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premixed curved flame under the influence
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The stability of premixed flames in a duct is investigated using an asymptotic
formulation, which is derived from first principles and based on high-activation-energy
and low-Mach-number assumptions (Wu et al., J. Fluid Mech., vol. 497, 2003,
pp. 23–53). The present approach takes into account the dynamic coupling between
the flame and its spontaneous acoustic field, as well as the interactions between the
hydrodynamic field and the flame. The focus is on the fundamental mechanisms
of combustion instability. To this end, a linear stability analysis of some steady
curved flames is undertaken. These steady flames are known to be stable when
the spontaneous acoustic perturbations are ignored. However, we demonstrate that
they are actually unstable when the latter effect is included. In order to corroborate
this result, and also to provide a relatively simple model guiding active control,
we derived an extended Michelson–Sivashinsky equation, which governs the linear
and weakly nonlinear evolution of a perturbed flame under the influence of its
spontaneous sound. Numerical solutions to the initial-value problem confirm the
linear instability result, and show how the flame evolves nonlinearly with time. They
also indicate that in certain parameter regimes the spontaneous sound can induce
a strong secondary subharmonic parametric instability. This behaviour is explained
and justified mathematically by resorting to Floquet theory. Finally we compare our
theoretical results with experimental observations, showing that our model captures
some of the observed behaviour of propagating flames.

Key words: acoustics, combustion, instability

1. Introduction

Combustion instability, also referred to as thermo-acoustic instability, arises due to a
strong interaction between the heat released by a flame and the acoustic fluctuations of
a combustion chamber. When the unsteady heat release rate and acoustic fluctuations
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are in phase, a small perturbation to the system will amplify according to the criterion
of Rayleigh (1878). Combustion instability may occur in numerous real-life situations
such as ramjet engines (Yu, Trouvé & Daily 1991), rocket engines (Harrje & Reardon
1972) and, more generally, any type of gas turbine engine (Lieuwen & Yang 2005).
The two-way interaction between the flame and the acoustics can lead to strong
self-sustained fluctuations, which may have disastrous effects on the components of
an engine, for example by causing vibrations and structural fatigue. It is therefore
important to suppress the instability by either passive (Schadow & Gutmark 1992)
or active (Candel 2002; Dowling & Morgans 2005) control. A significant amount
of research has thus been undertaken, both theoretical (e.g. Bloxsidge, Dowling &
Langhorne 1988; Dowling 1995) and experimental (e.g. Poinsot et al. 1987; Durox
et al. 2009; Steinberg et al. 2010).

Combustion is intricately multiscale in its nature, comprising a very small flame
zone (where most of the thermal diffusion occurs) and an even thinner reaction sheet
(where chemical reactions take place), together with the hydrodynamic and acoustic
zones. The acoustic zone is comparable with the (longitudinal) size of the chamber,
while the scale of hydrodynamic motion may range from the Kolmogorov length to
the chamber size. Resolving such a vast range of scales presents a major challenge to
direct numerical simulations of combustion in a realistic combustor. For this reason,
simplified theoretical models capturing qualitatively and quantitatively the main
characteristics of combustion instability are indispensable. Combustion instability
is closely related not only to the intrinsic instabilities of a flame, including the
Darrieus–Landau (DL) instability (Darrieus 1938; Landau 1944; Pelcé & Clavin 1982),
which is induced by the gas-expansion effect, but also to the diffusional–thermal
instability, which arises primarily due to differential diffusion of heat and chemical
species (Sivashinsky 1977). These instabilities are controlled by the mean heat release
rate q and the Lewis number Le, respectively. Both instabilities cause the flame to
wrinkle, thereby producing unsteady heat release, which may excite acoustic modes
through the thermo-acoustic effect. On the other hand, the oscillatory acoustic velocity
advects the flame front, which is a kinematic effect, and furthermore the acoustic
acceleration modulates the flame dynamically through the unsteady Rayleigh–Taylor
(RT) effect. This mechanism was first described by Markstein (1953), Markstein &
Squire (1955) and Raushenbakh (1961), and analysed more recently by Searby &
Rochwerger (1991) and Pelcé & Rochwerger (1992).

Combustion instability has been studied extensively using a semi-empirical approach
(Ducruix et al. 2003; Lieuwen 2003), where phenomenological models are proposed
for the relations between the unsteady heat release and acoustic fluctuation, bypassing
detailed physical and/or chemical processes. The most direct strategy is to characterise
such relations by transfer (or more generally flame-describing) functions (Ducruix,
Durox & Candel 2000; Noiray et al. 2008), and systematic experiments are then
performed to extract the dependence of these functions on the frequency (and
amplitude) of the sound. A somewhat less direct semi-empirical modelling is based
on the so-called G equation (see e.g. Markstein 1964; Kerstein, Ashurst & Williams
1988; Dowling 1999). The latter governs kinematic advection of the flame front by
the flow and acoustic velocity, and thus allows the flame surface area and hence the
unsteady heat release to be calculated. Models of this kind have been further extended
by Dowling (1999), Schuller, Durox & Candel (2003) and Lieuwen (2005), and were
found to give reasonably good predictions. However, such models do not take into
account the dynamic effect of the acoustic acceleration on the flame. Furthermore,
they ignore the so-called hydrodynamic effect, i.e. the influence of gas expansion on
the ambient flow motion, and hence exclude the DL instability.
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It is worth noting that there is an important difference between a freely propagating
flame and an anchored flame in their response to acoustic fluctuations. For the former,
the longitudinal acoustic velocity merely causes a rigid oscillation of the flame without
changing its shape or surface area, while the acoustic pressure makes a small O(M)
correction to the burning velocity (where M is the Mach number). The mechanism of
wrinkling is solely due to the dynamic response to the acoustic acceleration, which
acts on the flame (i.e. a density ‘discontinuity’) to create the unsteady RT effect.
Experimental (Searby 1992; Clanet & Searby 1998; Clanet, Searby & Clavin 1999;
Al-Shahrany et al. 2006) and numerical (Gonzalez 1996) studies indicate that the
dynamic effect of the acoustic acceleration and the DL instability are both important.

In contrast, an anchored flame may change its shape even when it is perturbed by
a transversely uniform acoustic velocity. The G equation approach has been applied
to anchored flames to account for this kinematic effect. The dynamic RT and DL
mechanisms both operate, but are ignored because of the iso-density approximation.
It has been argued that the kinematic advection may be dominant for anchored flames
in high-speed flows, where a strong velocity tangential to the flame advects wrinkles
along the flame. Several authors (e.g. Preetham, Santosh & Lieuwen 2008; Shin &
Lieuwen 2013) discussed extensively the validity of the iso-density approximation
underpinning the G equation approach, and pointed out certain applications, where
the density jump across the flame is actually quite small so that the approximation
may be justified. It is interesting to note that the hydrodynamic effect of density jump
has been partially taken into account by the ‘integral technique’, which was proposed
by Marble & Candel (1979) and Yang & Culick (1986) to study, respectively, the
interaction of an acoustic wave with anchored flames and the combustion instability in
a laboratory ramjet combustor. However, the approximation of averaging the velocity
excludes DL instability from consideration. The DL instability has also been observed
experimentally for anchored flames (see Searby & Truffaut 2001; Searby, Truffaut
& Joulin 2001). A recent preliminary study (Luzzato et al. 2013) indicates that its
effect on flame–acoustic coupling can be significant in certain cases.

The DL instability has been extensively studied using the asymptotic approach
based on the large-activation-energy assumption (Matkowsky & Sivashinsky 1979;
Matalon & Matkowsky 1982; Pelcé & Clavin 1982), which allows the flame to be
treated as a hydrodynamic discontinuity. The weakly nonlinear DL instability was
investigated in the small-heat-release limit (q � 1) by Michelson & Sivashinsky
(1977) and Sivashinsky (1977), who derived what is now referred to as the
Michelson–Sivashinsky (MS) equation to describe the evolution of a flame front.
Both numerical (Cambray & Joulin 1994) and theoretical (Bychkov 1998) studies
have been undertaken, emphasising the importance of DL instabilities in combustion
problems. Detailed reviews of the subject can be found in Clavin (1985, 1994)
and Bychkov & Liberman (2000). Rigorous mathematical study of the steady states
(curved and flat) of the MS equation and their linear stability has been performed by
Vaynblat & Matalon (2000a,b). A general hydrodynamic theory of flames pertaining
to low-Mach-number flows was presented by Matalon & Matkowsky (1982). As
the resulting system, consisting of the Euler equations governing the flow coupled
with a flame-front equation, is highly nonlinear, numerical solutions appeared only
recently (Helenbrook & Law 1999; Rastigejev & Matalon 2006; Creta & Matalon
2011; Altantzis et al. 2012). It has been found that a slightly perturbed flat flame
develops wrinkles owing to DL instability. Its long-time nonlinear behaviour depends,
inter alia, on H, the transverse size of the domain relative to the flame thickness. For
small H, the flame evolves into steady cellular structures consisting of cusped crests,
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Instability of a curved flame under the influence of its spontaneous sound 183

whereas for large H, a steady state is never reached, and instead, wrinkles develop in
the region near a trough and propagate towards the crests. Application of the theory
to cases with a turbulent oncoming flow indicates that DL instability modulates flame
propagation substantially, and thus plays a significant role in turbulent combustion
(Creta & Matalon 2011; Fogla, Creta & Matalon 2013). All these studies excluded
acoustics from consideration since their main focus was on flame–flow interactions
in open space.

In order to understand the influence of acoustic fluctuations on the dynamics of
flames subject to DL instability, Markstein & Squire (1955) first considered the
stability of a flat flame in an externally imposed acoustic field, and their analysis has
since been extended and refined by many authors (e.g. Searby & Rochwerger 1991;
Clanet & Searby 1998; Bychkov 1999; Aldredge 2005). It was shown that externally
imposed sound waves with a moderate amplitude may stabilise an intrinsically
unstable flat flame, but at a high enough amplitude they trigger secondary parametric
instabilities. However, such studies did not take into account the back-action of the
flame on the acoustics, as they omitted the so-called spontaneous acoustic field, which
is generated solely by the unsteady flame itself rather than being imposed externally.

Spontaneous radiation of sound waves by the flame and their impact on the flame
were observed as early as the nineteenth century by Mallard & Le Châtelier (1882)
in their pioneering experiments to measure the laminar flame speed. The experiments
conducted by Markstein (1953) and Searby (1992) for a flame propagating in a
cylindrical tube revealed some remarkable consequences of the coupling of DL
instability and acoustic modes spontaneously excited by the flame. The first (and
possibly the only) mathematical investigation of the impact of spontaneous acoustic
fluctuations on the stability of a curved flame was made by Pelcé & Rochwerger
(1992), who showed that changes in the flame surface area drive an exponential
growth of the perturbation, as was proposed earlier by Raushenbakh (1961). However,
in their study, the flame profile was modelled in an ad hoc manner by a cosine
function of the transverse coordinate.

A self-consistent asymptotic theory describing acoustic–hydrodynamic–flame
coupling in the flamelet regime was developed by Wu et al. (2003, hereafter WWMP)
based on the work of Matalon & Matkowsky (1982). In the low-Mach-number limit,
the velocity and pressure fluctuations acquire the character of sound in the far field at
large distances from the flame front, indicating that an unsteady flame spontaneously
generates an acoustic field. For a flame confined in a long duct, the problem of
acoustic–flame coupling is governed by an asymptotic structure consisting of four
distinct regions, which describe the acoustics, the hydrodynamics, heat transfer
and chemical reaction, and more importantly the intricate interplay among them.
The resulting interactive system consists of the Euler equations (which govern the
hydrodynamics) coupled to the acoustic equations, along with an equation governing
the flame front. In this theory, the nature of the acoustic–flame interaction is brought
to light explicitly: flame wrinkling modulates its surface area and hence the heat
release to drive acoustic modes of the chamber, and the acceleration associated with
the sound wave in turn creates an unsteady RT effect, by which the sound wave
exerts a back-effect on the hydrodynamics and therefore on the flame. Thus, in a
confined domain, DL instability and acoustic fluctuations are intrinsically coupled,
and the instability of a premixed combustion is most likely to be different from the
situations where acoustics is (artificially) excluded; the latter case is of relevance
only for flames in unbounded domains, or when a flame ultimately evolves into a
steady state. The mathematical formulation of WWMP has been adapted in Wu &
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Law (2009) to investigate the interactions of a flat flame with weak turbulence in
the oncoming mixture. The theory was further generalised by Wu & Moin (2010)
to account for the influence of enthalpy fluctuations in the oncoming mixture on
flame–flow–acoustic interactions. In the applications considered in Wu et al. (2003),
Wu & Law (2009) and Wu & Moin (2010), the steady state is that of a flat flame, for
which the acoustic–flame coupling term is nonlinear: the acoustic source involves the
quadratic product of the gradient of the perturbed flame front, while the back-action
of the sound is represented by the product of the acoustic acceleration with the flame
front.

