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Abstract A comprehensive computational framework
based on the finite element method for the simulation of
coupled hygro-thermo-mechanical problems in photovoltaic
laminates is herein proposed. While the thermo-mechanical
problem takes place in the three-dimensional space of the
laminate, moisture diffusion occurs in a two-dimensional
domain represented by the polymeric layers and by the
vertical channel cracks in the solar cells. Therefore, a geo-
metrical multi-scale solution strategy is pursued by solving
the partial differential equations governing heat transfer and
thermo-elasticity in the three-dimensional space, and the par-
tial differential equation for moisture diffusion in the two
dimensional domains. By exploiting a staggered scheme, the
thermo-mechanical problem is solved first via a fully implicit
solution scheme in space and time, with a specific treatment
of the polymeric layers as zero-thickness interfaces whose
constitutive response is governed by a novel thermo-visco-
elastic cohesive zone model based on fractional calculus.
Temperature and relative displacements along the domains
where moisture diffusion takes place are then projected
to the finite element model of diffusion, coupled with the
thermo-mechanical problem by the temperature and crack
opening dependent diffusion coefficient. The application of
the proposed method to photovoltaic modules pinpoints two
important physical aspects: (i) moisture diffusion in humid-
ity freeze tests with a temperature dependent diffusivity is
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a much slower process than in the case of a constant dif-
fusion coefficient; (ii) channel cracks through Silicon solar
cells significantly enhance moisture diffusion and electric
degradation, as confirmed by experimental tests.
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1 Introduction and motivations

Photovoltaic modules are composite structures obtained by
laminating layers of various materials. Some have the role
to guarantee protection from the environment by a suitable
sealing of the device, others have specific electric features to
produce energy. The durability of these devices is a serious
concern due to fracture events promoted by the mismatch
between the thermo-mechanical properties of the material
constituents, often amplified by the severe working con-
ditions they are exposed to. Moreover, their modelling is
changelling and it requires amulti-physics framework to gain
an accurate picture of their overall working conditions, per-
formance and degradation [1].

Typical photovoltaic (PV) modules are laminates made
of a thick glass superstrate, an encapsulating polymer (usu-
ally ethylene vinyl acetate, EVA), a layer of interconnected
Silicon solar cells separated by few centimeters of EVA in
their plane, another layer of EVA, and finally a polymeric
protective backsheet. EVA provides protection of cells and
interconnections but it is permeable to moisture, which dif-
fuses from the backsheet and percolates along the surface of
the solar cells. In turn, moisture induces chemical oxidation
of the grid line deposited on the surface of the solar cells,
giving rise to electrically inactive areas and power-loss. This
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Fig. 1 Electric degradation during the damp heat test (T = 85◦,
RH = 85%). Electroluminescence images show electric degradation
under the form of dimmer electrically inactive areas (adapted from [2])
a moisture effects, b I–V curves

phenomenon has been reported in damp heat tests in [2] pre-
scribed by the international qualification standards [4], where
PV modules were exposed to a very aggressive environment
at constant 85 ◦C temperature and 85% of air humidity. In
particular, it has been shown a progressive increase of dim-
mer areas in time in the electroluminescence (EL) images
starting from the edges of the solar cells towards their center
(see Fig. 1a). Correspondingly, the current-voltage of the PV
module degrades, with a significant power-loss (see Fig. 1b).

For these reasons, an accurate modelling of the EVA is
crucial to determine the lifetime of a PV module, moisture
diffusion, chemical reactions induced by moisture, as well as
its reduction of cohesive energy promoting delamination of
the layers (see Fig. 2).

The EVA polymer displays a strong thermo-visco-elastic
constitutive response, as experimentally reported in [5,6],
with a variation of the elastic modulus of up to three orders of
magnitude depending on temperature. Generalized Maxwell
rheological models used so far generally provide exponen-
tial type relations for the relaxation modulus and, in order to
approximate the experimentally observed power-law trend,
a huge number of elements (and thus of model parameters)
has to be taken into account. To significantly simplify the

Fig. 2 Example of delamination of the glass from the solar cells,
adapted from [3]

Fig. 3 Multi-physics modelling showing the proposed solution
schemes and the interactions between the various fields

task of parameters identification, modelling the visco-elastic
behaviour via fractional derivatives has been proved to be
very effective [8–10]. For rheologically complex polymers
as EVA, whose microstructure changes with temperature,
the fractional calculus formulation in [11] allows the use of
only two temperature dependent parameters for its complete
description.

Another complexity regards the moisture diffusion prop-
erties of EVA, strongly temperature dependent as experi-
mentally reported in [12], which implies coupling between
moisture and temperature fields. In return, moisture is
degrading the cohesive energy of the EVA encapsulant, pro-
moting decohesion of the backsheet or separation of the glass
cover from the solar cells [13,14]. Thismathematically corre-
sponds to coupling between the mechanical and the diffusive
fields, with a further acceleration of moisture diffusion and
degradation as reported in [15], which is a feedback coupling
from diffusion to mechanics.

A proper modelling of these coupled nonlinear phenom-
ena, whose conceptual interactions are sketched in Fig. 3,
requires a comprehensive computational framework where
coupled thermo-elastic and heat conduction problems are
accurately solved at themodule level in the three-dimensional
space. Then, moisture diffusion inside the EVA layers has to

123



Comput Mech (2016) 57:947–963 949

be simulated by considering the dependency on the tempera-
ture and the thermo-elastic fields via the diffusive constitutive
equations. So far, the state-of-the-art simulations on mois-
ture diffusion in [12] consider the EVA layer only and treat
diffusion as a one dimensional problem without updating
the diffusivity of the material based on the actual tempera-
ture of the system. The former approximation of considering
moisture diffusion as a pure 1D problem fails when channel
cracks in Silicon solar cells are present, since they can also
be a source of moisture percolation from the backsheet to the
front side of the solar cells. The latter assumption of using
a constant diffusivity (uncoupling with the thermal field) is
an approximation valid only in the steady state temperature
regime.While this is the case of thedampheat test, its validity
in the case of a cyclic variation of temperature from −40 up
to 85 ◦C as in the humidity freeze test is highly questionable.

To shed light into the above issues, and provide a compre-
hensive physical modelling and computational framework
for the study of these phenomena, a geometrical multi-
scale approach is herein proposed by following the seminal
work in [16] for biophysical systems. Starting from the
evidence that moisture diffusion takes place in a physical
domain with a lower dimension with respect to that of the
thermo-mechanical and heat conduction problems, two dif-
ferent finite element models are used in parallel. The coupled
thermo-mechanical and heat conduction problems are solved
in the three-dimensional setting (or in the two-dimensional
one in the case of a cross-section of the PV module). As
a further simplification, the EVA encapsulant layers are
modelled as zero-thickness interfaces, whose thermo-visco-
elastic constitutive response is taken into account by a novel
thermo-viscoelastic cohesive zone model. As compared to
other cohesive zone model formulations available in the lit-
erature [17,18], the present formulation is based on fractional
calculus and it is able to simulate rheologically complex
materials.

