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This paper presents an abstract definition of partial inconsistency and one operator used
to remove it: normalization. When there is partial inconsistency in the combination of
two pieces of information, this partial inconsistency is propagated to all the information
in the system thereby degrading it. To avoid this effect, it is necessary to apply normaliza-
tion. Four different formalisms are studied as particular cases of the axiomatic framework
presented in this paper: probability theory, infinitesimal probabilities, possibility theory,
and symbolic evidence theory. It is shown how, in one of these theories (probability),
normalization is not an important problem: a property which is verified in this case gives
rise to the equivalence of all the different normalization strategies. Things are very
different for the other three theories: there are a number of different normalization
procedures. The main objective of this paper will be to determine conditions based on
general principles indicating how and when the normalization operator should be ap-
plied.  1997 John Wiley & Sons, Inc.

1. INTRODUCTION

Shenoy and Shafer1,2 have provided an axiomatic framework for the propaga-
tion of uncertainty in hypergraphs. In this work propagation algorithms are
abstracted from the particular theory being used to represent information. They
introduce the primitive concept of valuation, which can be considered as the
mathematical representation of a piece of information. A valuation may be
particularized to a possibility distribution, a probability distribution, a belief
function, etc. Then they develop and express propagation algorithms in terms
of operations with valuations. These algorithms may be particularized to any
concrete theory by translating valuations and operations to their special interpre-
tation in this theory.

Cano et al.3 have proposed a modification of this axiomatic framework
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adding three new axioms to generalize Pearl’s propagation algorithm4 in directed
acyclic graphs (DAG’s). The last axiom was the strangest at first sight. However,
it turned out to be very important. It states that in the empty set all the valuations
must be equal to the neutral element or to the contradiction. In general, propaga-
tion algorithms could be applied (with minor modifications) to cases in which
this axiom is not verified. However, when this axiom is not verified there is a
problem with the propagation of partial inconsistency in a process in which the
rest of the information is degraded.

The objective of this paper is to make an abstract study of partial inconsis-
tency and of the strategies to remove it. In Section 2, we shall start by considering
general valuation systems in which the last axiom proposed by Cano et al.3 is
not necessarily verified. In Section 3, we shall show that this axiomatic system is
verified by probability theory, the theory of infinitesimal probabilities, possibility
theory, and the so called symbolic evidence theory.

Section 4 will be devoted to defining partial inconsistency and a set of
Axioms N1–N4 to be verified by normalization operators. The normalization of
a valuation is intended to be the same valuation in which partial inconsistency is
removed. This axiomatic is applied to the particular cases introduced in Section 3.

Section 5 explains what the role of normalization is about and introduces
the main problem associated with it: if we have several valuations, when should
normalization be applied? The fact is that there is no single alternative, and
depending on the one we choose, we shall obtain a different result.

Section 6 considers strategies to determine the application points of normal-
ization operators. First we determine a simple case, in which probability is in-
cluded. This case is precisely that in which the last axiom in Cano et al.3 can be
verified. The other theories studied in this paper, infinitesimal probabilities,
possibility theory, and symbolic evidence theory, do not correspond to this simple
case. The rest of this section is devoted to generating procedures for them. The
idea will be to apply general principles for determining which group of valuations
should be combined and normalized, with the objective of reducing the number
of final alternatives. One of these principles will be that the selection of the
valuations will be based on the frame in which they are defined.

Section 7 shows that the application of normalization is not an obstacle for
the application of propagation algorithms. It is shown that the basic property
introduced by Shafer and Shenoy1,2 allowing the application of propagation algo-
rithms is also verified in our formalism in which the partial inconsistency is re-
moved.

2. VALUATION BASED SYSTEMS

Assume that we have an n-dimensional variable, (X1 , . . . , Xn), each dimen-
sion, Xi , taking values on a finite set Ui . First of all, we shall consider the notation
we are going to follow:

● If I # h1, . . . , nj, we shall denote by XI the uIu-dimensional variable (uIu is the
number of elements of set I), (Xi)i[I , and by UI the cartesian product Pi[IUI , that
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is the set in which XI takes its values. Sometimes, for simplicity in the language,
we shall identify set I with variable XI , and we shall talk about variable I.

● If u [ Ui , then we shall denote by ui the ith coordinate of u, that is the element
from Ui .

● If u [ UI and J # I, we shall denote by uQJ the element from UJ obtained from
u by dropping the extra coordinates. That is, the element given by uQJ

j 5 uj , ;j [ J.
● If A # UI and J # I, we shall denote by AQJ the subset of UJ , given by

AQJ 5 hv [ UJ : v 5 uQJ, u [ Aj.