In the present paper, we apply the formalism of WWMP to steady curved flames.
In this case, a linear perturbation to the flame front necessarily induces a linear
acoustic disturbance, which simultaneously acts on the flame through a linear coupling
term. Our first and primary aim is to assess how the coupling changes the stability
properties predicted by ignoring the spontaneous acoustic perturbation. Our second
aim is to propose an improved model, which accounts for both the spontaneous
acoustics and DL instability. Such a model could be useful in designing and testing
active controllers to suppress the instability (Dowling & Morgans 2005). In the
present study, the model will be used to predict some key experimental observations
made by Searby (1992), especially the subharmonic parametric instability, which
remains poorly understood.

The rest of the paper is structured as follows. In § 2, the problem is formulated, and
the asymptotic description of the flame–flow–acoustic interaction is explained briefly.
The composite theory of second-order accuracy, formulated in Wu & Law (2009),
is summarised in § 2.1 to serve as a starting point for the present investigation. In
particular, we point out in § 2.2 that a perturbation to a curved flame would always
generate a spontaneous acoustic perturbation, and that the two are coupled in a
linear manner. In order to make analytical progress, in § 2.3 we make a simplifying
assumption of weak nonlinearity, which allows us to linearise the hydrodynamic
equations and jump conditions while retaining the geometric nonlinearity in the front
equation. This simplification, though not entirely justifiable by a systematic asymptotic
analysis, renders the problem analytically and computationally tractable, leading to
a relatively simple model capable of qualitatively predicting some key experimental
observations. The steady states of the simplified system are equivalent to those
of the MS equation when gravity is absent. An important parameter, γ , inversely
proportional to the flame thickness, will be introduced to classify the steady solutions.
These steady flames are known to be stable (see Vaynblat & Matalon 2000a,b)
when the spontaneous acoustic perturbations are ignored. In § 3, we perform a linear
stability analysis including the spontaneous acoustic perturbations, and demonstrate
that these steady flames are actually linearly unstable. In order to corroborate these
results and also to study the influence of nonlinearity, we derive in § 4 the evolution
equations governing the linear and weakly nonlinear development of the perturbed
flame coupled with the spontaneously generated acoustic field. Numerical methods
are developed to solve the coupled system. In § 5 we show that numerical solutions
of the initial-value problem not only confirm the linear instability of the steady
curved flames, but also describe how the flame evolves nonlinearly with time. In
particular, the results predict that the spontaneous sound of the flame induces a
secondary parametric instability as observed in the experiments of Searby (1992).
The onset of this instability is justified mathematically by resorting to Floquet theory.
Finally, in § 6, we summarise our results and briefly discuss their implications and
possible extensions. The mathematical formulation will first be presented for a full
three-dimensional rectangular duct, but will, for simplicity, be specialised to the
two-dimensional case from § 3, for which numerical computations will be carried out.
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2. Formulation and asymptotic description of the problem
We consider premixed combustion in a long duct with a width h∗ and length `∗�h∗.

The fresh mixture enters the duct at a constant mean velocity U∗−, and has a mean
density ρ−∞ and temperature Θ−∞. We assume for simplicity that the combustion
takes place through a one-step irreversible chemical reaction, and that the mixture,
consisting of a single deficient reactant and an abundant component, is Newtonian and
obeys the state equation for a perfect gas. The temperature rises to Θ∞ behind the
flame. A key parameter describing the reaction is the Zeldovich number,

β = E(Θ∞ −Θ−∞)
RΘ2∞

, (2.1)

where E is the dimensional activation energy and R is the universal gas constant. The
flame is characterised by a laminar flame speed UL, at which the flame propagates into
the fresh mixture, and an intrinsic thickness d = D∗th/UL, where D∗th is the thermal
conductivity, which is, along with the viscosity and mass diffusivity, determined by
the abundant component of the mixture. The reference length, time, velocity, density
and temperature are taken to be h∗/(2π), h∗/(2πUL), UL, ρ−∞ and Θ−∞, respectively.
The resulting non-dimensional space, time, velocity, density and temperature variables
are denoted by (x, y, z), t, u ≡ (u, v, w), ρ and θ . The non-dimensional pressure p
is defined by writing the dimensional pressure as ( p−∞ + ρ−∞U2

L p), where p−∞ is
the atmospheric pressure. The velocity, pressure, temperature and fuel mass fraction
Y satisfy the non-dimensional Navier–Stokes (NS) equations for reactive flows, with
the reaction rate Ω being described by the Arrhenius law,

Ω =Ω0ρY exp
{
β

(
1
Θ+
− 1
θ

)}
, (2.2)

where Θ+ = 1 + q is the adiabatic flame temperature, with q being the mean heat
release rate, and Ω0 is a constant, chosen such that the non-dimensional speed of
a flat flame is unity. In the resulting equations, representing conservation of mass,
momentum and energy, transport of the species and the state of the mixture, the
following parameters appear: the Prandtl number Pr, the Lewis number Le, the
activation energy β, the normalised gravitational force G = gh∗/(2πU2

L) in the x
direction, as well as the aspect ratio δ and the Mach number M, which are defined
as

δ = 2πd/h∗, M =UL/a∗, (2.3a,b)

where a∗ is the speed of sound.
Asymptotic theories for combustion have been developed by assuming a large

activation energy, β� 1, plus the requirement that the Lewis number Le is close to
unity, or more precisely

Le= 1+ β−1l with l=O(1). (2.4)

The reaction takes place in a thin region with a width of O(δ/β). On the scale of
δ, the flame front appears as an interface separating the burnt and unburnt materials,
and can be represented mathematically by x= f (y, z, t), as illustrated in figure 1. It is
convenient to formulate the problem in the flame frame of reference (ξ , η, ζ , τ ) by
introducing

ξ = x− f (y, z, t), η= y, ζ = z and τ = t, (2.5a–d)
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y

Non-dimensionalised coordinates

BurntUnburnt
x

z

FIGURE 1. A diagrammatic illustration of the problem and the definition of the mean
flame position M (dashed line) and σ (normalised).

and writing the velocity field as u = ueξ + v, where eξ is the unit vector in the ξ
direction. The reader is reminded that the explicit parametrisation x = f (y, z, t) of
the flame is possible only before flame folding takes place; if the latter occurs, the
formulation must be recast in terms of a level set function, φ(x, y, z, t), introduced
such that the flame front is specified as the contour φ(x, y, z, t) = 0, and at an
arbitrary point (x, y, z), φ represents the distance of this point from the flame (see
e.g. Williams 1985).

The hydrodynamic theory of flames (Matalon & Matkowsky 1982; Pelcé & Clavin
1982) was formulated in the so-called flamelet regime and for low-Mach-number flows,
which correspond to the assumptions that

δ� 1 and M� 1. (2.6a,b)

The flame–flow interaction involves three asymptotic regions (figure 2), i.e. the
reaction, preheat and hydrodynamic zones corresponding to ξ = O(δ/β), O(δ) and
O(1), respectively. The reaction and preheat zones constitute the inner structure of the
flame. Through the gas expansion associated with heat release, the flame impacts the
fluid motion in an O(1) region on each side of the flame. The motion on each side
is incompressible to leading order, but the density R takes different constant values,
namely

R=
{

R+ = (1+ q)−1 if ξ > 0,
R− = 1 if ξ < 0,

(2.7)

while the temperature, to leading order, is defined by Θ = 1/R. The solution for the
flow field and flame front expands as

(u, v, p, f )= (u0, v0, p0, f0)+ δ(u1, v1, p1, f1)+ · · · . (2.8)

The leading-order flow field (u0, v0, p0) is governed by the Euler equations, and the
O(δ) correction satisfies the linearised Euler equations with the viscous correction
appearing as inhomogeneous terms. Across the flame front ξ = 0, there exist jumps in
the leading-order velocity and pressure as well as in their O(δ) corrections. One may
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O(1)
Hydrodynamic zone

Reaction zone

Acoustic zone

Acoustic zone

Preheat zone

FIGURE 2. (Colour online) Different asymptotic zones.

combine the first two terms to formulate a composite approximation accurate up to
O(δ), in which case u and v satisfy the NS equations and the jump conditions

[u]+− = q[1+ (∇̃f )2]−1/2 + δJu, (2.9)

[v]+− = −q∇̃f [1+ (∇̃f )2]−1/2 + δJv, (2.10)
[p]+− = −q+ δJp, (2.11)

where the gradient operator ∇̃ = (∂/∂η, ∂/∂ζ )T, and [ ]+− denotes a jump across the
flame front, defined such that, for any function φ(ξ, η, ζ , τ ),

[φ]+− = φ(0+, η, ζ , τ )− φ(0−, η, ζ , τ ). (2.12)

The O(δ) terms in the jumps were first derived independently by Matalon &
Matkowsky (1982), and by Pelcé & Clavin (1982) in the linear limit. Their
expressions have not been written explicitly for brevity but can be found in Wu
& Law (2009). The Euler equations are coupled with a flame-front equation (Matalon
& Matkowsky 1982)

∂f
∂τ
= u(0−, η, ζ , τ )− v(0−, η, ζ , τ ) · ∇̃f − [1+ (∇̃f )2]1/2 + δMa(∇̃2f + Γs), (2.13)

where the expression for Γs can be found in Matalon & Matkowsky (1982) and Wu
& Law (2009). The Markstein number Ma is given by

Ma = 1+ q
q

ln(1+ q)+ l
2

∫ ∞
0

ln(1+ q e−x) dx (2.14)

for a one-step irreversible Arrhenius reaction (Clavin & Williams 1982). Note that the
normal burning velocity is defined with respect to the fresh mixture just upstream of
the flame. As discussed in Clavin & Williams (1982), and in more depth in Clavin
& Graña Otero (2011), a normal burning velocity may alternatively be defined in the
burnt mixture just downstream of the flame, in which case a different expression for
Ma would appear.
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188 R. C. Assier and X. Wu

2.1. Flame–flow–acoustic interaction theory of Wu et al. (2003)
It was shown in WWMP that the longitudinal velocity u exhibits a jump across the
hydrodynamic zone, implying that an unsteady flame would generate a spontaneous
sound. In a long duct, an outer acoustic region corresponding to ξ = O(1/M) arises.
The spontaneous sound also acts on the flame. The flame–flow–acoustic coupling
is described by four asymptotic regions. With the preheat and reaction zones being
treated analytically, the direct flame–acoustic interaction is between the acoustic and
hydrodynamic regions.