The thermo-mechanical problem, which is much faster
than moisture diffusion, is solved first via a fully implicit
solution scheme in space and time, see Fig. 2. Temperature
and relative displacements computed in the Gauss points
along the encapsulant interfaces are then projected to the
nodes of another finite elementmodel specific for the solution
of moisture diffusion. This second model is used to dis-
cretize the domain where moisture diffusion takes place. In
particular, it is represented by the mid-surfaces of the encap-
sulant layers and of the channel cracks through Silicon, see
Fig. 4.

This article is structured as follows. In Sect. 2, the varia-
tional framework for thermo-mechanics and heat conduction
for the layers is presented, along with the interface model for
the thermo-visco-elastic encapsulant, as well as for mois-
ture diffusion. The weak forms of the partial differential
equations are established in Sect. 3 and the finite element

(a)

(b)

Fig. 4 Proposed finite element models a 3D laminate models, b 2D
cross-section models

discretizations are presented in Sect. 4. Details on the pro-
posed numerical solution scheme are provided in Sect. 5
and numerical applications to photovoltaics and comparison
with experiments are collected in Sect. 6. Conclusions and
an overview of future perspectives of research complete the
study.
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2 Variational framework

In this section, the variational framework describingmoisture
diffusion and the thermo-visco-elastic response of a lami-
nate made of linear elastic homogeneous and isotropic layers
separated by polymeric thermo-visco-elastic laminae is pre-
sented. In these laminates, moisture diffusion takes place in
the polymeric layers, which progressively percolates from
the free edges and from the permeable backsheet towards
the centre of the solar cells. EVA layers used to protect Sil-
icon solar cells are permeable to moisture, which is one of
the major concerns for the degradation of the electrical out-
put of the PV module over time. Due to moisture diffusion,
the adhesive properties of EVA progressively degrade and
the corresponding layers may experience a lack of cohesion
leading to separation of the backsheet from the Silicon cells,
or between the Silicon cells from the glass superstrate. In
order to efficiently simulate cohesive degradation of EVA
and delamination, we propose to treat the polymeric layers
as zero-thickness internal interfaces with suitable traction-
separation relations accounting for their thermo-visco-elastic
properties.

Let the laminate occupy a volumeΩ = ∪n
m=1R(m) ⊂ R

3

in the reference undeformed configuration, where each layer
is geometrically identified by R(m) = [0, a] × [0, b] ×
[zm−1, zm], with z0 = 0, zm = zm−1+hm , where a, b � hm
for m = 1, . . . , n. Moreover, let model a generic poly-
meric layer of thickness h between laminae R(p) = R−
and R(p + 1) = R+ (1 ≤ p ≤ n) as a plane surface
S(p) = (x1, x2, z p) : 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b}, see
Fig. 4.

The position of each material point inside Ω is iden-
tified by the coordinate vector x = (x1, x2, x3)T in a
three-dimensional cartesian orthonormal frame {e1, e2, e3}.
Let uI (x1, x2, x3, t) (I = 1, 2, 3) and θ(x1, x2, x3, t) =
T (x1, x2, x3, t) − T0 be the displacement field and temper-
ature variation from a reference one, T0, inside the material
during the time interval 0 ≤ t ≤ t f . The index I is used
to denote the component of the displacement field along the
corresponding coordinate.

2.1 Thermo-mechanical formulation of the layers

The global dynamics of each material layer R(m) obeys the
equations of coupled linear isotropic thermo-elasticity (see
e.g. [19,20]). The Cauchy thermal stress tensor is defined for
each layer m as:

σI J = Cm
I J K LεK L − βmθδI J , 1 ≤ I, J, K , L ≤ 3 (1)

where the Einstein summation notation has been adopted.
Here, Cm

I J K L is the fourth order elastic constitutive ten-
sor, and βm is the coupling thermal factor related to the

thermal expansion coefficient αm . The infinitesimal strain
tensor is:

εI J = 1

2

(
∂uI

∂xJ
+ ∂uJ

∂xI

)
, 1 ≤ I, J ≤ 3 (2)

The balance of linear momentum is given by:

ρm ∂2uI

∂t2
− ∂

∂xJ

(
Cm
I J K LεK L − βmθδI J

) = 0

in R(m) × [0, t f ], I = 1, 2, 3

(3)

where ρm is the density of the m-th material.
Let qI be the heat flux inside each layer R(m), and assume

that it is related to the temperature variation θ by the Fourier
law:

qI = −km
∂θ

∂xI
, 1 ≤ I ≤ 3 (4)

where km > 0 is the thermal conductivity of the m-th mate-
rial. Hence, the heat transfer partial differential equation is
given by:

km∇2θ = ρmcm
∂θ

∂t
+ T0β

m ∂εKK

∂t
in R(m) × [0, t f ] (5)

where cm is the heat capacity of the m-th material.

2.2 Thermo-visco-elastic polymeric interfaces

Under the assumption of replacing each polymeric layer by a
zero-thickness imperfect interface, we allow uI and the tem-
perature θ to be discontinuous across the interface separating
R− from R+. We therefore define the jumps on S(p) as:

[[uI ]](x1, x2) = u+
I (x1, x2) − u−

I (x1, x2), 1 ≤ I ≤ 3,
(6a)

[[θ ]](x1, x2) = θ+(x1, x2) − θ−(x1, x2) (6b)

where u±
I (x1, x2) = uI (x1, x2, z±p ) and θ±

I (x1, x2) =
θI (x1, x2, z±p ). The average temperature across the interface
is given by:

〈θ〉 (x1, x2) = 1

2

[
θ+(x1, x2) + θ−(x1, x2)

]
(7)

Quantities [[uI ]] and [[θ ]] play the role of internal vari-
ables describing the debonding process along the interface
containing S(p) during time [0, t f ].

Hence, the coupled thermo-elastic model given in the pre-
vious section for the continuum layers is enriched by adding
the presence of a cohesive tractionfield and a heat flux normal
to S(p). The relations between those fields and [[uI ]], [[θ ]]
are provided by the constitutive relations for the interface. By
assuming the continuity of the traction vector components tI ,
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the in-plane sliding and out-of-plane tearing components of
the traction vector read:

tI =
{
KI (t, 〈θ〉) [[uI ]], if [[uI ]] ∈ JI
0, if [[uI ]] /∈ JI

(8)

where I = 1, 2 and JI = (−δcI ,+δcI ), while the opening
traction component is:

t3=

⎧⎪⎨
⎪⎩

ε[[u3]], if [[u3]] < 0

K3 (t, 〈θ〉) [[u3]], if [[u3]] ∈ J3
0, if [[u3]] /∈ J3 and [[u3]]≥0

(9)

where J3 = (0, δc3).
Equation (9) corresponds to a tension cut-off traction-

separation curve, suggesting that the interface is not able to
transfer tractions when the critical opening displacement δc3
is overcome. A similar brittle behavior is assumed for slid-
ing and tearing fracture modes (see Fig. 5). In compression,
a penalty formulation with penalty parameter ε is adopted as
in [7].