In these conditions, a valuation is a primitive concept meaning the mathemat-
ical representation for a piece of information in a given uncertainty theory. We
shall assume that for each I # h1, . . . , nj there is a set VI of valuations defined
on the cartesian product, UI . If V [ VI we shall say that V is defined on UI or
that UI is the frame of V. We shall also say that V is defined on I.

V will be the set of all valuations V 5 <I#h1, . . . , nj VI

Two basic operations are necessary (see Zadeh5; Shenoy and Shafer1,2):

● Marginalization: If J # I and V1 [ VI then the marginalization of V1 to J is a
valuation VQJ

1 in VJ .
● Combination: If V1 [ VI and V2 [ VJ , then their combination is a valuation V1 ^

V2 in VI<J

We shall assume that the valuations verify the following axioms (Axioms 1–3
are from Shenoy and Shafer2 and Axioms 4–5 from Cano, Delgado, and Moral3).

Axiom 1: VI ^ V2 5 V2 ^ V1 , (V1 ^ V2) ^ V3 5 V1 ^ (V2 ^ V3).

Axiom 2: If I # J # K, and V [ VK , then (VQJ)QI 5 VQJ.

Axiom 3: If V1 [ VI , V2 [ VJ , then (V1 ^ V2)QI 5 V1 ^ VQ(J>I)
2 .

Axiom 4: Neutral Element. For each J # h1, . . . , nj, there exists one and only
one valuation VJ

0 defined on UJ such that ; V [ V I, with J # I, VJ
0 ^

V 5 V.

Axiom 5: Contradiction. There exists one and only one valuation, Vc , defined
on U1 3 · ? · 3 Un , such that ; V [ V, Vc ^ V 5 Vc .

The following axiom was considered in Ref. 3, but in our present setting it
will not be assumed.

Axiom 6: ; V [ VB , if V ? VQB
c , then V 5 VB

0 .

According to this axiom, in the frame corresponding to the empty set of
variables, UB , all valuations are the contradiction or the neutral element. In this
sense, there are only two possible degrees of consistency: one corresponding to
the contradiction (inconsistency) and the other corresponding to the neutral
valuation (consistency), without intermediate degrees of consistency. That is not
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the case we are trying to represent. We want to study formalisms in which
valuations have partial inconsistency, as is the case of the Theory of Possibility.
To cope with partial inconsistency we are going to assume a new operation,
normalization, which is applied to the valuations different from the contradiction,
i.e., to the set of valuations,

V 9 5 hV [ V : VQB ? VQB
c j (1)

For the cases in which it is possible, as in the Theory of Probability, Axiom
6 will be recovered later on.

3. PARTICULAR CASES

3.1. Probability Theory

In Probability Theory a valuation is the representation of a probabilistic
piece of information about some of the variables, XI , I # h1, . . . , nj. More
concretely, if we have three variables (X1 , X2 , X3) taking values on U1 3 U2 3
U3 , where Ui 5 hui1 , ui2j, i 5 1, 2, 3, then a valuation may be a probability
distribution about X1 ,

p(u11) 5 0.8

p(u12) 50.2

It may also be a conditional probability distribution about X3 given X2 ,

p(u31 u u21) 5 0.9 p(u32 u u21) 5 0.1

p(u31 u u22) 5 0.6 p(u32 u u22) 5 0.4

From a mathematical point of view, a probabilistic valuation about variables
XI is a non-negative mapping,

p:UI R R1
0

where R1
0 denotes the non-negative real numbers.

If p1 is a valuation on UI and p2 is a valuation on UJ , then the combination
of p1 and p2 denoted as p1 ^ p2 is a valuation defined on UI<J by:

p1 ^ p2(u) 5 p1(uQI ) · p2(uQJ) (2)

If p is a valuation on UI and J # I, the marginalization pQJ is defined by:

pQJ(v) 5 o hp(u) : uQJ 5 vj (3)

The neutral valuation on UJ is the mapping p0 always taking the value 1.
The contradiction is the valuation taking the value 0 for all the elements of

U1 3 · ? · 3 Un .
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3.2. Infinitesimal Probabilities

Here we describe a very simple version of infinitesimal probabilities. More
sophisticated theories are to be found in the literature.6,7

It is considered that apart from the numerical probabilities, there is a value,
«, representing a very small probability. So a valuation is a mapping

p:UI R R1
0 < h«j

The operations are defined in the same way as in the probabilistic case,
considering that « is a number between 0 and all the positive real numbers, where:

2« 1 x 5 x, ;x [ R1
0 < h«j, x ? 0

2« 1 0 5 «

2«.x 5 «, ;x [ R1
0 < h«j, x ? 0

2«.0 5 0

3.3. Possibility Theory

In possibility theory,8,9 a valuation in UI is a possibility distribution on UI ,
i.e., a mapping

f:UI R [0, 1] (4)

If f1 is a valuation on UI and f2 is a valuation on UJ , then the combination
of f1 and f2 denoted as f1 ^ f2 is a valuation defined on UI<J by using the
minimum rule:

f1 ^ f2(u) 5 Min hf1(uQI ), f2(uQJ)j (5)

If f is a valuation on UI and J # I, the marginalization fQJ is defined by
using the maximum operator in the following way,

fQJ(v) 5 Max hf(u):uQJ 5 vj (6)

The neutral valuation is the possibility, f0 , defined by f0(u) 5 1, ;u [ UJ .
The contradiction is the possibility, fc , defined by fc(u) 5 0, ;u [ Uh1, . . . , nj .

3.4. Symbolic Evidence Theory

The Symbolic Evidence Theory has been developed by Kohlas,10 starting
out from assumption-based propositional knowledge. If P is a set of elementary
propositional symbols, then LP will denote the set of all well-formed propositional
formulae using symbols from P.

Let A be a finite set of symbols representing assumptions, a set of proposi-
tional symbols P and a set of clauses S 5 hj1 , . . . , jmj over A < P, representing
the available knowledge and facts.



634 DE CAMPOS AND MORAL

If h is an element of LP , we are interested in the assumptions under which
h can be deduced from S. In particular, we say that a conjunction a [ LA is a
support set of h if and only if

a, S u5 h

A conjunction a [ LA is said to be a contradiction set relating S if and only if

a, S u5 '

where ' stands for the contradiction.
Support sets a for h such that no subset is also a support set are called

minimal support sets for h, similarly, contradiction sets a, such that no subset is
still a contradiction set, are called minimal contradictions.

The support for a formula h [ LP relating S is given by the formula:

sp(h, S) 5 ~ ha : a is a minimal support set of h relating Sj

The contradiction relating S is

sp(', S) 5 ~ ha : a is a minimal contradiction relating Sj

If Q # P, and LQ is the language of propositional formulae on Q, then
LQ/; will denote the set of equivalence classes of LQ under the relation ;. If
h [ LQ , then [h] will stand for the set of all formulae equivalent to h.

Here, to talk in terms of valuations, we identify the set of variables with
the set of propositional symbols, P, which will be assumed to be finite.

A valuation on Q # P will be a mapping

m : LQ/; R LA

verifying

(1) If [h1], [h2] [ LQ/; and h1 ò h2 , then

m(h1) ` m(h2) ; ';

(2) S hm(h) : [h] [ LQ/;j ; Á,

where Á stands for the tautology and S stands for the disjoint union.
For simplicity’s sake, we write m(h) instead of m([h]).
A valuation, m, can be defined from a set of clauses s on A < P in the

following way:

m(h) 5 sp(h, S) ` S¬ ~ hsp(h9, S) : h9 [ LQ , h9 u5 h, h9 ò hjD
m(h) is called the basic argument of h relating S.10

If m is defined from the knowledge base S and h [ LQ , its support may be
obtained in the following way:

sp(h, S) 5 o hm(h9) : [h9] [ LQ/;, h9 u5 h, h9 ò 'j
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If Q9 # Q and h [ LQ is expressed in disjunctive normal form, the projection
of h to LQ9 is the formula obtained by eliminating all literals in h belonging to
Q 2 Q9. This projection will be denoted as hQQ9.

If m is a valuation in Q and Q9 # Q, the marginalization of m to Q9 will
be the valuation on Q9 defined by:

mQQ9(h9) 5 o hm(h) : [h] [ LQ/;, hQQ9 ; h9j

It may be verified that if m is a valuation on LQ obtained from a knowledge
base S on A < P, then mQQ9 is the valuation induced by the same knowledge
base on LQ9 .10

Assume now that Q1 , Q2 # P and that m1 , m2 are valuations on Q1 and Q2 ,
respectively. The combination of m1 and m2 will be a valuation on Q1 < Q2

given by:

m1 ^ m2(h) 5 o hm1(h1) ` m2(h2) : [hi] [ LQi
/;, h1 ` h2 ; hj

Kohlas10 justifies this rule verifying that if each mi comes from the knowledge
base Si defined on Qi < A, then m1 ^ m2 is the valuation on Q1 < Q2 induced
by the union of the knowledge bases S1 < S2 .