2.1.1. The acoustic zone
In view of its longitudinal size, the acoustic field is described by the stretched

variable ξ̃ =Mξ . The flow quantities are expanded in terms of M. Among them, the
acoustic velocity ua and pressure pa are introduced by writing

u=U± + ua(ξ̃ , τ )+O(M), p=M−1{pa(ξ̃ , τ )− RGξ̃} +O(1), (2.15a,b)

and they are found to satisfy the linear equations

∂pa

∂τ
+ ∂ua

∂ξ̃
= 0, R

∂ua

∂τ
+ ∂pa

∂ξ̃
= 0. (2.16a,b)

Across the hydrodynamic zone, the pressure pa is continuous, and the velocity ua
exhibits a jump, that is,

JpaK+− = 0, JuaK+− =Ja(τ )= q
{
[1+ (∇̃f )2]1/2 − 1

}
+O(δ), (2.17a,b)

where J K+− represents the jump across the hydrodynamic zone, defined such that, for
any function φ(ξ̃ , τ ), we have JφK+−= φ(0+, τ )− φ(0−, τ ), and the overbar denotes a
space average in the η–ζ plane. The leading-order part of (2.17) indicates that the
acoustic velocity jump is, to leading order, proportional to the surface area of the
flame front, a fact that has been known and used since Markstein (1970). The O(δ)
terms of (2.17) were given in Wu & Law (2009).

2.1.2. The hydrodynamic zone
In order to facilitate the matching with the acoustic field, the solution for the

velocity, pressure and flame front is decomposed as

p = M−1pa(0, τ )+ P± +
(
∂pa

∂ξ̃
(0±, τ )− RG

)
(F+ ξ)+ P,

u = U± + ua(0±, τ )+U, v =V, f = Fa + F,

 (2.18)

where Fa is chosen such that

F′a(t)=U− − 1+ ua(0−, t), (2.19)

with which the flame-front equation (2.13) becomes

∂F
∂τ
=U(0−, η, ζ )−V(0−, η, ζ ) · ∇̃F−

{
[1+ (∇̃F)2]1/2 − 1

}
+ δMa∇̃2F. (2.20)
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Instability of a curved flame under the influence of its spontaneous sound 189

Here we have retained only the ∇̃2F term, which is important, as it provides a large
cutoff wavenumber to render the initial-value problem well posed. Other terms of O(δ)
can be included as was done in Wu & Law (2009). Those terms were found to make
a small quantitative modification, and are expected to behave similarly in the present
problem. They are neglected since our aim at this stage is to propose a relatively
simple model, and use it to predict the qualitative behaviour of the flame and the
spontaneous sound.

Using (2.18), one obtains the equations governing the hydrodynamic zone:

∂U
∂ξ
+ ∇̃ ·V = ∂V

∂ξ
· ∇̃F,

R
{
∂U
∂τ
+ S

∂U
∂ξ
+V · ∇̃U

}
+ ∂U
∂ξ
= −∂P

∂ξ
+ δPr1̃U,

R
{
∂V
∂t
+ S

∂V
∂ξ
+V · ∇̃V

}
+ ∂V
∂ξ
= −∇̃P+ ∇̃F

∂P
∂ξ
+ δPr1̃V.


(2.21)

Here, using H to denote the usual Heaviside function, we have put

S=U − Fτ −V · ∇̃F+Ja(τ )H(ξ). (2.22)

Owing to the definition of F, we have ∇̃f = ∇̃F, and hence

Ja(τ )= q
{
[1+ (∇̃F)2]1/2 − 1

}
+O(δ). (2.23)

Across the flame front, the longitudinal and transverse velocities and the pressure
satisfy the jump conditions

[U]+− = q[1+ (∇̃F)2]−1/2 − q−Ja(τ )+ δJU,

[V]+− = −q(∇̃F)[1+ (∇̃F)2]−1/2 + δJV,

[P]+− = −
(

Ba(τ )+ qG
1+ q

)
F+ δJP,

 (2.24)

where the expressions for the O(δ) terms in (2.24) as well as the definition of the
Laplace operator ∆̃ in (2.21) are given in Wu & Law (2009), but are omitted here for
brevity. The function Ba(τ ) represents the jump of ∂pa/∂ξ̃ across the hydrodynamic
zone:

Ba(τ )=
s
∂pa

∂ξ̃

{+

−
=

s
−R

∂ua

∂τ

{+

−
. (2.25)

The system describing flame–flow–acoustic interactions consists of (2.20) and (2.21),
which are coupled to (2.16) via (2.23) and (2.24). The flame–acoustic coupling is
represented by Ja and Ba. Through Ja, the flame excites acoustic fluctuations,
which in turn act on the flame through the unsteady RT effect created by the acoustic
acceleration Ba. Note that the acoustic velocity ua(0−, t) drops out of the system,
and thus kinematic advection by the acoustic velocity plays no role in the dynamics
of a freely propagating flame.
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190 R. C. Assier and X. Wu

2.2. Stability of a curved flame
The analysis in the previous subsection shows that an unsteady flame in general
produces an acoustic field, which is absent only when the flame is steady. Such
steady states are relevant only if they are stable. In this subsection, the general
formulation is used to study the linear instability of a steady curved flame. Let the
steady hydrodynamic field and the flame front be denoted by (US, VS, PS, FS). They
satisfy the steady version of (2.20) and (2.21), that is, the time derivative ∂/∂τ in
(2.21) is dropped, and ∂FS/∂τ = UF in (2.20), where UF is the steady propagation
velocity of the flame. The perturbed flow and flame front can be written as

(U,V, P, F)= (US,VS, PS, FS)+ (ũ, ṽ, p̃, F̃). (2.26)

Substituting (2.26) into (2.20), (2.21) and (2.24), and linearising, we obtain the
equations governing the perturbation, as well as the corresponding jump conditions,
which for brevity, we decide not to write out. For a curved flame, a uniform mean
flow

uS
a = q

{
[1+ (∇̃FS)2]1/2 − 1

}
for ξ > 0, (2.27)

is generated in the outer acoustic region downstream of the flame. The perturbed field
in the acoustic zone can be written as

(ua, pa)= (uS
a, 0)+ (ũa, p̃a). (2.28)

Substitution into (2.16) shows that ũa and p̃a remain governed by

∂ p̃a

∂τ
+ ∂ ũa

∂ξ̃
= 0, R

∂ ũa

∂τ
+ ∂ p̃a

∂ξ̃
= 0. (2.29a,b)

It follows from (2.17) that the linearised jump condition is

JũaK+− = J̃a(τ )= q∇FS · ∇F̃[1+ (∇̃FS)2]−1/2. (2.30)

The above relation indicates that a perturbation to a curved flame must generate
spontaneously an acoustic fluctuation of the same order of magnitude. This is very
different from the case of a steady flat flame, where the spontaneous sound arises
at the quadratic order of the flame-front perturbation. A correct formulation for the
stability of a curved flame must therefore take into account the acoustic perturbation,
which may fundamentally change the stability behaviour, as will be shown in § 3.

2.3. Simplified flame–flow–acoustic interaction model with linear hydrodynamics
The general flame–flow–acoustic interaction system in § 2.1 and the instability problem
formulated in § 2.2 represent a formidable computational challenge. The main obstacle
lies in the hydrodynamics of the steady state and the perturbation. In order to make
analytical progress, we shall assume that the hydrodynamic field as well as the
gradient of the flame are small so that the equations (2.21) can be linearised, leading
to a reduced system for the hydrodynamics,

∂U
∂ξ
+ ∇̃ ·V = 0, R

∂U
∂τ
+ ∂U
∂ξ
=−∂P

∂ξ
, R

∂V
∂τ
+ ∂V
∂ξ
=−∇̃P. (2.31a–c)
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Instability of a curved flame under the influence of its spontaneous sound 191

The jump conditions (2.24) can also be linearised to give

[U]+− = 0, [V]+− =−q∇̃F, [P]+− =−[Ba(τ )+ qG/(1+ q)]F. (2.32a–c)

The geometric nonlinearity in the front equation (2.20) presents no substantial
difficulty and could be retained in full, but, in order to connect the present model
with the well-known MS equation, we write, on the assumption of weak nonlinearity,
(1+ (∇̃F)2)1/2 ≈ 1+ (∇̃F)2/2, and so the flame equation (2.20) simplifies to

∂F
∂τ
=U(0−, η, ζ )− 1

2
(∇̃F)2 + δMa∇̃2F. (2.33)

The reason for retaining the geometric nonlinearity is that a curved steady flame may
form despite linear hydrodynamics.

The equations governing the acoustics remains intact, namely,

∂pa

∂τ
+ ∂ua

∂ξ̃
= 0, R

∂ua

∂τ
+ ∂pa

∂ξ̃
= 0, (2.34a,b)

but the jump conditions are simplified to

JpaK+− = 0, JuaK+− =Ja(τ )= q
2
(∇̃F)2. (2.35a,b)

In order to impose boundary conditions at the extremities of the duct, it is necessary
to define the mean position of the flame M(t) and the normalised mean position of
the flame σ(t). For the two-dimensional case, we can write

σ(t)= h∗

2π`∗
M(t) with M(t)= 1

2π

∫ π

−π

f (y, t) dy. (2.36)

Figure 1 illustrates the definition of M. Since we have ξ = x − f (y, t), integrating
this with respect to y between −π and π, one obtains ξ = x −M(t). Setting x =
0 leads to ξ̃ = −σL, while setting x = 2π`∗/h∗ gives ξ̃ = (1 − σ)L, where L =
2πM`∗/h∗. Consequently, the boundary conditions can be specified. For a duct with
a closed(open) end at the left(right)-hand side, the following conditions apply:

ua(−σL, τ )= 0 and pa((1− σ)L, τ )= 0. (2.37a,b)

As is illustrated in figure 2, the position where the boundary conditions are applied
may differ slightly from the exact boundary of the domain. However, since the
difference is much smaller than O(1/M), it does not influence the acoustics to
leading-order accuracy.

In the rest of this paper, we shall focus our attention on the system formed by
the hydrodynamic equation (2.31) and jump conditions (2.32), the weakly nonlinear
flame-front equation (2.33) and the acoustic equation (2.35). The approximation
leading to this system, namely linearising the hydrodynamic while retaining the
geometric nonlinearity, requires further explanations. In the absence of an acoustic
field, the approximation can be justified asymptotically in the limit of small heat
release (Sivashinsky 1977). Interestingly, the conclusion holds also for the present
case, as the asymptotic analysis can be generalised to derive, in a consistent fashion,
a reduced system governing the interaction and evolution of the flame and the
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192 R. C. Assier and X. Wu

spontaneous sound. A key observation in the analysis is that the forcing from the
flame wrinkling, though of small amplitude (O(q3)), can generate a much stronger
acoustic wave (eigenmode) because it is in resonance with the latter; the details will
be given in a future paper. For O(1) heat release, the approximation is no longer
self-consistent and becomes a purely tactical one for deriving a relatively simple
model, and so the system (2.31)–(2.35) may be referred to as the flame–flow–acoustic
interaction model. Its validity is necessarily restricted to situations where the flow
motion is relatively weak. In typical laboratory experiments (e.g. Markstein 1953;
Searby 1992), the hydrodynamic motion does not appear to be vigorous despite
the heat release being of O(1). The simplified system has the merit of being
mathematically tractable, while on the other hand it retains all relevant physical
factors causing combustion instability, including advection of the flame by the
flow, geometric nonlinearity, the full hydrodynamic instability, the generation of
spontaneous sound and its back-action on the flame via the unsteady RT effect. With
further assumptions, the system may be reduced to even simpler flame models such
as the G equation and the MS equation.