In order to obtain a structural response of the interface
equivalent to that of the real EVA layers, the modulus K3 of
the zero-thickness interface is related to the actual stiffness of
the layer in the direction n, i.e., it can be evaluated as the ratio
between the EVAYoung’s modulus, EEVA, and its thickness,
hEVA, i.e., K3 = EEVA/hEVA. Similarly, the shear response
is matched by selecting K1 = K2 = EEVA/ [2(1 + νEVA)].

Since polymers have a thermo-visco-elastic constitutive
behavior, the stiffnesses KI have to depend both on the aver-
age temperature 〈θ〉 and time t . Instead of using a Prony
series representation, a fractional calculus approach [8,9]
is herein adopted to synthetically characterize those depen-
dencies. This approach has been proved in [11] to be very
effective for parameters identification. Accordingly, EEVA is
defined as follows:

EEVA(t, T ) = a(T ) h(t, T )−α(T )

Γ (1 − α(T ))
(10)

for functions 0 < a, α < 1 and Γ (t) is the Euler gamma
function

Γ (t) =
∫ ∞

0
e−x xt−1dx (11)

Function h(t, T ) is a history dependent function of time and
temperature used to model thermo-rheologically complex
materials where the principle of time-temperature superpo-
sition does not apply. This is due to a modification of the
internal microstructure of the polymer driven by a temper-
ature change above a threshold. Hence, h(t, T ) is equal to
the current time t minus the time t0 corresponding to such a
microstructure modification.

Fig. 5 Cohesive traction-separation relations. a Sliding and tearing
fracture modes. b Opening fracture mode

At the interface, we remark that cohesive tractions are
continuous and opposing to each other, viz.

tI = t+I = C (+)
I J K Lε+

K L |x3=z+p n J = −C (−)
I J K Lε−

K L |x3=z−p n J

= −t−I
(12)

As far as heat conduction is concerned, we assume that the
heat flux across the interfaces is oriented along the direction
orthogonal to the surface S(p), which is a reasonable approx-
imation for thin polymeric layers. Hence, q1 = q2 = 0 and
q = q3 is given by

q =
⎧⎨
⎩

−κ0

(
1 − [[u3]]

δc3

)
〈θ〉 if [[u3]] ∈ J3

0 if [[u3]] /∈ J3

(13)

where κ0 is the thermal conductivity of the interface without
decohesion, i.e., for [[u3]] = 0. Note that the heat flux is
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assumed to be a decreasing function of the normal gap, in
order to account for partial heat transfer in the case of a
damaged interface, see also [21].

Continuity of heat flux at the interface is preserved, viz.

q = q+
3 (x1, x2) = −k(+) ∂θ+

∂x3
|x3=z+p = k(−) ∂θ−

∂x3
|x3=z−p

= −q−
3 (x1, x2).

(14)

2.3 Moisture diffusion along polymeric interfaces

Durability tests of PV modules inside a climate chamber
are characterized by temperature and moisture dependent on
time according to specified ramps. In these composites,mois-
ture diffusion takes place along the layers of the polymeric
encapsulant, or along channel cracks in Silicon. Since their
thickness is very small, it is possible to neglect moisture flux
in the direction orthogonal to the EVA layers. Under these
assumptions, moisture diffusion can be modelled as a diffu-
sion process taking place over the mid-surface of a generic
encapsulant layer, which corresponds to S(p).

Hence, the aim of the numerical method reduces to simu-
late and predict diffusion of water content c(x1, x2, t) along
the encapsulant mid-surface S(p) for each point and time.

The following initial and boundary value problem can be
considered, where an imposed water content c∗ is imposed
on the boundary:

⎧⎪⎪⎨
⎪⎪⎩

∂c

∂t
(x1, x2, t) − D∇2c(x1, x2, t) = 0 in S(p)×[0, t f ]

c(x1, x2, 0) = 0 in S(p)

c(x1, x2, t) = c∗ in ∂S(p)×(0, t f ]
(15)

where D is the encapsulant diffusivity.
In addition to a reduced dimensionality of the domain

where moisture diffusion takes place with respect to thermo-
elasticity, it is also remarkable to notice that these physical
problems are characterized by very different time scales. The
characteristic velocity of thermal diffusion is in fact ruled
by the ratio km/(ρmcm), while that of moisture diffusion is
related to the diffusivity D. Considering characteristic values
for EVA, the ratio between the velocities of the two phenom-
ena is:

(
km/(ρmcm)

)
/D ≈ 106, ∀m = 1, . . . , n

so that heat transfer is about six order of magnitude faster
than moisture diffusion. From this observation, we can state
that moisture diffusion is dependent on heat transfer and not
viceversa. Hence, the diffusivity of the encapsulant has to

be considered as temperature dependent and, based on the
experimental evidence [12], of Arrhenyus type:

D =

⎧⎪⎪⎨
⎪⎪⎩
A exp

(
− Ea

〈θ〉 R
)

, if [[u3]] ≤ δc3

A exp

(
− Ea

〈θ〉 R
) [[u3]]

δc3
, if [[u3]] > δc3

(16)

In order to take into account the effect of a possible
debonding of the encapsulant, which would enhance mois-
ture diffusion, D is assumed to be a linear increasing function
of the normal gap [[u3]], for [[u3]] larger than δc3.

Due to the very different time scales of the diffusion
processes, a staggered solution scheme is proposed, where
the average temperature and the crack opening computed
from the solution of the coupled thermo-mechanical prob-
lem are passed as input to the diffusion process by a suitable
update of the value of D.

3 Weak forms

The partial differential equations governing the dynamic
equilibrium of the body, Eq. (3), and heat conduction, Eq.
(5), for each layer R(m) (m = 1, . . . , n) and the constitu-
tive relations for the interfaces, Eqs. (8), (9) and (13) for
each S(p), define an initial boundary value problem describ-
ing the debonding of a thermo-mechanical layered PV panel
with thermo-visco-elastic polymeric interfaces.

Let t∗I and u∗
I be the surface traction and the prescribed

boundary displacement such that:

CI J K LεK L(uM )nJ = t∗I in ∂N Ru × (0, t f ],
uI = u∗

I in ∂DRu × (0, t f ]

and q∗ = q∗
I n I , and θ∗ be the imposed normal heat flux and

the imposed temperature at the boundaries such that:

∂θ

∂n
= q∗ in ∂N Rθ × (0, t f ],

θI = θ∗
I in ∂DRθ × (0, t f ]

where the indices ∂D and ∂N denote the Dirichlet and the
Neumann portions of the boundary ∂R.

The weak form corresponding to Eq. (3) is obtained by
multiplying it by a virtual displacement δvI having a virtual
gap [[δvI ]] along S(p) and by integrating the result on each
domain R(m). After applying the divergence theorem as cus-
tomary and by dropping the indexm to simplify notation, we
obtain:
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∫
R

ρ
∂2uI

∂t2
δvIdV +

∫
R
CI J K LεK LδεI JdV

−
∫
R

βδεI J δI J θdV =
∫

∂N Ru
t∗I δvIdA

+
∫
S(p)

tI [[δvI ]]dA

(17)

where δI J is the Kronecker operator, and δ denotes a virtual
variation of the variable to which is applied.