The neutral valuation is the valuation m0 on P assigning the tautology on
LA to the tautology on LP and the contradiction of LA to the rest of the formulae
on Lp . That is, only the tautology on LP is supported and it is fully supported:
We only know that we do not know anything. The contradiction is the valuation
mc on P assigning the tautology on LA to the contradiction on LP : only the
contradiction has a basic argument.

4. AN AXIOMATIC VIEW OF PARTIAL INCONSISTENCY

In this framework, VB is called the set of consistency values and denoted as
C. The application

CG:V R C (7)

given by CG(V) 5 VQB is the consistency mapping. CG applies each valuation
on its consistency degree.

Though we have to add more properties to the axiomatic system, below we
give an example to illustrate these somewhat abstract ideas.

Example 1.
(1) Probability Theory: UB is the cartesian product of no set. This cartesian

product has only one element: UB 5 hej (e would be the element ( )). In
the case of probability theory a valuation, pB , defined on UB is a mapping
defined on this set hej which has only one element. To state it, we only
have to specify a number pB(e). That is, we only need to provide a nonnega-
tive real number. Thus, a valuation on UB can be identified with a number.
If we have a probability, p, defined on UI , the marginalization of this
probability on the empty set of variables is equal to:
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CG(p) 5 pQB(e) 5 o hp(u) : uQB 5 ej 5 o hp(u) : u [ UIj (8)

The last equality comes from the fact that the marginalization of a point
u [ UI to the empty set, uQB, is always equal to ( ) 5 e.

(2) Infinitesimal Probability: The definitions are the same as in probability
theory with the only difference that now we may have a new value « and
that we have to operate with this value according to the rules above.

(3) Possibility Theory: As in the case of probability, a possibility on UB is
given by a single value. Therefore the set of consistency degrees is the
interval [0, 1]. The degree of consistency of a possibility, f, defined on UI

is given by

CG(f) 5 fQB(e) 5 Maxhf(u) : uQB 5 ej 5 Maxhf(u) : u[ UIj (9)

(4) Symbolic Evidence: For the empty set, LB has only two formulae, the
contradiction ' and the tautology Á. A valuation on this set, mB , is a
mapping from this set on LA , in such a way that mB(') ; ¬mB(Á). So a
valuation is given by the degree of support of Á. The other value, mB(')
is its negation. As a proposition on LA defines a degree of consistency and
reciprocally, we may identify that the set of degrees of consistency is LA .
When we have an arbitrary valuation, m, on LQ , its degree of consistency
is calculated by

CG(m) 5 mQB(Á) 5 o hm(h) : [h] [ LQ/;, hQQ9 ; Áj
(10)

5 o hm(h) : h ò 'j 5 ¬m(')

The consistency of m is the negation of the support of the contradiction.

The normalization function is a mapping N:V 9 R V 9, verifying the follow-
ing properties,

Axiom N1: ;V [ V 9, V [ VI , if and only if N(V) [ VI .

Axiom N2: ;V [ V 9, N(N(V)) 5 N(V).

Axiom N3: ;V [ V 9, VQB 5 V0 , if and only if N(V) 5 V.
Where V0 is the neutral valuation on VB .

Axiom N4: ;V [ V 9, if V [ VI and J # I, N(VQJ) 5 N(V)QJ.

We say that a valuation has partial inconsistency when N(V) ? V or equiva-
lently, when VQB ? V0 . Essentially, a valuation and its normalization represent the
same information. The normalized version has removed the partial inconsistency
from the valuation.

According to Axiom N1 the normalization of a valuation is defined on the
same set of variables as the original valuation. Axiom N2 specifies that the
normalization of a normalized valuation is the same valuation. Axiom N3 states
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that the neutral valuation in the empty set and all the valuations with the same
degree of consistency are normalized valuations: their normalization produces
the same valuation. Axiom N4 states that the order in which a normalization
and a marginalization are carried out is irrelevant.

We have not defined the normalization of the total contradiction. We might
have considered that N(Vc) 5 Vc . But then Axiom N3 is not verified and we
should modify the axiom making our system more complicated. In this paper
the problem of total contradiction is not considered and when it is obtained, it
should be solved by another procedure. Our assumption will be that it is never
obtained. All the results in this paper are stated under the condition that all the
combinations are different from the contradiction. If, in a particular case, the
total contradiction is obtained then we should not apply these methods. We
should consider other ways to remove inconsistency or simply report that we
have inconsistency in our system.