3. Linear stability analysis
3.1. Steady flames and their stability with the spontaneous acoustics excluded

As shown in appendix A, for steady two-dimensional flames, the system (2.31)–(2.33)
is reduced to (A 6). When gravity is absent (G= 0), (A 6) is, as expected, equivalent
to the well-known MS equation

∂ϕ

∂t
= 1

2
I(ϕ; η)+ 1

γ

∂2ϕ

∂η2
+ 1

2

(
∂ϕ

∂η

)2

,

̂I (ϕ; η)(k, t)= |k|ϕ̂ (k, t) ,

 (3.1)

where the operator I(ϕ, η)=H (∂ϕ/∂η, η), with H being the Hilbert transform. The
variables and parameters in (A 6) and (3.1) are simply related via t = qτ , ϕ =−F/q
and

δMa = q/γ . (3.2)

Vaynblat & Matalon (2000a) presented some rigorous results concerning the MS
equation, which we summarise briefly. The MS equation admits m-pole solutions of
the form

ϕm(η, t)= c0(t)+ 2
γ

m∑
m=1

ln
[

1
2
{cosh(ym(t))− cos(η− xm(t))}

]
, (3.3)

with m pairs of complex conjugate poles zm(t)= xm(t)+ izm(t). The maximum number
of poles that may exist depends on γ and is given by mmax = Int[γ /2]. A coalescent
pole solution is a pole solution such that the poles are aligned vertically. A steady
coalescent pole solution is a coalescent pole solution such that the location of the
poles is time-independent. Vaynblat & Matalon (2000a) showed that, for a given
pair (γ ,m), there exists a steady coalescent pole solution only if m6m0(γ ), where
m0(γ ) = Int[γ /4 + 1/2]. In addition, for a given m 6 m0(γ ), this solution is unique
and is denoted ϕm(γ , η, t). The steady coalescent one- and two-pole solutions are
conveniently used to verify our numerical code and solutions. The value chosen for
the parameter γ (related to δMa) should affect the type of steady states obtained.
In our numerical approach, we only compute the Fourier coefficients for n 6= 0, which
suffices since our aim is to model the shape of a flame moving freely in the duct.
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FIGURE 3. Comparison of the analytical steady solutions (−ϕ1,2) of the form (3.3) and
the numerical steady solutions (F/q) for (a) γ = 2.1 and (b) γ = 6.2.

The coefficient F̂0 describes the translation along the duct, and so does the function
c0(t) in (3.3). Hence equivalent steady states computed with the two methods may
differ by a constant. The comparison between our numerical solutions and analytical
ones is shown in figure 3 for M = 0.0007 (corresponding to a laminar flame speed
UL = 0.24 m s−1), q = 5.25 and N = 30. From figure 3, it is clear that, in the case
of γ = 2.1 (m0 = 1), we have found numerically the unique one-pole steady solution,
while for γ = 6.2 (m0 = 2), we have found the unique two-pole solution.

The stability of all possible steady solutions of the MS equation has been
investigated rigorously in Vaynblat & Matalon (2000a). For a steady solution ϕm,
the evolution of a small perturbation ψ is studied by writing ϕ= ϕm+ψ . Linearising
the MS equation (3.1) about ϕm leads to the equation for ψ ,

∂ψ

∂t
= 1

2
I(ψ; η)+ 1

γ

∂2ψ

∂η2
+ ∂ϕm

∂η

∂ψ

∂η
,

̂I{ψ; η}(k, t)= |k|ψ̂(k, t).

 (3.4)

The results of Vaynblat & Matalon (2000a) are summarised in figure 4. It has been
found that, for each value of γ , only one of the known steady solutions is stable and
that this solution is always the one with the maximum number of poles allowed. In
our case, we have γ1 = 2, γ2 = 6 and γ3 = 10. In particular, we have γ1 < 2.1 < γ2
and γ2 < 6.2 < γ3. Hence the steady solutions of figure 3 captured numerically are
found to be linearly stable in Vaynblat & Matalon (2000a) within the system (3.4).
However, their stability analysis was performed by assuming that the perturbed flame
front remains governed by the MS equation (3.1). The latter was derived by neglecting
two main quantities: the time derivative of the perturbed hydrodynamic field and the
spontaneous acoustic fluctuations. In this section we aim to study the linear stability
of the steady solutions proved to be stable in Vaynblat & Matalon (2000a), taking
full account of both the spontaneous acoustic perturbations and the unsteadiness of
the hydrodynamic field.

3.2. Instability including the spontaneous acoustics
Instead of the MS equation (3.1), the starting point of the present stability analysis is
the interactive system (2.31)–(2.33) and (2.34)–(2.35). The perturbed acoustics, flame
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Flat Steady unstable

Steady stable

Flat Flat Flat

FIGURE 4. Summary of stability results concerning steady m-pole solutions of the
MS equation.

and flow field are written as

{ua, pa, F,U, V, P} = {uS
a, 0, FS,US, VS, PS} + {ũa, p̃a, F̃, Ũ, Ṽ, P̃}, (3.5)

where the ‘steady velocity’ uS
a = 1

2 q (∂FS/∂η)2 for ξ > 0, and zero otherwise. As in
Pelcé & Rochwerger (1992), the perturbation consists also of an acoustic fluctuation,
ũa and p̃a. The latter satisfies (2.29) and the linearised jump conditions

Jp̃aK+− = 0, JũaK+− = q
∂FS

∂η

∂F̃
∂η
≡ J̃a, (3.6a,b)

as well as the boundary conditions

ũa(−σL, τ )= 0, p̃a((1− σ)L, τ )= 0. (3.7a,b)

Following our previous notation, in what follows we shall write

{Ja,Ba} = {J S
a , 0} + {J̃a, B̃a}, (3.8)

where J S
a = JuS

aK+−, J̃a = JũaK+− and B̃a(τ ) = J∂ p̃a/∂ξ̃K+−. Inserting (3.5) into
(2.31) and (2.32), we obtain the system governing the hydrodynamic field of the
perturbations:

∂Ũ
∂ξ
+ ∂Ṽ
∂η
= 0, R

∂Ũ
∂τ
+ ∂Ũ
∂ξ
=−∂P̃

∂ξ
, R

∂Ṽ
∂τ
+ ∂Ṽ
∂ξ
=−∂P̃

∂η
, (3.9a–c)

and the jump conditions

[Ũ]+− = 0, [Ṽ]+− =−q
∂F̃
∂η
, [P̃]+− =−

(
FSB̃a + qG

1+ q
F̃
)
. (3.10a–c)

Finally, from (2.33) follows the linearised flame-front equation:

∂F̃
∂τ
= Ũ(0−, η, τ )− ∂FS

∂η

∂F̃
∂η
+ δMa

∂2F̃
∂η2

. (3.11)
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Since the coefficients of the system (3.9)–(3.11) are independent of the time τ and
η, we may follow the standard method of stability analysis and seek normal modes,

{Ũ, Ṽ, P̃, F̃, ũa, p̃a} = {U(ξ , η),V(ξ , η),P(ξ , η),F(η), ua(ξ̃ ), pa(ξ̃ )} eiωτ + c.c., (3.12)

where ω is allowed to be a complex number, with −Im(ω) representing the growth
rate, and c.c. stands for complex conjugate. If Im(ω)> 0, the system is linearly stable,
while if Im(ω) < 0, the system is linearly unstable. Inserting (3.12) into the system
(3.6)–(3.11), one obtains the acoustic system in the frequency space,

∂ua

∂ξ̃
=−iωpa,

∂pa

∂ξ̃
=−Riωua,

JuaK+− = q
∂FS

∂η

∂F

∂η
, JpaK+− = 0, ua(−σL)= 0, pa((1− σ)L)= 0,

 (3.13)

the corresponding hydrodynamic system (where the hat denotes the Fourier transform
in η),

∂Û

∂ξ
+ ikV̂= 0, RiωÛ+ ∂Û

∂ξ
=−∂P̂

∂ξ
, RiωV̂+ ∂V̂

∂ξ
=−ikP̂, (3.14a–c)

with the jump conditions

[Û]+− = 0, [V̂]+− =−qikF̂, [P̂]+− =−
(

F̂SBa + qG
1+ q

F̂

)
, (3.15a–c)

and the flame-front equation,

iωF̂= Û(0−, k)− (ik′F̂S(k′)) ? (ik′F̂(k′))(k)− δMak2F̂. (3.16)

The perturbed acoustic system (3.13) can be solved analytically by inverting a 4× 4
matrix depending on σ and ω. When ∆s(ω, σ ) 6= 0, where

∆s(ω, σ )≡
(

R+
R−

)1/2

tan(R1/2
− ωσL) tan(R1/2

+ ω(1− σ)L)− 1, (3.17)

the matrix can be inverted to find ua and pa as well as the relation between Ba =
J∂pa/∂ξ̃K+− and Ja = JuaK+−:

Ba =−iωR+

{
1+ q

(
1+ 1

∆s(ω, σ )

)}
Ja. (3.18)

The acoustic dispersion relation corresponds to ∆s(ω, σ ) = 0. The roots of this
equation can be found numerically and represent the characteristic frequencies of the
acoustic modes of the duct. It can be shown that there is an infinite (but discrete)
set of characteristic frequencies ωj, and that they are real. The first six are given in
table 1. The coupling with the flame and hydrodynamics would render ω complex,
but its real part remains close to one of the acoustic characteristic frequencies.
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196 R. C. Assier and X. Wu

Acoustic modes ω1 ω2 ω3 ω4 ω5 ω6

Non-dimensional 50.7 133.6 200.6 297.6 394.6 461.6
Frequency (Hz) 121.7 320.7 481.4 714.3 947.1 1107.9

Parameters σ `∗ (m) h∗ (m) M q

Values 0.5 1.2 0.1 0.0007 5.25

TABLE 1. First six acoustic modes for a given set of parameters.

Solving (3.14) subject to (3.15), we may express the solution for the hydrodynamic
field in terms of F̂, the details of which are relegated to appendix B. Substitution of
the solution into (3.16) leads to a single equation for F̂,

h1(ω, k)(ik′F̂S(k′)) ? (ik′F̂(k′))(k)+ h2(ω, k)F̂+ h3(ω, k; σ)Ja = 0, (3.19)

where

h1(ω, k) = (iωR+ + |k|)+ (|k| + iωR−), (3.20)

h2(ω, k) = h1(ω, k)(iω+ δMak2)+ |k|q
(

G
1+ q

− |k|
)
, (3.21)

h3(ω, k; σ) = −iω|k|R+
{

1+ q
(

1+ 1
∆s(ω, σ )

)}
F̂S. (3.22)

Equation (3.19) forms the eigenvalue problem that will allow us to determine ω.
As in appendix A, for a flame in a duct, the Fourier transforms are interpreted as

truncated Fourier series. Note, however, that F does not have to be real, but it still
needs to be even with respect to η, which implies that F̂n= F̂−n. Using the definition
of space average and convolution, one can show that

Ja = q
∂FS

∂η

∂F

∂η
= 2q

N∑
m=1

m2F̂S
mF̂m, (3.23)

(ikF̂S) ? (ikF̂)(n) = −
N∑

m=1

(m(n−m)F̂S
n−m −m(n+m)F̂S

n+m)F̂m, (3.24)

and so that the discrete version of (3.19) can be written as a system of N equations,

0 = −h1(ω, n)
N∑

m=1

(m(n−m)F̂S
n−m −m(n+m)F̂S

n+m)F̂m

+ h2(ω, n)F̂n + 2qh3(ω, n; σ)
N∑

m=1

m2F̂S
mF̂m (1 6 n 6 N). (3.25)

By introducing a vectorial representation f of the Fourier coefficients F̂m of F, such
that f = (F̂1, . . . , F̂N)

T, the equation (3.25) can be recast into the matrix form,

A(ω, σ )f = 0, (3.26)

where A is an N×N matrix whose entries are nonlinear functions of ω. Hence (3.26)
is a nonlinear non-polynomial (because of ∆s(ω; σ)) eigenvalue problem, which is
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Instability of a curved flame under the influence of its spontaneous sound 197

difficult to solve. In order to ease the task, we assume that ω remains close to the
first acoustic mode ω1 defined by ∆s(ω1; σ)= 0, and so write

ω=ω1(σ )+ ω̃, where ω̃�ω1. (3.27)

The function ∆s(ω, σ ) is then approximated by its Taylor expansion, ∆s(ω, σ ) =
∆′s(ω1, σ )ω̃, and hence the problematic term 2qh3(ω, n; σ) simplifies to

2qh3(ω, n; σ)≈ h4(n)− h5(σ , n)/ω̃, (3.28)

where

h4(n)=−2iqω1|n|F̂S
n and h5(σ , n)= 2iq2ω1|n|R+F̂S

n/∆
′
s(ω1, σ ). (3.29a,b)

As a result, the system of N equations (3.25) can be simplified to

h5(σ , n)
N∑

m=1

m2F̂S
mF̂m = ω̃

{
−h1(ω1, n)

N∑
m=1

(m(n−m)F̂S
n−m −m(n+m)F̂S

n+m)F̂m

+ h2(ω1, n)F̂n + h4(n)
N∑

m=1

m2F̂S
mF̂m

}
, (3.30)

which can be written as a generalised linear eigenvalue problem of the standard form,

B(σ ) f = ω̃Cf , (3.31)

where B(σ ) and C are N ×N matrices. For each value of σ , the eigenvalue problem
(3.31) can be solved numerically and the results are presented in the next subsection.