Analogously, the weak form corresponding to Eq. (5) is
obtained by multiplying it by a test function δθ having a gap
[[δθ ]] on S(p) and by integrating the result on each domain
R(m). After some calculation and dropping the index m to
simplify notation, we get:

∫
R
k

∂θ

∂xI

∂θ

∂xI
dV +

∫
R

ρc
∂θ

∂t
δθdV

+
∫
R

β
∂εI J

∂t
δI J δθdV +

∫
∂N Rθ

q∗δθdA

+
∫
S(p)

q[[δθ ]]dA = 0

(18)

As far as moisture diffusion is concerned, the correspond-
ing weak form is constructed by multiplying Eq. (15) by a
test function δc. After integration by parts we have that the
concentration c(x1, x2, t) solves the following equation for
all the admissible δc and ∀t ∈ [0, t f ]:
∫
S(p)

D
∂c

∂xI

∂δc

∂xI
dA +

∫
S(p)

δc
∂c

∂t
dA = 0. (19)

4 Finite element discretization

4.1 Discretized weak forms for the thermo-elastic and
heat conduction problems

According to the finite element method, the domain R is
discretized into a finite number of bulk Re and interface S̃e
elements so that:

R ≈
⋃
e

Re ∪
⋃
e

S̃e (20)

We also introduce for the purpose of numerical integration
the mid-plane surface S(p) ≈ ∪eSe, where Se is the middle
surface of each interface element S̃e.

The class of interface elements considered here consists
of two surface elements coincident with the facets of the bulk
elements used to discretize the continuum that are bricks or
tetrahedra. For consistency between interfaces and bulk, the
same order of interpolation is used. In the case of 2D simula-
tions on cross-sections of a laminate, the present formulation

still holds, provided that bulk elements are represented by
quadrilateral or triangular plane strain finite elements and
interface elements are given by two opposing lines. Again,
the same interpolation order has to be used.

By introducing the shape functions, the finite element
approximation for the bulk reads:

UK (x1, x2, x3, t) =
N (e)∑
a=1

Φa(ξ1, ξ2, ξ3)UaK (t), 1 ≤ K ≤3

Θ(x1, x2, x3, t) =
N (e)∑
a=1

Φa(ξ1, ξ2, ξ3)Θa(t)

being {Φa(ξ1, ξ2, ξ3)}N (e)
a=1 defined in the natural reference

system −1 ≤ ξ1, ξ2, ξ3 ≤ +1, where N (e) is the number
of element nodes, which is equal to 8 for a 3D linear brick
element, or 4 for a 2D linear 4-node plane strain element.

Similarly, for the interface elements, the gaps are approx-
imated as:

[[UJ ]](x1, x2, t) =
S(e)∑
a=1

2S(e)∑
b=1

Ψa(ξ1, ξ2)�a JbKUbK (t),

1 ≤ J ≤ 3

[[Θ]](x1, x2, t) =
S(e)∑
a=1

2S(e)∑
b=1

Ψa(ξ1, ξ2)�abΘb(t)

where the shape functions {Ψ1(ξ1, ξ2)}S(e)
a=1 are defined along

the mid-surface plane in the natural reference system −1 ≤
ξ1, ξ2 ≤ +1 and 2S(e) is the number of nodes of the inter-
face element which is equal to 8 for a 3D interface element
compatible with bricks, or 4 for a 2D interface element com-
patible with plane strain elements. The nodal displacement
vector is:

(U11,U12,U13, . . . ,U2S(e)1,U2S(e)2,U2S(e)3)
T

=
(
U+
11,U

+
12,U

+
13, . . . ,U

+
S(e)1,U

+
S(e)2,U

+
S(e)3,

U−
11,U

−
12,U

−
13, . . . ,U

−
S(e)1,U

−
S(e)2,U

−
S(e)3

)T

and the temperature vector is

(Θ1, . . . , Θ2S(e))
T

=
(
Θ+

1 , . . . , Θ+
S(e), . . . , Θ

−
1 , . . . , Θ−

S(e)

)T
.

The operator [�e]aIbJ applied to the nodal displacements
of the interface element leads to the relative opening dis-
placement between the (+) and the (−) interface flanks, i.e.,
[�e]aIbJUbJ = [[UaI ]] (1 ≤ a ≤ Se, 1 ≤ b ≤ 2Se, 1 ≤
I, J ≤ 3).
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Similarly, the operator [�e]ab applied to the nodal tem-
peratures of the interface element leads to the temperature
jumps between the (+) and the (−) interface flanks, i.e.,
[�e]abΘa = [[Θa]] (1 ≤ a ≤ Se, 1 ≤ b ≤ 2Se). Analo-
gous expressions hold for the test functions δUK , [[δUK ]],
δΘ , and [[δΘ]].

After introducing these expressions in theweak form (17),
its discretized version reads:

∑
e

∫
Re

ρΦbΦa
∂2UbI

∂t2
δUaIdV

+
∑
e

∫
Re

CI J K L
∂Φb

∂xL

∂Φa

∂xJ
UbK δUaIdV

−
∑
e

∫
Re

ΦaβδK L
∂Φb

∂xL
ΘaδUbK dV

=
∑
e

∫
Se
tJΨa�a JbK δUbK dA

+
∑
e

∫
∂Re

t∗I ΦaδUaIdA

(21)

Similarly, the discretized weak form (18) is:

∑
e

∫
Re

ρcΦaΦb
∂Θa

∂t
δΘbdV

+
∑
e

∫
Re

k
∂Φa

∂xL

∂Φb

∂xL
ΘaδΘbdV

+
∑
e

∫
∂Re

q∗ΦaδΘadA

+
∑
e

∫
Re

T0βδK L
∂Φb

∂xL

∂UbK

∂t
ΦaδΘadV

+
∑
e

∫
Se
qΨa�acδΘcdA = 0

(22)

In matrix form, the previous discretized weak forms
become:

∑
e

{δUe}T
[
Muu

e

] D2{Ue}
Dt2

+
∑
e

{δUe}T
[
Kuθ
e

] {Ue}

+
∑
e

{δUe}T
[
Cuθ
e

] {Θe} =
∑
e

{δUe}T {Fu
e }

+
∑
e

{δUe}T { f ue }

(23)

∑
e

{δΘe}T [K θθ
e ]{Θe} +

∑
e

{δΘe}T
[
Cuθ
e

] D{Θe}
Dt

+
∑
e

{δΘe}T
[
Cuθ
e

] D{Ue}
Dt

+
∑
e

{δΘe}T
{
Fθ
e

}

+
∑
e

{δΘe}T
{
f θ
e

} = 0

(24)

where {Ue} = (U11,U12,U13, . . . ,U1N ,U1N ,U1N )T, {Θe}
= (Θ1, . . . , ΘN )T, and N stands either for N (e) for a bulk
element, or for 2S(e) for an interface element. Expressions
for the matrix operators are detailed in Appendix.

