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Abstract. We report numerical investigation of the short range interaction influence on
the two-dimensional quantum scattering of two dipoles. The model simulates two ultra-
cold polar molecules collisions in two spatial dimensions. The used algorithm allows us
to quantitatively analyse the scattering of two polarized dipoles with account for strongly
anisotropic nature of dipolar interaction. The strong dependence of the scattering total
cross section on the short range interaction radius was discovered for threshold collision
energies. We also discuss differences of calculated scattering cross section dependencies
for different polarisation axis tilt angles.

1 Introduction

In recent years, two-dimensional (2D) systems with anisotropic interactions have been of increasing
interest. One can mention a gas of dipolar atoms or ultracold polar molecules in quasi-2D geometry of
magneto-optical traps [1] and dipolar Rydberg atoms [2]. Beside the gas of polar molecules long range
dipolar interaction also arises in a gas of 2D dipolar excitons in 2D quantum well of semiconductor
heterostructures. Dipolar exciton gas quantum dynamics [3–5] and Bose-Enstein Condensate [6] have
been also intensively investigated in recent years. Investigation of the dipolar diatomic molecules are
also actual due to the prospects of their possible applications as cubits for the quantum computing [7].

Dipole-dipole interactions are long-range and strongly anisotropic, that leads to the possibility of
the creation of exotic long-range quantum systems with dipolar gases [8, 9]. Particularly, anisotropic
superfluidity [10], 2D dipolar fermions [11] and dipolar few-body complexes [12] have been investi-
gated. For a recent progress in the physics of few-body systems with long-range interactions we refer
the reader to the comprehensive review [13].

2 Two-dimensional dipole-dipole scattering

We model the polar molecules collisions in a layer of a pancake-shaped optical trap with dipole-
dipole scattering in two spatial dimensions. The quantum scattering in the plane is described by the
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2D Schrödinger equation in polar coordinates (ρ, φ)
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Ψ (ρ, φ) = EΨ (ρ, φ) (1)

with the scattering boundary conditions in the asymptotic region ρ→ ∞:

Ψ (ρ, φ)→ eiqρ + f
(
q, φ, φq

) eiqρ

√
−iρ
. (2)

The interaction potential U (ρ, φ) reads

U(ρ, φ) = VS R(ρ) + Vdd(ρ, φ), (3)

VS R(ρ) =
{
∞, ρ � ρS R,
0, ρ > ρS R,

(4)

where the isotropic short-range potential VS R(ρ) is modeled by an infinitely high potential barrier at
the origin, that was used in a number of papers of other the authors (see [14]). Vdd(ρ, φ) denotes the
long-range and strongly anisotropic interaction potential of two arbitrarily oriented dipoles:

Vdd (ρ, φ;α, β, γ) =
d1d2

ρ3 [sin(α) sin(γ) cos(β)+ cos(α) cos(γ)− 3 sin(α) sin(γ) cos(φ) cos(φ− β)], (5)

where di, (i = 1, 2) are dipole moments. The angles α, γ denote to the tilt of each dipole d1, d2 with
respect to the Z axis (that is perpendicular to the plane of the motion) and β is the angle between the
dipoles polarisation planes Zd1, Zd2 (see Ref. [15]).

If scattering amplitude is calculated the differential scattering cross section and the total cross
section are defined as
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dφq dφ ≡ 1
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∣∣∣ f (q, φ, φq)
∣∣∣2 dφq dφ, (6)

where dΩ = dφ dφq and the angle φq defines the direction q/q of the incident wave.
To integrate the problem (1)–(2) we use the algorithm applied in Refs. [15, 16] for the anisotropic

quantum scattering in two dimensions and in Refs. [17, 18] for the investigation of bound state prop-
erties of 2D Hydrogen atom and 2D exciton in a tilted magnetic field. Following the ideas of the
method suggested in Ref. [19] we choose the eigenfunctions ξm(φ) = eim(φ−π)/

√
2π = (−1)meimφ/

√
2π

of the operator h(0) = ∂2/∂φ2 as a Fourier basis for the angular-grid representation of the searched
wave-function Ψ (ρ, φ). We introduce the uniform grid φ j = 2π j/(2M + 1) (where j = 0, 1, . . . , 2M)
over the φ- and φq-variables and search the wave function as the expansion

Ψ(ρ, φ) =
1
√
ρ

2M∑
j=0

M∑
m=−M

ξm(φ)ξ−1
m jψ j(ρ) =

1
(2M + 1)

√
ρ

2M∑
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M∑
m=−M

eim(φ−φ j)ψ j(ρ), (7)

where ξ−1
m j = 2πξ∗jm/(2M+1) =

√
2πe−im(φ j−π)/(2M+1) is the inverse matrix to the (2M + 1)×(2M + 1)

square matrix ξ jm = ξm(φ j) defined on the angular grid.
This expansion reduces the 2D Schrödinger equation (1) to a system of 2M + 1 coupled ordinary

differential equations of the second order:
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with the “left-side” boundary condition ψ j(ρ → 0) → const × √ρ ( j = 0, 1, . . . , 2M) and with the
scattering boundary condition in the asymptotic region ρ→ ∞ of the form

1
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. (9)

The key advantages of the algorithm are summarized below. Any local interaction in this repre-
sentation is diagonal. In Ref. [15] much faster convergence over the angular grid nodes number than
partial wave representation was proved. After the finite-difference approximation of the boundary-
value problem (8–9) the obtained block matrix can be stored in a compressed form, which allows
optimal resource using. The resulting algebraic system is efficiently solved by a fast implicit matrix
algorithm based on the idea of the block sweep algorithm.

3 Short-range interaction influence on 2D dipolar scattering

The present study evidenced the strong dependence of the total cross section (6) on the short range
cut-off radius ρS R for threshold energies of dipole-dipole collisions. When the polarization axis is
aligned along the z-axis the dipole-dipole interaction is isotropic and repulsive, no resonances occurs,
because repulsive dipolar term prevents particles to getting too close to each other.

For a tilted (α = γ = 0.25π) polarization axis as well as for extremal case (α = γ = 0.5π) of
polarization axis lying in the plane of particles motion, we discovered strong dependence of the total
cross section on the cut-off radius ρS R (4), which is illustrated in Fig. 1. The calculations were carried
out at the energy E = 10−5 a.u. and a dipolar length D = µd1d2/�

2 = 1. Note, that we study the case
of distinguishable particles collisions.

The sharp increases in total cross section appear due to the virtual bound states arising as the
interplay of the short-range (4) and long-range (5) potentials. It should be noted the existence of small
cusps for the following values of ρS R = 0.035 a.u., 0.0895 a.u., 0.42 a.u. For small values of ρS R a
resonance width decrease with simultaneous increase of their frequency are observed.
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Figure 1. The full cross section σ(ρS R) (6) dependence on the short range interaction radius ρS R (4) for the case
of polarized dipoles β = 0 for α = γ = 0.25π (a) and α = γ = 0.5π (b) at the energy E = 10−5 a.u. and a dipolar
length D = µd1d2/�

2 = 1. The quantities are given in units � = µ = 1.
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