3.3. Results
It is worth noting first that, if the hydrodynamic perturbation is treated as being quasi-
steady and acoustic fluctuations are ignored, all the troublesome nonlinear terms in A
disappear and the problem (3.26) reduces to a linear eigenvalue problem, which can
easily be solved numerically. As part of the validation of our code, we solved this
reduced linear eigenvalue problem for one- and two-pole solutions at two different
values of the parameter γ . In these cases, all the eigenvalues have a positive imaginary
part ωi > 0, which means that these steady solutions are both stable as predicted by
the theory of Vaynblat & Matalon (2000a).

The eigenvalue problem (3.31) is solved for γ = 2.1 and γ = 6.2. In each case,
the eigenvalues are calculated for σ ∈ [0, 1]. The largest growth rate is plotted in
figure 5. As is illustrated, for whatever value of σ ∈ [0, 1], there is always at least one
eigenvalue with ωi < 0; the growth rate reaches a maximum around σ ≈ 0.3. Overall,
the growth rates for γ = 6.2 are one order of magnitude bigger than those for γ = 2.1.
In figure 6, the eigenfunction Feig of the most unstable mode for σ = 0.5 is plotted.
For γ = 2.1, the eigenfunction is relatively simple, exhibiting two peaks, whereas for
γ = 6.2, Feig is highly oscillatory.

Clearly, when the acoustic and hydrodynamic variations are considered, the one-pole
and two-pole solutions are actually linearly unstable. This is an important result since
it implies that the spontaneous acoustic field cannot be ignored when considering
combustion problems. Interestingly enough, the growth rates have a similar profile
to that found in Pelcé & Rochwerger (1992). In particular, the position of the peak
growth around σ ≈ 0.3 is the same as in figure 6 of Pelcé & Rochwerger (1992).
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FIGURE 5. Stability results for the full model for (a) γ = 2.1 and (b) γ = 6.2.
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FIGURE 6. Normalised eigenfunction Feig corresponding to the most unstable eigenvalue
for σ = 0.5 for (a) γ = 2.1 and (b) γ = 6.2.

There is therefore a good qualitative agreement, but we do not expect a quantitative
agreement for two main reasons. Firstly, in this work the steady state used for stability
analysis is an exact solution of the flame equation, while in Pelcé & Rochwerger
(1992) it is artificially chosen as a cosine function. Secondly, gravity and some O(δ)
terms have so far been neglected in our calculations, while they were retained in Pelcé
& Rochwerger (1992).

The results obtained thus far are for M = 0.0007 and q= 5.25. It is of interest to
study how the value and the location of the maximum growth rate vary with M and q.
The results are presented in figure 7. For any q> 0, the curved flame is unstable. The
growth rate increases with the heat release q, whilst the location of the peak growth
seems to move further down the duct. The Mach number M does not appear to have
such an important effect: the growth rate decreases only slightly as M increases, while
the location of the maximum remains approximately the same.

4. Weakly nonlinear evolution of the flame and its spontaneous sound
In order to validate the linear instability results of the previous section and to

understand more about the weakly nonlinear effects, we will formulate an initial-value
problem governing the nonlinear interaction and evolution of the flame and the
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FIGURE 7. Variation of the maximum growth rate (a) with q at M= 0.0007 and (b) with
M for q= 5.25. Both graphs are obtained for γ = 2.1.

spontaneous acoustic field. The present theoretical development is motivated in
particular by the need to provide a better description of the phenomena observed in
the experiments of Markstein (1953) and Searby (1992). They observed that a flame
propagating in a tube may wrinkle whilst sound waves are generated and amplified.
After attaining a certain magnitude, the sound wave may inhibit wrinkling and
then saturate in the case of relatively slow (weak) flames. For fast (strong) flames,
the sound wave induces more rapid wrinkling, which in turn leads to an almost
explosive amplification of sound. These two regimes have usually been referred to
as primary and secondary (subharmonic) parametric instabilities. Neither of them
can be predicted by the usual G equation approach because it only accounts for the
kinematic advection of the flame, but that effect merely makes a freely propagating
flame vibrate rigidly. The parametric instability theory for an externally imposed
sound wave (Markstein & Squire 1955; Searby & Rochwerger 1991, and others),
and the stability analysis of a specified steady curved flame (as was done in Pelcé
& Rochwerger (1992) and the previous section of the present paper) have revealed
two crucial mechanisms and thus explain some key aspects of the phenomena. They
do not, however, provide a complete description because in experiments the flame
and sound are both evolving and in mutual interaction. The two mechanisms operate
simultaneously and dynamically rather than being in isolation and ‘static’ as was
treated in the analyses. It is clear that a better model must be able to describe the
generation of the spontaneous sound and its two-way dynamic coupling with the
flame. From the simplified system in § 2.3, we will derive such a model.

4.1. The evolution system
With the hydrodynamic field being linearised, its solution can be expressed in terms
of the flame-front function by using Fourier analysis as in appendices A and B. The
system (2.31)–(2.33) can then be reduced to a single equation in spectral space. The
derivation is rather tedious, and is relegated to appendix C. Here we only present the
equation, which for a two-dimensional flame reads

A
∂2F̂
∂τ 2
+ B(k)

∂F̂
∂τ
+C(k, τ )F̂ = −|k|(ik′F̂(k′)) ? (ik′F̂(k′))(k)

−A(ik′F̂(k′)) ?

(
ik′
∂F̂
∂τ
(k′)

)
(k), (4.1)
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where
A= R+ + R−, B(k)= AδMak2 + 2|k|,
C(k, τ )=−qk2 + |k|[Ba(τ )+ qG/(1+ q)] + 2δMa|k|3.

}
(4.2)

The left-hand side of (4.1) has the same structure as the equations in Markstein
& Squire (1955), Searby & Rochwerger (1991) and Wu & Law (2009). The
only difference from the latter two is that we have omitted some O(δ) terms in
the coefficients A, B, C. This level of approximation is appropriate since we
are interested in the qualitative behaviour of the dynamically coupled flame and
spontaneous sound, rather than in the quantitative prediction of the well-understood
parametric instability.

On (4.1), we impose the initial condition

F̂(k, 0)= F̂0(k),
∂F̂
∂τ
(k, 0)= 0, (4.3a,b)

where F̂0 is the Fourier transform of F0, the initial flame profile. In our computation,
F0 is chosen to be close to one of the steady solutions, namely,

F0 = FS + ε cos(Npertη) or F0 = FS + εFeig, (4.4a,b)

where ε is a small parameter, Npert is an integer and Feig represents the eigenfunction
associated with the most unstable eigenvalue obtained from the linear stability analysis
of § 3. The flame-front equation is coupled to the acoustic equations (2.34) through
(2.35) and Ba in (4.2). The present interactive system, which will be referred to
as the ‘coupled flame–acoustic model’, may be viewed as an extension of the MS
equation by accounting for the spontaneous acoustic field, its back-effect, as well as
the unsteadiness of the hydrodynamic field. The algorithm for solving the interactive
evolution system consists of two modules, an acoustic solver and a flame-front solver,
which are described below.

4.2. Numerical resolution of the acoustic system
4.2.1. Semi-analytical method of characteristics

The system (2.34) governing the acoustic fluctuations can be rewritten as

(pa)τ + (ua)ξ̃ = 0, (ua)τ + c2(pa)ξ̃ = 0, (4.5a,b)

for ξ̃ ∈ [L−, L+], with L− =−σL< 0 and L+ = (1− σ)L> 0, where

c=
{

c− =√1/R− if ξ̃ < 0,
c+ =√1/R+ if ξ̃ > 0.

(4.6)

The solution is subject to the boundary and jump conditions

ua(L−, τ )= 0, pa(L+, τ )= 0; JuaK+− =Ja(τ ), JpaK+− = 0. (4.7a–d)

Throughout § 4.2, the jump Ja(τ ) is considered known for all τ . Eliminating ua
between the two equations in (4.5), we obtain the wave equation

(pa)ττ − c2(pa)ξ̃ ξ̃ = 0, (4.8)
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which has a discontinuous coefficient. The equation can be solved by the method of
characteristics to obtain the general solution,

pa(ξ̃ , τ )=
{

Ach(τ + ξ̃ /c−)+Cch(τ − ξ̃ /c−) if ξ̃ < 0,
Bch(τ − ξ̃ /c+)+Dch(τ + ξ̃ /c+) if ξ̃ > 0,

(4.9)

where Ach, Bch, Cch and Dch are unknown functions of one variable. The solution can
be interpreted as the superposition of two waves travelling in opposite directions. The
conditions (4.7), when combined with the representation (4.9) and the equations (4.5),
allow one to express Cch and Dch in terms of Ach and Bch. Moreover, one obtains the
following matrix representation for Ach and Bch:(

1 −1
c− c+

)(
Ach(τ )
Bch(τ )

)
=
(−1 −1

c− −c+

)(
Ach(τ − τ−)
Bch(τ − τ+)

)
+
(

0
Ja(τ )

)
, (4.10)

where τ± = ±2L±/c± is the time taken by a wave to propagate twice along the
right(left)-hand side of the acoustic domain, respectively. Hence, as long as Ja

is given, if one knows the values of Ach and Bch at previous times, it is possible
to recover their values at the current time. As an alternative to the method of
characteristics, a full numerical approach, the modified immersed interface method
(MIIM), is presented in appendix D.

4.2.2. Initial acoustic conditions and validation
For both methods described in § 4.2.1 and appendix D, the initial conditions must

be chosen carefully. Indeed, the equations do not allow for initial conditions with
both pressure and velocity being zero. Hence, an appropriate initial profile had to be
specified to ensure a smooth solution. We chose a simple initial profile close to the
steady behaviour of the acoustic pressure and velocity described in §§ 2.2 and 3.2,
given by

ua(ξ̃ , 0)=
{

0 if ξ̃ < 0,
Ja(0) if ξ̃ > 0,

and pa(ξ̃ , 0)=
{

0 if ξ̃ < 0,
0 if ξ̃ > 0.

(4.11a,b)

For validation, both methods (characteristics and MIIM) have been implemented for
different given functions Ja(τ ) and the results are found to agree. Of course, being
semi-analytical, the characteristics method is much faster than the MIIM and does
not have a Courant–Friedrichs–Lewy (CFL) restriction. However, the MIIM has the
possibility to be extended to higher dimensions if necessary. In summary, if the
function Ja(τ ) is known for all time, it is possible to solve the acoustic problem
using either method.