By introducing the generalized displacement vector at
the element level with the following ordering, {�e} =
(U11,U12,U13,Θ1, . . . ,UN1,UN2,UN3,ΘN )T = [P]T
({Ue}, {Θe})T, where N stands for either N (e) for the bulk
elements, or 2S(e) for the interface elements, Eqs. (23) and
(24) combine as:

∑
e

{δ�e}T [Me]D
2{�e}
Dt2

+
∑
e

{δ�e}T [Ce]D{�e}
Dt

+
∑
e

{δ�e}T [Ke]{�e} =
∑
e

{δ�e}T {Fe}

+
∑
e

{δ�e}T { fe}

(25)

where the expressions for the mass, [Me], the damping, [Ce],
and the stiffness matrix, [Ke], as well as for the load vec-
tor, {Fe}, and the interface load vector, { fe}, are collected in
the Appendix. Note that to pass from Eqs. (23) and (24) to
Eq. (25), a permutation matrix [P] has been used, see again
Appendix for more details.

Let {�} be the global displacement vector and [Le] the
localizationmatrix that selects the element nodal values, viz.:

{�e} = [Le]{�} (26)

hence, Eq. (25) can be recast as:

{δ�}T [M]D
2{�}
Dt2

+ {δ�}T [C]D{�}
Dt

+ {δ�}T [K ]{�} = {δ�}T {F} + {δ�}T { f }
(27)

where the global mass, damping and stiffness matrices and
the load vector are assembled as follows:

[M] =
∑
e

[Le]T [Me][Le] , {F} =
∑
e

[Le]T {Fe},

[K ] =
∑
e

[Le]T [Ke][Le] , [C] =
∑
e

[Le]T [Ce][Le],

{ f } =
∑
e

[Le]T { fe}

By simplifying the virtual variation of the test function
{δ�} and neglecting the inertial term, the thermo-mechanical
problem requires the solution of the following nonlinear set
of equations:

[C] D

Dt
{�} + [K ]{�} = {F} + { f } (28)
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4.2 Discretized weak form of moisture diffusion

The discretization of the weak form for moisture diffusion
is derived by introducing a finite element mesh of the mid-
surface S(p) of the encapsulant layer. In principle, since a
staggered geometricalmultiscale solution scheme is adopted,
the spacing of the mesh used to solve moisture diffusion
can be different from that used for the discretization of the
thermo-mechanical problem. In that case, a projection of the
nodal temperatures from the discretized thermo-mechanical
problem to the nodes of themeshused to solvemoisture diffu-
sion has to be performed via a suitable interpolation scheme.
In the sequel, without any loss of generality, we consider a
finite element discretization for moisture diffusion coinci-
dent with the middle surface discretization of each interface
element, i.e., S(p) ≈ ⋃

e Se.
By introducing the shape functions Ψa , the water concen-

tration in a generic point of coordinates (x1, x2) and at a time
t is

C(x1, x2, t) =
S(e)∑
a=1

Ψa(ξ1, ξ2)Ca(t) (29)

Introducing Eq. (29) into (19), we obtain:

∑
e

∫
Se
DCa

∂Ψa

∂xI

∂Ψb

∂xI
δCbdA+

∑
e

∫
Se

∂Ca

∂t
ΨaΨbδCbdA=0

(30)

providing the following matrix form:

∑
e

{δC}T [Be]{Ce} +
∑
e

{δCe}T [Ae] D

Dt
{Ce} = 0 (31)

where the expression for the matrices [Ae] and [Be] is
detailed in the Appendix, and {Ce} = (C1, . . .CS(e))

T is
the vector collecting the nodal concentrations.

Introducing as previously the global node vector {C} of
unknowns and the localization matrix [Le] such that:

{Ce} = [Le]{C} (32)

the assembling of the global matrices leads to:

[B] =
∑
e

[Le]T [De][Le], [A] =
∑
e

[Le]T [Ae][Le]

providing a linear system of ordinary differential equations:

[A] D

Dt
{C} + [B(t)]{C} = {0} (33)

Note that thematrix [B] is time dependent because it contains
the diffusivity D which changes with time according to (16).

5 Proposed numerical solution scheme

To solve numerically the system (28) resulting from the
thermo-mechanical problem, we adopt an Euler backward
implicit scheme so that:

D

Dt
{�}n+1 ≈ 1

�t

(
{�}n+1 − {�}n

)
(34)

where n = 1, 2, . . . , N and tn = tn−1+�t . Hence, Eq. (28)
becomes:

1

�t
[D]

(
{�}n+1 − {�}n

)
+ [K ]{�}n+1 = {F}n+1 (35)

which is a nonlinear system of equations in the unknown
{�}n+1, where the nonlinearity relies in the load vector due
to the nonlinear relations between the cohesive tractions and
the relative displacements, and between the heat flux and the
temperature jump at the polymeric interfaces.

This problem is solved iteratively using a Newton-
Raphson scheme. At the iteration k + 1 we have an
approximation {�}n+1

(k) for {�}n+1 and we seek for a better

approximation {�}n+1
(k+1) such that:

{�}n+1
(k+1) = {�}n+1

(k) + {d�}n+1
(k) (36)

By introducing {�}n+1
(k) into {F}n+1, we obtain {F}n+1

(k) . Lin-

earization of {F}n+1
(k+1) leads to

{F}n+1
(k+1) = {F}n+1

(k) +
[

∂{F}
∂{�}

]n+1

(k)
{d�}n+1

(k) (37)

By substituting this expression back to the system (35) and
rearranging the various terms, leads:

(
1

�t
[C] + [K ] −

[
∂{F}
∂{�}

]n+1

(k)

)
{d�}n+1

(k) = (38)

− 1

�t
[C]

(
{�}n+1

(k) − {�}n
)

− [K ]{�}n+1
(k) + {F}n+1

(k)

(39)

where the right-hand side is the so-called residual vector,
{R}n+1

(k) , so that we can write:

(
1

�t
[C] + [K ] − [T ]n+1

(k)

)
{d�}n+1

(k) = {R}n+1
(k) (40)
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where:

[T ]n+1
(k) =

[
∂{F}
∂{�}

]n+1

(k)
=
∑
e

[Le]T
[

∂{Fe}
∂{�e}

]n+1

(k)
[Le]

=
∑
e

[Le]T [Te]
n+1
(k) [Le]

(41)

and [Te]n+1
(k) is given by

[Te]n+1
(k) = [P]T

[[
T uu
e

] [
T uθ
e

]
[
T θu
e

] [
T θθ
e

]
]n+1

(k)

[P]

= [P]T

⎡
⎢⎢⎢⎣

[
∂{ f ue }
∂{Ue}

] [
∂{ f ue }
∂{Θe}

]

[
∂{ f θ

e }
∂{Ue}

] [
∂{ f θ

e }
∂{Θe}

]

⎤
⎥⎥⎥⎦

n+1

(k)

[P]
(42)

The various terms entering Eq. (42) are reported in the
Appendix.

Once temperature and displacements are computed at a
given time step n + 1, these nodal results are transferred
to the discretized moisture diffusion problem. Its solution is
then performed by using an Euler backward time integration
schemewith the samepartition of the temporal interval [0, t f ]
as for the thermo-mechanical problem. For n = 1, . . . , N
time steps �t , we solve the linear system of equations:

(
�t[B]n+1 + [A]

)
{C}n+1 = [A]{C}n (43)

where

[Be]n+1
ab =

∫
Se
D(〈Θ〉n+1 , [[U3]]n+1)

∂Ψa

∂xI

∂Ψb

∂xI
dA (44)

are computed using the values 〈Θ〉n+1 , [[U3]]n+1 obtained
from the thermo-mechanical problem.

