
obtain the final matrix after ¥>, which is reduced. The corresponding monomials are
Bi = y1y1y5'y3¥5 B2 = y1y3y3,and B3 = y;/y1.

We use the following example to illustrate the third step of the algorithm.

Example 8.2 Let By = y|'yy' yiyay3. By = y| ¥y ¥y yay3. Bs = y|y3y4. Ba = y
Bs = y%. Then, the symbolic support matrix is D given below.

x13 xg X3 1 2 xf x% X3 1 2
)cl2 xg x% +x3 1 2 © —xi+x;y 0 x32 00
D=|x 0 x3+1 0 0 == X1 0 x34+1 0 0
x1 O 0 00 X1 0 0 00
2 0 0 00 2 0 0 00
x13 xg X3 1 2 xg X3 x13 1 2
@ —xj+x} 0 x3 00 o | X3 —xi+x7 00
— X1 0 x34+1 00 = | 0 x3+1 X1 00
0 0 —x3—1 00 0 —x3—1 0 00
2 0 0 00 0 0 2 00
Fol:'ﬂ
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For step 1 of the algorithm, we do nothing to D and the zero matrix Z obtained at the
end of this step is a 2 x 2 zero sub-matrix at the lower right corner of D. In step 2, D¢
is set to be the lower right 4 x 4 sub-matrix of D, D¢; = (8 8), and D¢y = ((1) (2))

Merging Z and D¢, we obtain a 2 x 4 zero sub-matrix at the lower right corner of
D. Up to now, D is not changed. Then, step 3 of the algorithm is applied.

In step 3, we have D3 = le , which is reduced and of full rank.
xg X3 1 2 x%’ X3 1 2
LetDeg=| x5 x3+x3 1 2 |andDy=TSHAPE(Dcs)=| 0 x3 0 0
0 x3+1 0O 0 x3+1 0 0

which is a T-shape matrix with index (1, 1) and is not of full rank. Now, D becomes
the matrix after % Since Dy is not of full rank, let D¢s = (x1, x5, 2)T and compute

Ds = TSHAPE(D¢s5). Now D becomes the matrix after g. We interchange the
first column and the 2nd and 3rd columns of D to obtain the final matrix which is in
T-shape with index (1, 2).

Theorem 4.10 is a consequence of the following theorem.

Theorem 8.3 Algorithm TSHAPE is correct.

Proof We assume that m < n and hence p = max(m, n) = n. The case m > n can be
proved similarly. We prove the theorem by induction on the size of the matrix D, that
is, m + n. One can easily verify that the claim is true when m +n = 2, 3, 4. Assume
it holds for m +n < s — 1 and consider the case m +n = s.

Let Z be the i x j zero matrix obtained in Step 1. Since the complementary matrix
of Z in D is a square matrix, we have m —n = i — j and the O-rank of Z is larger than
max(m,n) —min(m,n) +1=n—m+ 1.

In Step 2.2, D contains zero rows. By deleting these zero rows, the size of D is
decreased by one at least. By induction, the algorithm is valid.

In Step 2.3, from r > max(m,n) + 1,wehaver =i+ j>n+1landi >n — j.
Then the i x (n — j) lower left sub-matrix of D has more rows than columns. As a
consequence, D cannot be of full row rank.

In Step 2.4, D¢ is chosen as the minimal sub-matrix of D such that it is of type
(m — gq) x (n — g) which may have full row rank. This implies that D¢ must be an
i X i square matrix, and hence, ¢ = n —r and D¢ is an (m +r — n) X r matrix. Since
the complementary matrix of Z in D is a square matrix, we have j > j —i =n —m.
Hence, m +r —n > i and D¢ contains Z as a sub-matrix for the first loop, and this
is always true since Z is from D¢ and the size of D¢ is increasing after each loop.

In Step 2.5, by the induction hypothesis, D1 = TSHAPE(Dc¢;) and D, =
TSHAPE(D(>,) can be computed. Moreover, note that although the QQ-elementary
transformations are performed for the whole D, the lower left m x (n — r) sub-matrix
of D is still a reduced one.

InStep2.6,sincem—n =i—j,n—j—(p—r+1)+1 =n+m—p—mn—j+1)+1 =
i. Note that D1 and D, are of type i x i and i x j, respectively, so this means that all
columns of D containing D; are interchanged with the columns of D containing the
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Algorithm 2 — TSHAPE(D)

Output: A T-shape matrix which is obtained from D by Q-elementary transformations.
Inmitial: Let s = 1, p = max(m, n).
1. While s < min(m, n) do

L1If forany j,/ > s, deg(dj;) = —oo,leti =m —s+ 1, j =n —s + 1 and go to Step 2.