4.3. Numerical resolution of the spectral flame equation
We now consider the numerical resolution of (4.1) and (4.2). To adopt standard
notation in numerical analysis, we introduce

y(k, τ )=
(

F̂(k, τ ),
∂F̂
∂τ
(k, τ )

)T

≡ (y1(k, τ ), y2(k, τ ))T. (4.12)
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The initial-value problem (4.1) and (4.2) can then be recast to a first-order system,

y′ =M(k, τ , y), y(k, 0)= (F̂0(k), 0)T, (4.13a,b)

where M(k, τ , y)= [M1(k, τ )y+M2(k, y)]/A with

M1 =
(

0 A
−C(k, τ ) −B(k)

)
, (4.14)

M2 =
(

0
−|k|{ik′y1(k′, τ )} ? {ik′y1(k′, τ )} − A{ik′y1(k′, τ )} ? {ik′y2(k′, τ )}

)
. (4.15)

Let yn denote a numerical approximation of y(k, τn). The system (4.13) is discretised
by using an explicit fourth-order Adams–Bashforth (AB4) finite-difference scheme:

yn+1 = yn +
1τ

12
(23M(k, τn, yn)− 16M(k, τn−1, yn−1)+ 5M(k, τn−2, yn−2)). (4.16)

At each time step τn = n1τ , it is necessary to evaluate M , which requires the
value of Ba and involves computing the convolutions appearing in M2. In this
particular module of the algorithm, we assume that Ba(τ ) is known for all time. The
convolutions are computed by using the fast Fourier transform (FFT) and the inverse
fast Fourier transform (IFFT) algorithms. As is outlined in Trefethen (2000), numerical
stability of such a spectral scheme is generally subject to a restriction of the type
1τ <α/N2, where N is the number of points used to discretise the flame in physical
and spectral spaces. In our case, numerical experimentation suggests that the scheme
is stable for α < 1.49, and in practice we used 1τ = 1/N2. For example, if the flame
is described by 256 points, this leads to a time step 1τ ≈ 1.5× 10−5. Throughout the
scheme, we make use of the ‘2/3 rule’ (Orszag 1971) in order to avoid aliasing. In
order to test the method, we set Ba(τ )≡ 0, and recovered the expected steady states;
the evolution towards the steady states is found to be independent of the choice of
1τ . Hence, if Ba(τ ) is known for all time, it is possible to solve the spectral flame
equation numerically.

4.4. Numerical resolution of the coupled acoustic–flame model
The two modules presented in §§ 4.2 and 4.3 are now linked to obtain a coupled
numerical scheme solving the overall problem. At each time step, this requires
evaluating Ja using the solution for the flame front, and Ba using the solution
for the acoustic field. For the first task, it follows from (2.35) and the definition of
convolution that

Ja(τ )= 1
2 q (∇̃F)2 = 1

2 q(ik′F̂(k′, τ )) ? (ik′F̂(k′, τ ))(0, τ ), (4.17)

which means that, once the convolutions are computed for all values of k using the
method of FFT and IFFT as described in § 4.3, we obtain Ja by simple evaluation at
k=0. This noted, the coupled method should be implemented as illustrated in figure 8.
Let us assume that we know the solution yn, M(k, τn−1, yn−1) and M(k, τn−2, yn−2).
The first step consists of computing the two convolutions involved in (4.15). These
convolutions are used to obtain M2, and the evaluation of the first one also determines
Ja(τn) through (4.17). The acoustic solver is then used to obtain Ba(τn). At this
stage, we have enough information to obtain M(k, τn, yn), which allows us to march
in time using AB4 and obtain yn+1. This new solution is then fed again into the
algorithm, and the process is repeated. Note that, for simplicity, we have presented
an algorithm involving the method of characteristics. However, a similar but more
complicated algorithm involving the MIIM has also been developed and implemented.
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yn Convolution
Characteristic
acoustic solver

AB4

FIGURE 8. Flow diagram of the coupled algorithm.

Parameters σ M UL (m s−1) q `∗ (m) h∗ (m) G

Values 0.5 0.0007 0.24 5.25 1.2 0.1 0

TABLE 2. Parameter values used in §§ 5.1 and 5.2.

5. Numerical results
5.1. Two representative cases

The numerical results in §§ 5.1 and 5.2 are given for the parameter values listed in
table 2, while two different values of γ are chosen, γ =2.1 and γ =6.2, corresponding
to cusped steady states FS being one-pole and two-pole solutions, respectively. For the
case γ =2.1, the initial flame profile is chosen as F0=FS+ ε cos(Npertη) with ε=0.05
and Npert = 10, while for the case γ = 6.2, Feig is used to perturb the flame with
ε= 0.05; see (4.4). In most calculations, we use N= 64 and 1τ = 1/N2. Refining the
resolution to N=128 does not cause any appreciable difference to the results. Figure 9
displays the flame shapes at different times. For γ = 2.1, the flame remains close to
the steady state for a reasonably long time, and then tends to flatten, finally reaching
an almost perfectly flat state. Here we terminated the computation at τ = 16, but
further increase of τ does not change the flat state of the flame. If figure 9 was made
into a movie, one could notice that, while becoming more flat overall, some small
oscillations of the flame shape occur. For γ = 6.2, we observe a similar tendency: the
flame remains in the vicinity of the cusped steady state for a while before starting
to flatten. However, when approaching the flat state, wrinkling appears, i.e. the flame
becomes cellular. The amplitude of the wrinkling then grows exponentially with time.
This behaviour is consistent with some of the fully numerical results presented in
Gonzalez (1996).

In order to gain a better insight into the phenomena, we examine the evolution of
the corresponding spontaneous acoustic field, represented by the pressure at the inlet
of the duct. As is shown in figure 10, in both cases, we observe a first exponential
growth of the pressure during the earlier phase when the flame is deviating from the
steady state (cf. figure 9). As will be seen below, this corresponds precisely to the
linear instability described in § 3.3. Beyond this, in both cases, the pressure tends to
saturate owing to nonlinear effects. In the case of γ = 2.1, a regime corresponding

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 O

pe
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
19

 Ja
n 

20
20

 a
t 0

9:
16

:0
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

4.
52

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.525


204 R. C. Assier and X. Wu

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0(a) (b)

−2− −1
−2

−1

0

1

2

3

4

5

−2− −10 21 0 1 2

FIGURE 9. Evolution of the flame shape for (a) γ = 2.1 and (b) γ = 6.2.
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FIGURE 10. Evolution of the acoustic pressure at the inlet of the duct for (a) γ = 2.1
and (b) γ = 6.2.

to a limit cycle is reached. (Of course, if the calculation is run for a very long
time, the amplitude of the limit cycle tends to decrease slightly owing to numerical
dissipation.) In the case of γ = 6.2, however, the saturated state does not persist, and
instead a second exponential growth occurs, leading to a strongly nonlinear regime.
We will see in § 5.2.2 that this corresponds to a subharmonic parametric instability.
A time-spectral analysis of the pressure signal shows that, while recovering the
theoretical acoustic frequencies of the duct, the signal is largely dominated by the
first characteristic frequency of the duct, ω1, given in table 1. This supports the
approximation of linearising around this particular mode made in § 3.2. In order
to understand the behaviour of the flame, another important quantity to monitor is
Ba(τ ), which represents the back-action due to acoustic acceleration. As is illustrated
by figure 11, it has a very similar behaviour to the acoustic pressure, but with a
much larger amplitude, estimated to be between 130 and 150 for the case γ = 2.1
and between 430 and 450 for the case γ = 6.2. It is also of interest to observe (see
figure 12) the evolution of the acoustic velocity jump Ja(τ ). In the case of γ = 2.1,
Ja diminishes in an oscillatory manner. At large times, Ja≈ 0, even though a closer
examination (i.e. the zoomed view around τ ≈ 11) indicates that small oscillations
are present. A rather interesting interpretation of these numerical results is that a flat
flame, which is intrinsically unstable in a silent environment due to DL instability,
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FIGURE 11. Evolution of Ba(τ ) for (a) γ = 2.1 and (b) γ = 6.2.
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FIGURE 12. Evolution of the acoustic jump Ja(τ ) for (a) γ = 2.1 and (b) γ = 6.2.

can survive and remain flat in a noisy environment created by its spontaneous sound.
For the case of γ = 6.2, Ja decreases to a low level as the flame flattens, but it then
amplifies very rapidly. Note that a comparison of the results for two different time
steps indicates that the resolution is adequate (see figure 12a). Figure 13 shows the
variation of the saturation level of the acoustic pressure when γ varies between 2.1
(at which the first curved steady flame starts to appear) and 5.5 (when the secondary
parametric instability starts occurring). The plateau level increases with moderate γ
rather rapidly, and then, interestingly, it reaches a sort of plateau. This corresponds to
the threshold value above which the secondary parametric instability will be triggered.

5.2. Theoretical confirmation
5.2.1. Comparison with linear stability analysis

Using the data from the initial-value calculations shown in figure 10, it is possible
to extract the growth rate of the first instability by fitting a straight line through
the logarithm of the envelope of the acoustic pressure. We consider σ as a varying
parameter and measure the growth rate for different values of σ . Figure 14 shows
the comparison of the extracted growth rate with the prediction by the linear stability
analysis in § 3.3. For the case γ = 2.1, we ran the computation for two different sets
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FIGURE 13. Variation of the saturation (plateau) level of the acoustic pressure with γ .
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FIGURE 14. Comparison of the growth rates predicted by stability analysis and initial-
value calculations for (a) γ = 2.1 and (b) γ = 6.2.

of initial conditions: one given by F0 = FS + ε cos(Npertη), and the other given by
F0=FS+ εFeig (see (4.4)). In the case γ = 6.2, only the latter type of initial condition
was used. In both cases, there is an excellent agreement between the predictions by
the eigenvalue and initial-value approaches. This is a good validation for the code, and
also confirms that the first observed growth corresponds to the linear instability of the
steady flame.

5.2.2. Parametric instability
In this subsection, we aim to explain mathematically why in the case γ = 2.1 the

flame remains flat in a noisy environment despite being unstable in the absence of
acoustic field, whereas in the case γ = 6.2 a violent secondary instability occurs. The
answer lies in the impact on the flame of the acoustic field, which was generated
by the perturbation to the flame at an earlier stage. Figure 11 suggests that, in an
established noisy environment, Ba(τ ) is nearly periodic, so that we can write

Ba(τ )= Aa cos(ω1τ), (5.1)

where ω1 is the first acoustic mode of the duct. Furthermore, in the saturated regime,
Ja ≈ 0, implying that the flame is no longer acting on the acoustics, and therefore
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FIGURE 15. Stability boundary of (5.2) for (a) γ = 2.1 and (b) γ = 6.2.

we may take Aa as a constant. On the other hand, since the flame is nearly flat, it
is reasonable to linearise the spectral flame-front equation (4.1) around the flat profile
and obtain

A
∂2F̂
∂τ 2

(k, τ )+ B(k)
∂F̂
∂τ
(k, τ )+ [ |k|Aa cos(ω1τ)− qk2 + 2δMa|k|3 ]F̂(k, τ )= 0, (5.2)

which corresponds to the so-called damped Mathieu equation, a particular case of
linear equations with periodic coefficients of period Ta= 2π/ω1. In order to stay close
to the notation used in the literature, let x1(τ )= F̂(k, τ ) and x2(τ )= ∂F̂(k, τ )/∂τ . Then
the linearised ‘noisy’ flame-front equation (5.2) can be rewritten as a first-order system
for the vector x(τ )= [x1(τ ), x2(τ )]T,

ẋ(τ )=A(τ )x(τ ), (5.3)

where A(τ ) is a Ta-periodic 2 × 2 matrix. The parametric instability can be studied
using Floquet theory. Let us consider two linearly independent solutions x1(τ ) and
x2(τ ) such that x1(0)= [1, 0]T and x2(0)= [0, 1]T, and construct the 2× 2 principal
fundamental solution matrix X(τ )= (x1(τ ), x2(τ )). Integrating (5.3) from τ = 0 to τ =
Ta, we obtain X(Ta). The stability of x≡ 0 (representing a flat flame) is determined by
the eigenvalues of X(Ta), say ρ1 and ρ2. The system is stable if |ρ1|< 1 and |ρ2|< 1,
and unstable if |ρ1|> 1 or |ρ2|> 1.