Shafer11 has given a different concept for normalization. It says that N9(V)
is a normalization of V if

VQB ^ N9(V) 5 V (11)

The idea behind this definition is quite different from the concept we have
given in this paper. According to Shafer’s definition N9(V) may have inconsis-
tency, because (N9(V))QB can be different from the neutral valuation. That is not
possible in our case. For idempotent valuations (possibility theory and symbolic
evidence) we could make N9(V) 5 V verifying Shafer’s definition and keeping
the valuation as inconsistent as before applying normalization.

Example 2.
(1) Probability Theory: If p is a valuation on UI , other than the contradiction,

its normalization is obtained by the following expression:

N(p)(u) 5 p(u)/CG(p) (12)

(2) Infinitesimal Probability: If p is a valuation on UI , and CG(p) ? 0, « its
normalization is obtained by the same expression (12) as in the case of
probabilities, taking into account that «/x 5 «, ;x . 0:

When CG(p) 5 0, then the valuation is the contradiction and the
normalization is not defined. We should define the normalization when
CG(p) 5 «. A reasonable definition verifying the axioms is:

N(p)(u) 5 H1/k if p(u) 5 «

0 if p(u) 5 0
(13)

where k is the number of elements of UI for which p takes the value «.
(3) Possibility Theory: It is possible to find several normalization functions in

Possibility Theory. It is possible to use a normalization analogous to the
probabilistic one. Here we give the following one:

N(f)(u) 5 Hf(u) if f(U) , CG(f)

1 otherwise
(14)
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(4) Symbolic Evidence: In this case the consistency degree of a valuation is
¬m('). A valuation is normalized when m(') is the contradiction: nothing
supports the contradiction.

To normalize a valuation is to remove the support from ' and pass
it onto another formula. The most neutral selection is to assign this support
to the tautology. So we can define:

N(m)(h) 5 5
m(h) if h ò ', h ò Á

' if h ; '

m(') 1 m(Á) if h ; Á

(15)

An immediate property of normalization operators is given by the follow-
ing proposition.

PROPOSITION 1. If V1 [ VI , V2 [ VJ , where I > J 5 B, then

N(N(V1) ^ N(V2)) 5 N(V1) ^ N(V2)

Proof. First let us calculate the value of (N(V1) ^ N(V2))QB. Following
Axiom 2, we find,

(N(V1) ^ N(V2))QB 5 ((N(V1) ^ N(V2))QI)QB (16)

By Axiom N1, N(V1) is defined on VI , then applying Axiom 3, we have,

(N(V1) ^ N(V2))QB 5 (N(V1) ^ N(V2)QI>J)QB 5 (N(V1) ^ N(V2)QB)QB (17)

By applying Axiom 3 to the resulting expressions, we find

(N(V1) ^ N(V2))QB 5 N(V1)QB ^ N(V2)QB (18)

Now, following Axioms N2 and N3, we have that

N(Vi)QB 5 VQB
0 (19)

Introducing this equality in Eq. 18, we obtain

(N(V1) ^ N(V2))QB 5 VQB
0 (20)

Now, by applying Axiom N3, we achieve the desired result,

N(N(V1) ^ N(V2)) 5 N(V1) ^ N(V2) (21)

j

The main definitions relating to the calculus with valuations are given below.
These are modifications of the ones given in Ref. 3 adapted to this axiomatic
framework.

DEFINITION 1. A valuation V [ VI is said to be absorbent if and only if it is
normalized (N(V) 5 V) and (;V9 [ VI )((N(V ^ V9) 5 V) or (V ^ V9 5 Vc)).



REMOVING PARTIAL INCONSISTENCY 639

If a valuation from VI represents a piece of information about the values of
variables XI , then an absorbent valuation represents prefect knowledge about
these values: it cannot be consistently refined by combination with another
valuation: We can only obtain the same information with less consistency or the
contradiction.

Example 3. In Probability Theory, absorbent valuations are probability distribu-
tions assigning a value of 1 to one element and 0 to the other elements. It
represents an observation of this element.

The cases of Infinitesimal Probabilities and Possibility Theory are exactly
the same.

In the Symbolic Theory of Evidence an absorbent valuation on Q is a
mapping m such that there is a formula h with the tautology as basic argument
and verifying: ;p [ Q, h u5 p or h u5 ¬p. That is to say, it represents a perfect
knowledge of the true values of all the formulae in this language. j

DEFINITION 2. If V [ VI<J , it is said that V is a valuation on UI conditioned to
UJ , if and only if VQJ 5 V0 [ VJ , the neutral element on VJ . The subset of VI<J

given by the valuations on UI conditioned to UJ will be denoted by VIuJ .