The algorithm for the proposed time steppingmethodwith
a staggered scheme is detailed in Algorithm 1. The Newton-
Raphson iteration is performed until machine precision is
achieved, i.e., up to a tolerance in the norm of the residual
vector tol = 1 × 10−15.

It has to be remarked that the time-dependency of the
visco-elastic constitutive equation (10) requires the use of a
history variable {hv} for all the nodes of the finite element
mesh for the thermo-mechanical problem. To model relax-
ation, this variable is set to zero at any change of temperature
(state variable), while it is updated by the current time incre-
ment if the temperature remains constant with respect to the
previous time step, within a given tolerance tol2. Thismethod
allows the simulation of the thermo-viscoelastic behavior of
polymeric materials when the temperature-time superposi-
tion principle does not apply, for instance due to a change of

microstructure by varying temperature as it happens in the
case of epoxy-vinil-acetate used in photovoltaics.

Data: ρm , cm , Cm
I J LK , k

m , δcI , α, a, k0, h, A, Ea , R, T0, �t , N
Initialize: tol1 = 1 × 10−15, tol2 = 0.01, norm = 1, {h1v} ← {0}
Result: Find U,Θ, [[U ]], [[Θ]],C
Build mesh of the thermo-elastic problem and initialize boundary
conditions: U∗

I , t
∗
I , Θ

∗, q∗;
Form load vector: {F}0 ;
for n = 1, . . . , N time steps do

{F}n ← {F}n+1 ;
while (norm ≥ tol1) do

[T ]n+1
(k−1) ← [T ]n+1

(k) , where [T ]n+1
(k) is computed based on

{hnv} ;
{R}n+1

(k−1) ← {R}n+1
(k) ;

{�}n+1
(k+1) ← {�}n+1

(k) +
( [C]

�t
+ [K ] − [T ]n+1

(k)

)−1

{R}n+1
(k)

;
norm ← ‖{R}n+1

(k) ‖
end
{U }n ← {U }n+1 ;
{Θ}n ← {Θ}n+1 ;
if (‖{Θ}n+1 − {Θ}n‖ > tol2) then

{hn+1
v } ← {0};

else
{hn+1

v } ← {hnv} + {�t};
end
[B]n ← [B]n+1(〈Θ〉n+1 , [[U3]]n+1) ;
{C}n ← {C}n+1 ;

end
Algorithm 1: Numerical scheme for the solution of
the hygro-thermo-mechanical problem with a staggered
approach.

6 Application to photovoltaics

In this section we propose the simulation of the two tests pre-
scribed by international standars [4], namely the damp heat
test and the humidity freeze test. While the former allows the
complete uncoupling between the solution of the thermo-
mechanical problem from moisture diffusion and allows the
derivation of a closed form solution useful for benchmark-
ing, the latter requires the present fully-coupled solution
scheme. Moreover, the role of a temperature-dependent dif-
fusion coefficient and the role of cohesive cracks in Silicon
are investigated, in comparison to experimental results.

6.1 Damp heat test

Let us consider a laminate of span L = 125 cm and made of
a Glass-Glass structure separated by EVA as in Fig. 6. The
thickness of each glass is 3 mm, while the thickness of the
EVA is 0.5 mm. In this laminate, moisture is diffusing from
the free edges towards the centre, since glass is not permeable
to moisture.
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Fig. 6 Sketch of the damp heat test

As far as the initial and boundary conditions are con-
cerned, let us consider the prescriptions by international
standards [4] for the damp heat test, that is, a constant
temperature of 85 ◦C and an air relative humidity of 85%.
This relative humidity corresponds to a moisture content
c∗ = 0.55 g/cm3 imposed at the free edges of the laminate,
i.e., for x1 = 0 and x1 = L , where x1 is the distance from
the left edge of the PV module.

Since temperature is held constant, the problem of
diffusion can be solved independently from the thermo-
mechanical problem, considering a constant diffusivity D =
5×10−5cm2/s corresponding to 85 ◦C. For this special case,
the analytical solution was obtained in [12] and it is used as
a benchmark for our computational scheme:

c(x1, t) = c∗ − 4c∗

π

∞∑
k=0

1

(2k + 1)
sin

(
(2k + 1)πx1

L

)

× exp

(
− (2k + 1)2π2Dt

L2

)

(45)

After 1000 h, the predicted moisture concentration is
shown in Fig. 7a and its distribution in the EVA layermatches
exactly the reference one in Fig. 7b.

6.2 Humidity freeze test

In this test requested by international standards [4], PVmod-
ules simply supported along their edges are subjected to a
cycling temperature from −40 up to 85 ◦C with the follow-
ing ramps (see also the sketch in Fig. 8):

θ∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ∗
1

t∗1
t 0 ≤ t < t∗1

θ∗
1 t∗1 ≤ t < t∗2

θ∗
2 − θ∗

1 − θ∗
2

t∗3 − t∗2
(t∗3 − t) t∗2 ≤ t < t∗3

θ∗
2 t∗3 ≤ t < t∗4
θ∗
2

t∗5 − t∗4
(t∗5 − t) t∗4 ≤ t < t∗5

where θ∗
1 = 85◦C, θ∗

2 = −40◦C, and t∗1 = 0.5 h, t∗2 = 1.5 h,
t∗3 = 2.5 h, t∗4 = 3.5 h, t∗5 = 4.5 h.

Fig. 7 Moisture concentration in the encapsulant after 1000 h.
a Numerical simulation; b analytical solution by [12]

Fig. 8 Temperature profile of θ∗ imposed inside the climate chamber
during the humidity freeze test

The relative humidity in the air is kept constant at 85%
for the range of temperatures where its control is thermody-
namically feasible.

Due to a non constant temperature boundary condition,
this problem is much more difficult to be simulated as com-
pared to the damp heat test. In particular, the cohesive
properties of EVA have to be updated during the simula-
tion, as well as its diffusivity. More specifically, as far as the
Young’s modulus of EVA is concerned, the parameters α(T )

and a(T ) are herein considered to be temperature-dependent
as experimentally evaluated in [6] and interpreted via a frac-
tional calculus model in [21], see the plot for α(T ) and E(T )

in Fig. 9.
Regarding thediffusiveproperties,we consider the expres-

sion of D(T ) for EVA as reported in [12] and shown in
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Fig. 9 a EVA relaxation modulus versus time at various temperatures
in a double logarithmic scale; b temperature dependent fractional expo-
nent α(T ), adapted from [21]

Fig. 10. Such trends can be fitted according to the Arrhe-
nius type equation (16).