The parametric stability analysis is similar to those done by Markstein & Squire
(1955) and Searby & Rochwerger (1991) for an externally imposed acoustic wave,
but in order to interpret and substantiate our numerical results, the stability will be
characterised in terms of Aa for a given ω1 rather than in terms a ‘reduced acoustic
amplitude’, and the stability boundary will be mapped out in the Aa–k plane. Let
us assume that k and δMa are fixed parameters. The procedure consists of altering
the amplitude Aa to determine the values (Aa)n for marginal stability, i.e. for one
of the eigenvalues to lie on the unit circle in the complex ρ plane. We then repeat
the procedure for different values of k and obtain the stability boundary as shown in
figure 15. Note that, for flames within a duct, the only relevant values of k are integers.
For γ = 2.1, we notice that, in the vicinity of the approximated amplitude Aa ≈
130–150 during the saturated phase, all the integer values of k are in the stable region,
that is, a flame is stabilised by the noise generated at an earlier stage. This is why a
flat flame can be sustained in a noisy environment in this case. However, for γ = 6.2
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FIGURE 16. (a) Acoustic pressure at the inlet of the tube and (b) evolution of the flame
at the centre of the duct for γ = 5.6.

the integers k= 4 and k= 5 are in the unstable region for the estimated amplitude Aa,
which is consistent with the fact that the wrinkling observed in figure 9(b) seems to
have a wavenumber equal to 4. The stability analysis shows that the upper unstable
region corresponds to a subharmonic parametric instability because, on the boundary,
ρ1 = −1. This means that the flame front F should oscillate at the frequency ω1/2
while the secondary instability is occurring. This fact gives us yet an additional way
to validate our numerical solutions to the initial-value problem. In the case of γ = 6.2,
the time between the start of the secondary instability and the blow-up is too short to
illustrate this behaviour. So instead, we have run the computation for a very similar
case, γ = 5.6, which exhibits a slightly smaller secondary growth rate, enabling us
to observe the growth during a few acoustic cycles. In figure 16, we plot the time
evolution of (a) the acoustic pressure and (b) the flame at the duct centre (i.e. F(η=
0, τ )). A window corresponding to the secondary growth is selected, in which both
signals are plotted. The frequency of flame-front oscillations is found to be half of
that of the acoustic pressure, confirming that a subharmonic parametric instability of
Floquet type indeed takes place.

5.3. Comparison with experiments: the propagating flame
An interesting experiment concerning acoustic–flame interaction and the resulting
parametric instabilities was conducted by Searby (1992), where the premixed fuel
was a lean propane–air mixture. Similar behaviour to those described above has
been observed. However, in order to mimic as closely as possible the experimental
conditions, we need to alter our computations slightly. First of all, in the experiment,
the flame is propagating freely in a long tube, and hence the mean position of the
flame σ is actually changing in time. It is possible to incorporate this feature in our
model by computing σ at each time step by solving the differential equation (by
AB4 again),

∂σ

∂τ
=− h∗

4π`∗
(∇̃F)2 =− h∗

4π`∗
(ik′F̂(k′, τ )) ? (ik′F̂(k′, τ ))(0, τ ). (5.4)

Secondly, in Searby’s experiment, the tube is vertical and it is necessary to include
gravity, which was neglected thus far in order to compare some of our results with
analytical solutions of the MS equation. We computed the steady states for different
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FIGURE 17. Flame shapes of the steady states for different values of γ : (a) without
gravity and (b) for G= 3.14.

Constants Θ−∞ Dth Ma a∗ g `∗ h∗

(K) (cm2 s−1) (m s−1) (cm s−2) (m) (m)

Values 298 0.21 4.5 343 981 1.2 0.1

TABLE 3. Constants pertaining to the experiment of Searby (1992).

Parameters φ Θ∞ Θ∞/Θ−∞ q UL δ γ M G
(K) (cm s−1)

Experiment 1 0.702 1886 6.33 5.33 22.3 0.0059 200.75 6.5× 10−4 3.14
Experiment 2 0.77 2005 6.73 5.73 27.5 0.0048 265.28 8.0× 10−4 2.06

TABLE 4. Parameters corresponding to experiments 1 and 2, respectively.

values of γ with or without gravity, and they are shown in figure 17. Gravity seems
to have an appreciable effect on the shape of the steady flames. Thirdly, we have also
assumed that the main parameters, namely M, γ and q, were independent of each
other, while in reality they are related. Hence, in order to mimic the experiments, we
need to choose these parameters carefully. Based on the information given in Searby
(1992) and Clanet et al. (1999), it is possible to recover the values of most parameters,
which are given in table 3. In Searby (1992), four different experimental results
(corresponding to four different values of the equivalence ratio φ) are presented, but,
as far as our study is concerned, two of them (henceforth referred to as experiments
1 and 2) have greater interest. The conditions in which these two experiments have
been carried out are displayed in table 4. Most parameters are in the range of what
has been used previously, but γ is much larger, corresponding to an extremely thin
flame. Numerically, it becomes challenging to compute the solutions for such a high
value of γ .

The experimental results, reproduced in figure 18(a), suggest that, in the case
of experiment 1, the flame, originally curved, flattens and remains flat in a noisy
environment, while the acoustic pressure saturates after the first acoustic instability.
Using our model and choosing all the parameters equal to those presented in tables 3
and 4, except that γ = 8.5, we obtained the numerical results presented in figure 18(b).
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FIGURE 18. Evolution of the acoustic pressure and the relative flame position 1 − σ :
(a) experiment 1 taken from Searby (1992); (b) theoretical prediction for γ = 8.5.
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FIGURE 19. Evolution of the acoustic pressure and the relative flame position 1 − σ :
(a) experiment 2 taken from Searby (1992); (b) theoretical prediction for γ = 15.441.

Moreover, because the initial shape of the flame in the experiment is not described
precisely, we started with a quasi-flat initial flame, which explains the slightly
different initial behaviour of σ . As is illustrated in figure 20(a), the theory predicts
that, starting from a flat initial shape, the flame tends to become curved with a shape
resembling the steady state (with gravity). Indeed, the flame shape at τ = 0.61 is very
similar to the steady state for γ = 8.5 plotted in figure 17. It then starts to flatten
and remains almost totally flat until the end of the tube is reached. As illustrated in
figure 18(b), the acoustic pressure amplifies when the flame is curved. Once it reaches
a certain level, it renders the flame flat and saturates as a result. These theoretical
predictions are in qualitative agreement with the experimental observations.

In the case of experiment 2, as is shown in figure 19(a), the flame, originally
curved, tends to flatten and remains flat for a little while. It then starts to wrinkle
and eventually becomes cellular. At this stage, a secondary exponential growth
of the acoustic pressure can be observed. Our model can capture such behaviour
up to the sharp rise in pressure, which is much faster than the first amplification
occurring in the earlier phase. Indeed, while keeping all the other parameters equal
to those presented in tables 3 and 4 for experiment 2, we found that, for a value
of γ = 15.441, our results, also presented in figure 19(b), are comparable with the
experimental observations reproduced in figure 19(a). Figure 20(b) shows that, with
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FIGURE 20. (Colour online) Evolution of the flame shape: (a) theoretical prediction of
experiment 1 for γ = 8.5; (b) theoretical prediction of experiment 2 for γ = 15.441.

a prescribed initial flat state, the flame goes through a curved transient state. After
this, the overall shape of the flame flattens while small wrinkles start to develop.
Subsequently, the amplitude of the wrinkles starts growing exponentially towards a
strongly nonlinear regime.

The quantitative differences between the experimental and numerical results may be
due to the following reasons:

(i) The experiments were conducted for a fully three-dimensional case in a
cylindrical tube, while our computations were performed for a rectangular
duct, and we made a two-dimensional approximation.

(ii) No acoustic losses have been taken into account in our model, but in reality there
must be energy dissipation associated with the tube wall.

(iii) The initial conditions in the experiments are those of an already curved flame,
while we start from an almost flat shape.

(iv) The term V · ∇F has been neglected in the flame-front equation (2.20).
(v) Finally, and perhaps most importantly, a weakly nonlinear approximation is made

in our model, which is the reason why it cannot predict what happens once the
flame has become highly cellular in experiment 2.

6. Concluding remarks
As an effort to shed further light on the fundamental mechanisms of combustion

instability, a flame–flow–acoustic interaction model was derived from the asymptotic
theory of WWMP by making a weak nonlinearity assumption, under which the
hydrodynamic field is linearised while the geometric nonlinearity is retained. This
assumption is asymptotically consistent in the limit of small heat release, but that is
not the case for the O(1) heat release of practical interest. The model accounts for
the DL and RT instabilities. It describes the generation of the spontaneous acoustic
field by the flame and its two-way interaction with the flame. Most crucially, as the
flame and the spontaneous sound are both allowed to evolve in this model, the two
crucial mechanisms, the parametric instability and the radiation of spontaneous sound
when a flame wrinkles, operate simultaneously and are coupled dynamically as they
are in experiments.

Using the model and numerical methods developed in this paper, we investigated
the linear and weakly nonlinear instability of curved flames. A crucial difference from
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previous work, except that of Pelcé & Rochwerger (1992), is that the spontaneous
acoustic field, emitted by a perturbed flame, is taken into account in our study.
The linear stability analysis shows that curved flames that are stable when the
acoustics is ignored may actually be unstable, and this conclusion is confirmed by
numerical solutions to the initial-value problem governing the flame evolution. On
the other hand, we found that, when an intrinsically unstable flat flame is perturbed,
it may be stabilised by the spontaneous sound. The most significant result is that
the dynamic coupling of DL instability and the spontaneous acoustics may induce a
secondary subharmonic parametric instability. These results emphasise the importance
of considering both acoustic–flame interactions and flow–flame interactions. Indeed,
purely hydrodynamic models such as the MS equation cannot predict the primary
instability for the particular steady curved flames considered in this paper, and
purely kinematic models such as the G equation (coupled with the acoustic field)
cannot predict the secondary instability because the latter is caused by the dynamic
RT effect. Our model is able to reproduce, at least qualitatively, the primary and
secondary instabilities observed experimentally in Searby (1992). Even though the
primary and secondary instabilities have been previously observed and studied, such
a sequence of instabilities, to our knowledge, has not been predicted by any other
models.

The model proposed in the present work retains all the key physical factors of
combustion instability, but its main limitation is the weak nonlinearity assumption.
In order to take strong nonlinearity into account, it is necessary to develop an
efficient numerical method for solving the full system governing flame–flow–acoustic
interactions. In this paper, we have considered only freely propagating flames, for
which the action of the sound on the flame is solely through the unsteady RT effects
associated with the acoustic acceleration. For anchored flames, the RT mechanism
and the kinematic advection by the acoustic velocity both operate, but the former has
not been considered in existing models where the G equation is used to describe the
flame motion. It would be interesting to develop an improved model in which both
mechanisms are included and their relative importance can be assessed. These are
problems to be tackled in the next phase of our investigation.
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Appendix A. Steady-state solutions of the flame equation
In this appendix, we consider steady solutions to the problem described in § 2.3. For

simplicity, the flow is assumed to be two-dimensional, and so the space variables are
reduced from (ξ , η, ζ ) to (ξ , η), and the vector variable V becomes the scalar variable
V . With ∂U/∂τ = ∂V/∂τ = 0, the equations (2.31) simplify to

∂U
∂ξ
=−∂V

∂η
,

∂U
∂ξ
=−∂P

∂ξ
,

∂V
∂ξ
=−∂P

∂η
. (A 1a–c)

Since acoustic fluctuations are absent (Ba(τ )= 0), the jump conditions (2.32) become

[U]+− = 0, [V]+− =−q
∂F
∂η
, [P]+− =−

qG
1+ q

F. (A 2a–c)
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As was mentioned in § 2.2, for steady states, ∂F/∂τ = UF, with UF being the
propagation speed of the flame. However, in order to obtain steady solutions by time
marching numerically, we shall retain the term ∂F/∂τ in the flame equation (2.33),
which becomes

∂F
∂τ
=U(0−, η)− 1

2

(
∂F
∂η

)2

+ δMa
∂2F
∂η2

. (A 3)

The system (A 1)–(A 3) can be reduced to a single equation by Fourier analysis.
Let the Fourier transform with respect to η of any function φ(ξ, η, τ ) be denoted
φ̂(ξ , k, τ ). Taking the Fourier transform of (A 1) and solving the resultant equations,
we obtain