This is an abstract definition of conditional valuation. If V is a valuation on
UI conditioned to UJ , then it may give some information about variables XI and
their relationships with variables XJ , but not about variables XJ . It is thus defined
as a valuation such that marginalizing it on UJ gives the neutral element. That
is to say, it does not say anything about XJ . A valuation on UI conditioned to
UB is said to be an unconditional valuation about UI . Unconditional valuations
are always normalized. We only have to take into account its definition and
Axiom N3.

It is also immediate that the combination of a valuation on UI conditioned
to UJ and an unconditional valuation on UK , where J # K gives rise to a normal-
ized valuation.

5. THE ROLE OF NORMALIZATION

By combination, partial inconsistency of a valuation contaminates the rest
of valuations degrading their information value. The following example shows
this effect.

Example 4. Assume that we have two possibility distributions f1 and f2 , defined
for the variables X1 and X2 , respectively. Assume also that X1 takes values in
U 5 hu1 , u2j and X2 takes values on V 5 hv1 , v2j, and that f1 , f2 are given by,

f1(u1) 5 0, f1(u2) 5 0.2 (22)

f2(v1) 5 1, f2(v2) 5 0.7 (23)
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In these conditions, f1 ^ f2 is given by,

f1 ^ f2(u1 , v1) 5 0, f1 ^ f2(u1 , v2) 5 0,

f1 ^ f2(u2 , v1) 5 0.2, f1 ^ f2(u2 , v2) 5 0.2
(24)

And the marginalization of this product on U2 is the valuation given by:

(f1 3 f2)Q2(v1) 5 0.2, (f1 3 f2)Q2(v2) 5 0.2 (25)

By combining f2 with f1 and then marginalizing to U2 , this valuation f2 loses
all its information value: it does not distinguish between v1 and v2 . The partial
inconsistency of f1 has contaminated the product and f2 has become noninfor-
mative.

Intuitively, f1 and f2 are defined for different sets of variables, so they should
not influence each other. However, if we combine f1 and f2 and, for example,
f1 has partial inconsistency, then this partial inconsistency contaminates f2 .

The role of normalization is to remove the inconsistency before the combina-
tion, in such a way that such undesirable effects do not occur. The following
example shows that the situation is different if we calculate with normalized valua-
tions.

Example 5. If we normalize each one of the valuations and then we multiply the
results, we find:

N(f1) ^ N(f2)(u1 , v1) 5 0, N(f1) ^ N(f2)(u1 , v2) 5 0,

N(f1) ^ N(f2)(u2 , v1) 5 1, N(f1) ^ N(f2)(u2 , v2) 5 0.7
(26)

The marginalization of this combination on U2 gives rise to the same original
valuation: (N(f1) 3 N(f2))Q2 5 N(f2).

The situation, in general, is not as easy as in this example. The problem is
that when we have more than two valuations, the result may depend on the way
we carry out the normalization. In effect, if we have three valuations V1 , V2 , and
V3 , then the valuations N(V1) ^ N(V2) ^ N(V3), N(V1) ^ N(N(V2) ^ N(V3)),
N(N(V1) ^ N(V2)) ^ N(V3) are, in general different and nonnormalized. What
option should we take? There is no clear answer at this stage. This paper will
try to find reasonable ways of performing normalization, or at least to reduce
the number of possible alternatives.

6. ISOLATING INCONSISTENCY

In general, in a classical reasoning system, as in probability theory, we start
with a general knowledge about a population or problem. This knowledge is
composed of several elementary pieces of information, each one of them relating
some of the variables in the problem. For example, in Probability Theory, initially
we have a family of a priori and conditional probability distributions. In general,
there is no inconsistency in these rules or general knowledge. Then we have a
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particular case, about which we want to make some inferences: We observe some
data, and we want to obtain the information about some variables that can be
deduced from the initial general pieces of information and the observations for
this particular case. This is the time when partial inconsistency arises and the
correct application of normalization becomes relevant.

If the deduction system is defeasible, as most of the systems dealing with
knowledge that is imprecise or uncertain are, then all the initial pieces of informa-
tion have to be taken into account, because we cannot obtain a conclusion from
part of the knowledge we have. In Probability Theory, this implies that deductions
have to be obtained through a global probability distribution, built taking into
account the initial elementary probability distributions.

The process of obtaining an unconditional probability for all the variables
(a global probability) was generalized in Ref. 3 to the case of general valuations.
This process relies on the consideration of independence relationships between
variables as primitive concepts, that may be associated to different uncertainty
representations, and that may be known prior to any numerical relationships
between the variables in consideration.4,12,13 Here we give some of the basic ideas
for the construction of a global valuation from elementary valuations.