The critical crack opening, δ3, to be assigned to the
cohesive zone model can be estimated from published exper-
imental data in [13] reporting the variation of the Mode I
fracture energy with temperature. Since the fracture energy
G is the area below the traction-separation curve, the follow-
ing relation holds:

G =
∫ δc3

0
t3([[u3]], 〈θ〉)d[[u3]] = 1

2

(
δc3

)2
hEVA

EEVA(t, T )

Hence, G(T ) experimental data can be converted in δc3(T )

data based on the known temperature dependency of the
Young’s modulus of EVA as in Fig. 8a, evaluated for the
asymptotic condition of an infinite time. Based on these data,

Fig. 10 Diffusivity of various encapsulant materials versus the inverse
of temperature, adapted from [12]

Fig. 11 a EVA cohesive energy from [13]; b critical gap opening ver-
sus temperature (Tref = 25 ◦C)

we obtain the correlations shown in Fig. 11 and used as input
for the numerical simulations.

A sketch of the cross-section of a PV mini-module sim-
ulated in the present study and containing 3 solar cells is
shown in Fig. 10. The lateral size of each Silicon cell is
125 mm and the the interspace between two cells is 2 mm.
The module is made of a glass superstrate with thickness
hG = 4 mm, an encapsulating polymer layer (EVA) with
thickness hEVA = 0.5 mm, the Silicon solar cell with thick-
ness hSI = 0.166 mm, another layer of EVA with the same
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Table 1 Material parameters for the layers

E (GPa) α ρ (Kg/m3) cε (W/mK) k (J/mKg)

Glass 73 8e − 6 2300 500 0.8

Si 130 2.49e − 6 2500 715 148

B.S. 2.8 5.04e − 5 1000 300 0.36

Fig. 12 Sketch of the cross-section of a PV mini-module used in the
simulation (not in scale)

thickness as the previous one, and finally a thin backsheet
made of an ethylene tetrafluoroethylene core with silicon
nitride coating (isovolta Icosolar T 2754), with thickness
hBS = 0.1 mm. Thermal and mechanical parameters of each
layer are collected in Table 1 and are taken from [5,6]. Since
moisture penetrates from the backsheet and percolates along
the interspace between solar cells, in the numerical simula-
tions it is possible to impose a constant value of moisture
concentration, c∗, directly at the boundary of each solar cell
embedded in the PV module (Fig. 12).

The temperature distribution inside a portion of the PV
module cross-sectionnear oneof the free boundaries is shown
in the contour plots in Fig. 13 for selected time steps. After
the first ramp from 0 to 85 ◦C completed after 0.5 hours, heat
has diffused inside the panel and temperature is almost uni-
form everywhere and equal to 85 ◦C. During the subsequent
decreasing ramp from 85 to−40 ◦C, the Silicon cells and the
EVA around them remain warmer than the other component.
This temperature mismatch progressively shrinks during the
further stage of the simulation at constant temperature θ∗.
This trend is quantified in Fig. 14 by plotting the tempera-
ture along a vertical line at x1 = 2 mm from the free edge of
the laminate, through the panel thickness.

The evolution of moisture concentration in the encapsu-
lant vs. time by using a time-dependent diffusivity is shown
in Fig. 15a. The same simulation with a constant diffusiv-
ity D = 5 × 10−5 cm2/s corresponding to 85◦C is shown
for comparison in Fig. 15b. As it can be noticed, the proper
update of the diffusivity based on the actual temperature of
EVA during the simulation provides very different results
from those based on a constant diffusivity. In particular,

Fig. 13 Contour plot of temperature inside the module for selected
time steps a after 0.5 h, b after 1.5 h, c after 2 h, d after 2.25 h

Fig. 14 Evolution of temperature over a vertical line at x1 = 2 mm
from the lateral side, during the first ramp from 0 to 85 ◦C
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Fig. 15 Evolution of moisture concentration in the EVA encapsulant
for an updated or a constant diffusivity a D dependent on T , b D = D
(85 ◦C)

moisture diffusion is a much slower phenomenon than what
expected by the approach presented in [12],which is based on
the use of a constant diffusivity equal to that at the maximum
temperature experienced during the test.

The time step used for the simulation of the humid-
ity freeze test is �t = 18 s. At each time step, the
Newton-Raphson iterative schemeused to solve the nonlinear
thermo-mechanical block has a quadratic convergence and it
requires a maximum of four iterations to satisfy the condi-
tion of a relative residual error norm less than the machine
precision. For given variables computed from the solution of
the thermo-mechanical block, the moisture diffusion block
is linear and therefore it converges in one single iteration.
In terms of CPU time, results are shown in Fig. 16, where
the plot of the logarithm of CPU time for the solution of the
nonlinear thermo-mechanical block, the moisture diffusion
block, and the total time of the staggered scheme is shown
for the first 90 time steps of the simulation of the humidity
freeze test, corresponding to the first temperature ramp from
0 up to 85 ◦C. Simulations have been run on the server Pro-
liant DL585R07 (128 GB Ram, 4 processors AMD Opteron
6282 SE 2.60 GHz, 16 cores). In the case of delamination,

Fig. 16 CPU time requested for the solution of the two blocks of the
staggered scheme and for the total problem versus number of time steps

Fig. 17 Electroluminescence image of the minimodule after three-
point bending and before the humidity freeze test. Two main cracks
in the central solar cell are shown by arrows

which has not been observed in the simulation, the update
of the EVA fracture energy based on the moisture content
would require a further solution of the thermo-mechanical
problem.

The proposed numerical method can be also employed to
simulate the effect of cracks in Silicon on the evolution of
moisture concentration. To have a benchmark experimental
result to compare with, minimodules composed of 3 × 3
multicrystalline solar cells with glass cover were realized in
the Institute for Solar EnergyResearch of Hamelin, Germany
(courtesy of Dr. M. Köentges) and were subjected to a three-
point bending test to induce cracks in the central solar cell,
see Fig. 17.

Thisminimodulewas then subjected to the humidity freeze
test inside a climate chamber at Politecnico di Torino, Italy.
Electroluminescence images taken regularly during the test
(the reader is referred to [22] for more details about this
nondestructive technique) show electrically damaged areas
(black region) near the crack, see the EL image after 2400
h of testing in Fig. 18a. This electric degradation is presum-
ably induced by chemical oxidation of the grid line deposited
on the surface of the solar cell, enhanced by moisture. The
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Fig. 18 a Electroluminescence image showing electrically damaged
areas in black; b Moisture concentration inside the EVA encapsulant.
Experimental results and numerical predictions correspond to the sce-
nario after 2400 h of humidity freeze test

presence of a crack appears to be relevant, since all the
other solar cells show much lower degradation, mostly in
form of dimmer areas at the edges of the solar cells due
to moisture diffusion from the backsheet through the EVA
interspace.

To prove that cracks can enhance electric degradation due
to moisture diffusion through them, a numerical simulation
is performed according to the present computational frame-
work by imposing the value of c∗ = 0.055 g/cm3 along the
back side of the PVmodule. Diffusion can take place now not
only along the EVA interspaces, but also along the two chan-
nel cracks, where 3D diffusive finite elements are inserted.
Moisture concentration inside the EVA layer above the solar
cells is shown in Fig. 18b after 2400 h of humidity freeze
test. The presence of cracks enhances moisture diffusion in
the central cell, with a contour plot of moisture concentration
that correlates very well with the EL image of the elec-
trically damaged areas (compare the red areas in Fig. 18b
having c = c∗ with the black areas in Fig. 18a, confirming
that electric degradation can be significantly enhanced by the
presence of cracks.