(P̂, Û, V̂)=
(
φ±e∓|k|ξ ,−φ±e∓|k|ξ +C±(k), ± i

k
|k|φ±e∓|k|ξ

)
, (A 4)

where the ± signs refer to ξ > 0 and ξ < 0, respectively, and φ± and C± are unknown
functions of k only. Since we assume that no vortical disturbance is present upstream
of the flame, C− = 0. Using the Fourier transform of the jump conditions (A 2), we
find that

Û(0−, k)=−φ− = qF̂
2

(
|k| − G

1+ q

)
. (A 5)

Inversion of Û(0−, k) gives U(0−, η). By using this, the flame equation (A 3) is
written, in physical space, as

∂F
∂τ
=U(0−, η)− 1

2

(
∂F
∂η

)2

+ δMa
∂2F
∂η2

,

Û(0−, k)= 1
2

q
(
|k| − G

1+ q

)
F̂,

 (A 6)

which is equivalent to the well-known MS equation when G= 0.
Combining (A 5) with the Fourier transform of the flame equation (A 3), we obtain

a single equation in spectral space:

∂F̂
∂τ
= q

2

(
|k| − G

1+ q

)
F̂− 1

2
(ik′F̂(k′)) ? (ik′F̂(k′))(k)− δMak2F̂, (A 7)

where ? denotes a convolution, with k′ being a dummy variable introduced to avoid
confusion. For a flame in a duct, F is defined for η ∈ [−π, π], and k takes discrete
value with F̂(n, τ ) = F̂n(τ ), ∀ n ∈ Z. In the discrete form, the flame-front equation
(A 7) reads

∂F̂n

∂τ
= q

2

(
|n| − G

1+ q

)
F̂n + 1

2

∞∑
m=−∞

(n−m)mF̂n−mF̂m − δMan2F̂n, n> 0. (A 8)

Here we only need to compute F̂n for n>0, since φ̂−n= φ̂n for a function φ that is real
and even (which is the case for F). The Fourier series is truncated by setting F̂n = 0
for any n with |n| > N. The truncated system (A 8) consists of N coupled ordinary
differential equations, and is solved using a fourth-order Runge–Kutta method. The
shape of the flame can be reconstructed using a truncated Fourier series.
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Appendix B. Solution to hydrodynamic equations (3.14) subject to (3.15) and the
derivation of (3.19)

The hydrodynamic equations in spectral space, (3.14) subject to (3.15), are solved
to obtain P̂(ξ , k), Û(ξ , k) and V̂(ξ , k):

(P̂, Û) =
(
ϕ±(k) e∓|k|ξ , C± e−iωξR± − |k|ϕ±

iωR± ∓ |k| e
∓|k|ξ
)
, (B 1)

V̂ = D± e−iωξR± − ikϕ±
iωR± ∓ |k| e

∓|k|ξ , (B 2)

where the ± signs refer to ξ > 0 and ξ < 0, respectively, and ϕ±, C± and D± are
unknown functions of k. The continuity equation in the frequency space and the
absence of vortical disturbances in the oncoming mixture imply, respectively, that

−iωR±C± + ikD± = 0 and ikC− + iωR−D− = 0, (B 3a,b)

which leads to C−=D−=0. Taking the Fourier transform of the three jump conditions
(3.15) in the frequency space and using (B 1) and (B 2), we obtain a linear system of
three equations for as many unknowns (namely ϕ± and C+). Solving this system, we
find

ϕ− = |k| + iωR−
(iωR+ + |k|)+ (|k| + iωR−)

{
q
(

G
1+ q

− |k|
)
F̂+BaF̂S

}
. (B 4)

Hence we find a closed form of the spectral flame equation in the frequency space,

iωF̂=
−|k|

{
q
(

G
1+ q

− |k|
)
F̂+BaF̂S

}
(iωR+ + |k|)+ (|k| + iωR−)

− (ik′F̂S(k′)) ? (ik′F̂(k′))(k)− δMak2F̂,

(B 5)
where Ba is given by (3.18). Alternatively, the above system can be written as

∂F̃
∂τ
= Ũ(0−, η)− ∂FS

∂η

∂F̃
∂η
+ δMa

∂2F̃
∂η2

,

Û(0−, k)=
−|k|

{
q
(

G
1+ q

− |k|
)
F̂+BaF̂S

}
(iωR+ + |k|)+ (|k| + iωR−)

.


(B 6)

Note that, if the time derivative of the perturbed hydrodynamic quantities is neglected,
the terms iωR± disappear in (B 6). Moreover, if acoustic fluctuations are artificially
suppressed, then Ba = 0 in (B 6). If, finally, gravity is also neglected, then (B 6)
reduces to the linearised perturbed MS equation (3.4) via the changes of variable
t= qτ , ψ =−F̃/q and δMa = q/γ . Substitution of (3.18) into (B 5) yields (3.19).

Appendix C. Derivation of the spectral flame equation (4.1)
The aim of this appendix is to reduce the system (2.31)–(2.33) in spectral space to

a single equation governing the flame front. In a similar manner as in appendices A
and B, equations (2.31) are Fourier-transformed with respect to η and ζ , and the
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resulting equations can be manipulated to obtain ∂2P̂/∂ξ 2 − k2P̂= 0, where k is such
that k2 = k2

2 + k2
3. The general solution can be written as (see Wu & Law 2009)

Û(ξ , k, τ ) = φ±(k, τ ) e∓|k|ξ +C±(τ − R±ξ), (C 1)

P̂(ξ , k, τ ) = ±|k|−1(R±φ′±(τ )∓ |k|φ±(τ )) e∓|k|ξ , (C 2)

V̂(ξ , k, τ ) = ∓i(k/|k|)φ±(τ ) e∓|k|ξ +D±(τ − R−ξ), (C 3)

where the ± signs refer to ξ > 0 and ξ < 0, respectively, φ± and C± are unknown
functions, k = (k2, k3)

T and D± are unknown vector functions. Since no vortical
disturbances are present in the fresh mixture, it can be shown that C− = D− = 0 as
was done in appendix B. The continuity equation in (2.31) implies that

−R+C′+(τ )+ ik ·D+(τ )= 0. (C 4)

The partially linearised flame-front equation (2.33) is Fourier-transformed to

∂F̂
∂τ
(k, τ )= φ−(τ )− 1

2
(ikF̂) ? (ikF̂)− δMak2F̂(k, τ ), (C 5)

where (C 1) has been used. By differentiating (C 5) with respect to τ , we obtain

φ′−(τ )=
∂2F̂
∂τ 2

(k, τ )+ (ikF̂) ?

(
ik
∂F̂
∂τ

)
+ δMak2 ∂F̂

∂τ
(k, τ ). (C 6)

In order to determine the unknown functions in the expressions of Û, V̂ and P̂, let
us use the hydrodynamic jump conditions (2.32), which are Fourier-transformed to

[Û]+− = 0, [V̂]+− =−iqkF̂, [P̂]+− =−[Ba(τ )+ qG/(1+ q)]F̂. (C 7a–c)

Substitution of (C 1)–(C 3) into (C 7) gives three equations, from which we find that

(R+ + R−)φ′−(τ )− (R+C′+ − |k|C+) = −|k|[Ba(τ )+ qG/(1+ q)]F̂(k, τ ), (C 8)

(ik ·D+ − |k|C+) = qk2F̂− 2|k|φ−. (C 9)

Use of (C 4) and (C 9) in (C 8) to eliminate C+, C′+ and D+ gives

(R+ + R−)φ′−(τ )= ik ·D+ − |k|C+ − |k|[Ba(τ )+ qG/(1+ q)]F̂(k, τ ). (C 10)

Therefore, use of (C 9) in (C 10) leads to

(R+ + R−)φ′−(τ )+ 2|k|φ− = qk2F̂− |k|[Ba(τ )+ qG/(1+ q)]F̂(k, τ ). (C 11)

Substituting (C 5) and (C 6) into (C 11), we finally obtain

A
∂2F̂
∂τ 2
+ B

∂F̂
∂τ
+CF̂=−|k|(ikF̂) ? (ikF̂)− A(ikF̂) ? (ik

∂F̂
∂τ
), (C 12)

where A= R+ + R−,

B(k)= AδMak2 + 2|k|, C(k, τ )= |k|[Ba(τ )+ qG/(1+ q)] − qk2 + 2δMa|k|3.
(C 13a,b)

For a two-dimensional flame, (C 12) reduces to (4.1).
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Lax–Wendroff scheme
Backward or forward difference

MIIM scheme

0

FIGURE 21. Illustration of the MIIM.

Appendix D. Modified immersed interface method (MIIM)

As an alternative to the method of characteristics, a full numerical method can be
constructed to solve the acoustic system (4.5). Special attention must be paid to the
discontinuities of the coefficient and the solutions. By defining the vector variable U=
(pa, ua)

T, the system (4.5) can be rewritten as a first-order hyperbolic system:

Uτ + CUξ̃ = 0, where C =
(

0 1
c2 0

)
. (D 1)

The jump conditions (4.7) together with (D 1) lead to higher-order jump conditions:

JUK+− =
(

0
Ja(τ )

)
, JCUξ̃K

+
− =

(
0

−J ′
a(τ )

)
, JC2Uξ̃ ξ̃K

+
− =

(
0

J ′′
a (τ )

)
. (D 2a–c)

For later reference, we introduce the notation E+1 (τ )= E−1 (τ )= JUK+− and

E±2 (τ )= (C±)−1JCUξ̃K
+
−, E±3 (τ )= ((C±)2)−1JC2Uξ̃ ξ̃K

+
−. (D 3a,b)

In order to deal with the discontinuity of the coefficient of (4.5), the immersed
interface method (Zhang & LeVeque 1997) will be adopted and modified to take
into account the jump across ξ̃ = 0. Let us consider a uniform grid, with a space
mesh size 1ξ̃ and a time step 1τ , so that the point ξ̃ = 0, where the discontinuity
occurs, is not a mesh point (see figure 21). The coordinate ξ̃ is hence discretised
by ξ̃j = L− + j1ξ̃ and the time is discretised by τn = n1τ . All the points that are
not directly adjacent to the discontinuity shall be referred to as regular, whilst those
points that are shall be referred to as irregular. Typically, for a given time, only two
points are irregular, one just before the discontinuity and one just after. These points
on the ξ̃ -axis are denoted by ξ̃J and ξ̃J+1, respectively (see figure 21). In addition,
let Un

i denote the numerical approximation of U(ξ̃i, τn). At all the regular points
(apart from the extremities of the domain), one can apply the standard three-point
Lax–Wendroff scheme to (D 1), leading to

Un+1
i =Un

i −
1τC i

21ξ̃
(Un

i+1 −Un
i−1)+

1
2

(
1τC i

1ξ̃

)2

(Un
i+1 − 2Un

i +Un
i−1), (D 4)
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while the extremities can be dealt with by using forward or backward difference. With
this scheme, numerical stability is subject to the CFL condition,

1τ

1ξ̃
max(c+, c−)6 1. (D 5)

The main premise of this method is to create artificially a three-point scheme at
irregular points by writing

Un+1
J = Un

J +
1τ

1ξ̃
(ΓJ,1Un

J−1 + ΓJ,2Un
J + ΓJ,3Un

J+1)

− 1τ
1ξ̃

ΓJ,3

2∑
m=0

(ξ̃J+1)
m

m! E+m+1(τn), (D 6)

Un+1
J+1 = Un

J+1 +
1τ

1ξ̃
(ΓJ+1,3Un

J + ΓJ+1,2Un
J+1 + ΓJ+1,1Un

J+2)

+ 1τ
1ξ̃

ΓJ+1,3

2∑
m=0

(ξ̃J)
m

m! E−m+1(τn), (D 7)

where E±m are defined in (D 3) and the 2× 2 matrix coefficients Γ can be determined
analytically by enforcing a local truncation error of O((1ξ)2, (1τ)2). The main
difference between this modified method and the standard immersed interface method
(Zhang & LeVeque 1997) is the addition of the terms involving E±m in the three-point
scheme in order to deal with a function Ja that is not equal to zero, but varies with
time. We note that other innovative methods such as the modified solutions presented
in Piraux & Lombard (2001) could probably be implemented as well.
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