1.2 Select j, I > s such that —oo # deg(d;;) > deg(d;;) for any i > s. Interchange the jth
row and the sth row, the /th column and the sth column of D. Using dg; to do
Q-elementary transformations such that deg(dss) > deg(d;s) fori > s.

1.3 If s = min(m, n), then return the reduced matrix D.

1l4s=s+1.

2.Leti=m—s+1,j=n—s+ 1,and r =i + j the O-rank of the i x j zero sub-matrix Z

in the lower right corner of D.

2.1 If the last j columns of D are zero vectors, return D of index (0, s — 1).

2.2 1If j = n, delete the last i rows from D, and let D=TSHAPE(D).

Then add i rows of zeros at the bottom of D and return this matrix.

231Ifr > p+1, goto Step 3.

24LetDec =LR(D,m+r —p,n+r — p),Dcy =LL(D¢,i,n+i — p),
Dca = UR(De,m + j — p, j). (see (a, b) of Fig. 2)

2.5Let D; = TSHAPE(D( ) and D) = TSHAPE(D(;).

2.6 If Dy, D; are reduced, interchange D[p —r 4+ 1:n — jlandD[n — j+1:n+m — p]inD,
and return the obtained reduced matrix D.

2.7 If the k x [ zero sub-matrix Z; of Dy has O-rank k +1 > max(i,n +i — p)+ 1 =i + 1,
combine Z1 and the i X j zero matrix to obtain a k x (/ + j) zero matrix with O-rank
k+1+j>i+j(see(c)of Fig.2).Leti =k, j=1+j,r =i+ j, goto Step 2.2.

2.8 Else, the k x [ zero sub-matrix Zo of Dy has O-rank k +/ > max(m+ j — p, j)+1=j+ 1.
Combine Zj and Z to obtain a (k + i) x [ zero matrix with O-rank k +/+i > i + j.
Leti =k+i,j=1,r=1i+4j,gotoStep 2.2.

3.Let Dc3 = LL(D, i, n — j) and D3 = TSHAPE(D(3) with index (k, ).

3.1If ] = 0, delete the last i — k rows from D, let D=TSHAPE(D), add i — k zero

rows at the bottom of D and return this matrix.

3.2 If D3 is not of full rank, interchange D[k 4+ 1 : k 4+ 1] and D[1 : /] in D.

Leti =i —k,j=n—1,D3 =LL(D,i,n—j).

33 LetDcg = URD, m — i, j), D4y = TSHAPE(D4) with index (1, v), and s = u + v.

341fm —s >i,let Dcs = LL(D,m — s, n — j) and D5 = TSHAPE(D(5).

3.5 Interchange D[1 : n — jlandD[n — j + 1 :n — j +s]inD.

Return the obtained T-shape matrix with index (u, v +n — j). (See (d,e,f) of Fig. 2.)

/*/ Note LL(D, i, j) is the i x j sub-matrix at the lower left corner of D. Similarly, LR, UL, and UR are
for the lower right, upper left, and upper right, respectively. D[i : j] represents the sub-matrix consisting
of the ith to the jth column vectors of D.

/*/ The Q-elementary transformations in TSHAPE(D¢;) (i = 1,...,5) are for the whole m x n matrix
and the result is still denoted by D.

first i columns of D». Since D and D are reduced with full row rank, the algorithm
returns a reduced matrix.

In Step 2.7, since the k x [ zero sub-matrix of Dy has O-rank k + / > max(i, n +
i —max(m,n)) + 1 =i+ 1, by Lemma 4.7, Dy is not of full rank. The i x j zero
sub-matrix Z and this k x [ zero sub-matrix form a k x (I 4 j) zero matrix, with O-rank
k+j+1>1i+ j+ 1 (Fig. 2c). Step 2.8 can be considered similarly. Since after
each loop in Step 2, the O-rank of the zero matrix Z of D increases strictly, step 2 will
terminate.
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Step 3 treats the case when D is not of full rank. Since r =i + j > n + 1,
i > n — j and D¢3 has more rows than columns. Step 3.1 is correct due to the
induction hypothesis.

For Step 3.2, since [ > 0,7 > k. These conditions make the constructions given in
the algorithm possible.

After this step, D3 is ani x (n — j) reduced matrix with full column rank and the
lower right i x j sub-matrix of D is a zero matrix. Due to this condition, the remaining
steps are clearly valid. In Step 3.4, if m — s = i, then Dy is reduced. Otherwise,
m — s > i and Dy is not of full rank. In this case, D5 is obtained from D3 by adding
several more rows. Then D¢5 is also of full column rank, and hence, D5 is a reduced
matrix of full column rank (Fig. 2e). Note that when computing Ds, the n — j +u + 1
ton — j + s columns of D are changed (Fig. 2e). Step 3.5 is clearly valid as shown by
Fig. 2f. O
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