7 Conclusions and outlook

A comprehensive finite element computational framework
for the simulation of coupled hygro-thermo-mechanical
problems in photovoltaic laminates has been proposed. To
achieve the computational efficiency required to simulate
large scale commercial PV modules consisting of up to 60
solar cells, theEVAencapsulant layers have beenmodelled as
zero-thickness interface elements whose traction-separation
relations take into account the complex thermo-visco-elastic
rheological response of the polymer as per experiments.
Moreover, a staggered solution scheme has been proposed
and implemented in FEAP [23] to solve the partial differen-
tial equations governing heat transfer and thermo-elasticity
in the three-dimensional domain of the laminate, and then
predict moisture diffusion in the two dimensional domains
represented by the EVA layers and channel cracks in Silicon
by considering a material diffusivity dependent on tem-
perature and crack opening. Fractional calculus has been
used to model the visco-elastic behaviour of the EVA mate-
rial layer, while moisture diffusion has been assumed to
be of classical type. The use of fractional derivatives in
partial differential equations (PDEs) related to diffusion is
also a viable modelling approach and it is usually related
to a diffusion process taking place across a non-Euclidean
domain, see e.g. [24]. However, due to a lack of specific
experimental evidence of fractal diffusive domains, the clas-
sic PDE for diffusion has been considered in the present
study.

The proposed methodology has been successfully applied
to the simulation of the qualification tests required by the
International Electrotechnical Commission [4], namely the
damp heat test and the humidity freeze test. In the latter, due
to a continuous variation of temperature during the test, we
have shown that coupling between the thermo-mechanical
field and moisture diffusion has to be taken into account to
correctly predict the spatio-temporal evolution of moisture
in the PV module. Moreover, percolation through channel
cracks in Silicon solar cells has been found to significantly
enhance moisture diffusion. This trend has been confirmed
by experimental tests performed by the present authors and
showing an increased electric degradation in cracked solar
cells with respect to the intact ones.

With the present computational tool available, further
developments may regard the simulation of other moisture
diffusion phenomena observed in experiments, in addition to
percolation through Silicon channel cracks and to diffusion
along the EVA layers. As shown in [2], in fact, imperfect
sealing of the region near the main electric conductors (bus-
bars) soldered on the surface of Silicon can further enhance
percolation along them, creating preferred streams for mois-
ture diffusion and chemical oxidation, see Fig. 19. To account
for this type of degradation, a possible method is to model
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Fig. 19 Electroluminescence image of a PVmodule showingmoisture
degradation along the busbars, due to imperfect sealing (adapted from
[2])

inhomogeneous diffusivity properties inside the EVA layer
above the busbars by specifying an initial separation of the
EVA interface.
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Appendix

The expression of the matrices entering the discretized weak
forms (23) and (24) are:

[
Muu

e

]
aIbJ =

∫
Re

ρΦbΦadV (46a)

[Kuu
e ]aIbK =

∫
Re

CI J K L
∂Φb

∂xL

∂Φa

∂xJ
dV (46b)

[
Kuθ
e

]
abK =

∫
Re

ΦaβδK L
∂Φb

∂xL
dV (46c)

{Fu
e }aI =

∫
∂Re

t∗I ΦadA (46d)

[
Mθθ

e

]
ab =

∫
Re

ρcΦbΦadV (46e)

[
K θθ
e

]
ab =

∫
Re

k
∂Φa

∂xL

∂Φb

∂xL
dV (46f)

[
Cθu
e

]
bKa = −

∫
Re

T0βδK L
∂Φb

∂xL
ΦadV (46g)

{
Fθ
e

}
a =

∫
∂Re

q∗ΦadA (46h)

for 1 ≤ a, b ≤ N and 1 ≤ I, J, K ≤ 3. The vector { f ue }
and { f θ

e } in components read:

{ f ue }bK = −
∫
Se
tJ ([[UL ]], 〈Θ〉)Ψa�a JbK dA (47a)

{ f θ
e }b =

∫
Se
q([[UL ]], 〈Θ〉)Ψa�abdA (47b)

for 1 ≤ b ≤ 2S and 1 ≤ K ≤ 3where it is remarkable to note
that [Cθu

e ] = −T0[Kuθ
e ]T . The expression of the matrices in

(25) are:

[Ke] = [P]T
[[Kuu

e ] [
Kuθ
e

]
0 [K θθ

e ]

]
[P] (48a)

[Ce] = [P]T
[

0 0

[Cθu
e ] [Cθθ

e ]

]
[P] (48b)

[Me] = [P]T
[[

Muu
e

]
0

0 0

]
[P] (48c)

{Fe} = [P]T
({Fu

e }
{Fθ

e }
)

(48d)

{ fe} = [P]T
({ f ue }

{ f θ
e }
)

(48e)

The matrices entering the discretized weak form related to
moisture diffusion have the following expression:

[Be]ab =
∫
Se
D

∂Ψa

∂xI

∂Ψb

∂xI
dA (49a)

[Ae]ab =
∫
Se

ΨaΨbdA (49b)

The components of the tangent operator in Eq. (42) are:

[
∂{ f ue }aI
∂{Ue}bK

]n+1

(k)
=
[
− ∂

UbK

∫
Se
tJΨa�a JbK dA

]n+1

(k)

=

−
∫
Se

Ψc�cLbK

[
∂tJ

∂[[UL ]]
]n+1

(k)
Ψa�a JbK dA (50)

[
∂{ f ue }aI
∂{Θe}b

]n+1

(k)
=
[
− ∂

Θb

∫
Se
tJΨa�a JbK d A

]n+1

(k)

=

−
∫
Se

ΨkMkb

[
∂tJ
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]n+1

(k)
Ψa�a JbK dA (51)
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∂{ f θ

e }a
∂{Θe}b
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(k)
=
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∂
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∫
Se
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(k)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Comput Mech (2016) 57:947–963 963

=
∫
Se

ΨkMkb

[
∂q

∂ 〈Θ〉
]n+1

(k)
Ψd�dadA (52)

and

[
∂{ f θ

e }a
∂{Ue}bI

]n+1

(k)
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∂

UbI
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Se
qΨd�dad A
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∫
Se
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where:

[
∂tJ

∂[[UL ]]
]

=
⎡
⎣ K1(t, 〈Θ〉)χ1 0 0
0 K2(t, 〈Θ〉)χ2 0
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[

∂q
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(
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δc3
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χ3 (54c)

[
∂q
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⎜⎜⎝

0
0

−k0

(
1 − 1

δc3

)
〈Θ〉 χ3

⎞
⎟⎟⎠ (54d)

χI (1 ≤ I ≤ 3) being the characteristic function such that
χI = χ{[[UI ]]∈JI }.

[M]ab for (1 ≤ a ≤ S(e), 1 ≤ b ≤ 2S(e)) is the mean
operator computing the average temperature across the EVA
layer, i.e.

[Me]abΘb = 〈Θb〉 . (55)
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