Let us assume that (X1 , . . . , Xn) is an n-dimensional variable and that s
is a permutation on the set h1, . . . , nj, then a global valuation can be built by
means of the combination of the following valuations:

● An unconditional valuation about Xs(1) .
● For each i 5 2, . . . , n, a valuation about Xs(i) conditioned on Xhs(1), . . . , s(i21)j .

Independence relationships may be used to reduce the size of the valuations
to be combined, in the following way:

If hs(1), . . . , s(i 2 1)j 5 I < J and Xs(i) is independent of XJ given the variables XI

then we can consider a valuation about Xs(i) conditioned on XI instead of a valuation
about Xs(i) conditioned on Xhs(1), . . . , s(i21)j .

This initial combination is always normalized.

PROPOSITION 2. Assume that Vi is a conditional valuation about Xs(i) given XI

where I # hs(1), . . . , s(i)j then V 5^i[h1, . . . , nj Vi is an unconditional valuation
for (X1 , . . . , Xn), or equivalently, it is a normalized valuation for these variables.

Proof. The proof will be by induction on n.
For n 5 1, the result is immediate, with V1 being an unconditional valuation

about Xs(1) 5 X1 .
If the proposition is true for n 5 k, then for n 5 k 1 1, we have

V 5 ^
i[h1, . . . , k,k11j

Vi 5 S ^
i[h1, . . . , kj

ViD^ Vk11 (27)
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Now, using the hypothesis of induction, ^i[h1, . . . , kj Vi , is a normalized valua-
tion on hs(1), . . . , s(k)j. With Vk11 being a valuation about Xs(k11) conditioned
to XI with I # hs(1), . . . , s(k)j, then the product is a valuation on hs(1), . . . ,
s(k), s(k 1 1)j 5 h1, . . . , nj. Furthermore, following Axioms 2 and 3, we obtain:

VQB 5 S ^
i[h1, . . . , k,k11j

ViDQB

5 SS ^
i[h1, . . . , kj

ViD^ Vk11DQB

(28)

5 SSS ^
i[h1, . . . , kj

ViD^ Vk11DQIDQB

5 SS ^
i[h1, . . . , kj

ViD^ VI
0DQB

(29)

5 S ^
i[h1, . . . , kj

ViDQB

5 VB
0 . j

Below we provide abstract definitions of observation and a posteriori valu-
ation.

DEFINITION 3. A family of observations about an n-dimensional variable
(X1 , . . . , Xn) is a set of valuations hOiji[I , where I # h1, . . . , nj, and Oi is an
absorbent valuation on Ui .

Observations may be characterized (see Definition 1) as valuations for a
variable that may not be refined by combination without obtaining the contradic-
tion, i.e., they represent perfect knowledge about the value of these variables.

The combination of a priori information with observations gives rise to the
so called a posteriori information which represents the particularization on the
a priori valuation for the case given by the observations.3

DEFINITION 4. If V is a global unconditional valuation about the variables
(X1 , . . . , Xn) and hOiji[I a family of observations about these variables, we call
VPS

J 5 ((^i[IOi) ^ V)QJ the a posteriori information about variables XI induced
by V and hOiji[I , where J # h1, . . . , nj.

The problem with this definition is that the consideration of a global valua-
tion and the combination without normalization allows the propagation of partial
inconsistency. Our approach will be to use the components of the global valuation,
the elementary valuations giving rise thereto, instead of the global valuation
itself trying to normalize before combining. Under these conditions, assume that
we have a family of valuations hViji[h1, . . . , nj in such a way that the combination
of the valuations is an unconditional valuation for all the variables (a priori
information) and that hOiji[I is a family of observations for a particular case, let
H 5 hViji[h1, . . . , nj < hOiji[I be the family of all the valuations we want to combine,
then we make the following definitions.

DEFINITION 5. We say that VP is an improved particularization of hViji[h1, . . . , nj to
the observations hOiji[I if and only if we can transform H by a successive application
of the following rule:
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Combine Take H 9 # H, transform H on (H 2 H 9) < hN(^V[H 9 V)j until
H 5 hVPj.

Nothing is said in this definition about how to select the subsets H 9 of H

to which to apply the rules. Different criteria will give rise to different improved
particularizations. Our main objective will be to determine which are the reason-
able strategies according to general principles.

DEFINITION 6. We say that VAP
J is an improved a posteriori information about XJ

of the a priori valuations hViji[h1, . . . , nj given the observations hOiji[I if and only if
VAP

J 5 (VP)QJ, where VP is an improved particularization induced by the same sets
of valuations.

6.1. The Strategy for the Simple Case

A special case in which we can determine a simple general strategy is when
the following axiom is verified:

Axiom N5. ;V1 , V2 [ V 9, then N(V1 ^ V2) 5 N(N(V1) ^ N(V2)).

An equivalent version of this axiom is the following:

;V1 , V2 , V3 [ V 9 if N(V2) 5 N(V3) then N(V1 ^ V2) 5 N(V1 ^ V3) (30)

When this is verified then we can prove the following theorem:

THEOREM 1. If Axiom N5 is verified and VP is an improved particularization
relating to H, then

VP 5 N S
V̂[H

VD (31)

Proof. Equation 31 is trivial when H has only one element.
Let us prove the theorem showing that if Hold and Hnew are the family H

before and after applying the rule in Definition 5 for H 9 # Hold , then

N S
V̂[Hold

VD5 N S
V̂[Hnew

VD (32)

This is a consequence of the following equalities, in which Axiom 5 is applied:

N S
V̂[Hnew

VD5 N SS ^
V[Hold2H 9

VD^ N S
V̂[H 9

VDD
5 N SN S ^

V[Hold2H 9
VD^ N S

V̂[H 9
VDD (33)

5 N SS ^
V[Hold2H 9

VD^ S
V̂[H 9

VDD5 N S
V̂[Hold

VD j
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This theorem states that if Axiom N5 is verified then all the particularizations
are the same and can be calculated by combining all the valuations and normaliz-
ing at the end. So, in this case, the partial inconsistency can be removed for all
the valuations at the same time without problems of degrading the quality of
final results. Unfortunately this axiom is not always verified.

Example 6.
(1) Probability Theory. In this case Axiom N5 is trivially verified. We just

have to consider that CG(N(p1) ^ N(p2)) 5 CG(p1 ^ p2)/(CG(p1) · CG(p2)),
then

N(N(p1) ^ N(p2))(u) 5
(N(p1) ^ N(p2))(u)

CG(p1 ^ p2)/(CG(p1) · CG(p2))

5
N(p1)(uQI) · N(p2)(uQJ) · CG(p1) · CG(p2)

CG(p1 ^ p2)
(34)

5
p1(uQI) · p2(uQJ)

CG(p1 ^ p2)
5

(p1 ^ p2)(u)
CG(p1 ^ p2)

5 N(p1 ^ p2)(u)

(2) Infinitesimal Probability. The presence of infinitesimal values changes ev-
erything. In effect, consider U 5 hu1 , u2j and two infinitesimal probabilities,
p1 and p2 , defined on this set:

p1(u1) 5 «, p1(u2) 5 «

p2(u1) 5 0.25, p2(u2) 5 0.75

It is very easy to verify that

N(p1 ^ p2) 5 N(p1) ? p2 5 N(N(p1) ^ N(p2)) (35)

(3) Possibility Theory. For the same set as in infinitesimal probabilities, consider
two possibilities, f1 and f2 , given by:

f1(u1) 5 0.1, f1(u2) 5 0.1

f2(u1) 5 0.25, f2(u2) 5 1

The same can be verified:

N(f1 ^ f2) 5 N(f1) ? f2 5 N(N(f1) ^ N(f2)) (36)

(4) Symbolic Evidence. Consider Q 5 hpj, A 5 hA1j and the symbolic basic
assignments, m1 and m2 , given by

m1(B) 5 A1 , m1(p) 5 ', m1(¬p) 5 ', m1(Á) 5 ¬A1

m2(B) 5 ', m2(p) 5 A1 , m2(¬p) 5 ', m2(Á) 5 ¬A1

Axiom N5 is not verified either:

N(m1 ^ m2) 5 N(m1) ? m2 5 N(N(m1) ^ N(m2)) (37)
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When Axiom N5 is verified, we can define an equivalence relationship on
the set of valuations, V, given by

V1 p V2 if and only if V1 ,V2 ? Vc and N(V1) 5 N(V2) (38)

We can extend the operations of marginalization and combination to equiva-
lence classes of valuations:

● Marginalization: If J # I and V1 [ VI then, [V1]QJ 5 [VQJ
1 ].

● Combination: If V1 [ VI and V2 [ VJ , then [V1] ^ [V2] 5 [V1 ^ V2]

The result of Marginalization is independent of the valuation we select in
the class because of Axiom N4. The combination is also independent of the
chosen valuations when Axiom N5 is verified.

With this definition Axiom 6 is verified for classes of valuations: If V [ VB

and V ? Vc , then by Axiom N3, N(V)QB 5 V0 and by Axiom N4, N(V)QB 5
N(VQB) 5 N(V). Thus, N(V) 5 V0 5 N(V0) and V p V0 , or equivalently [V] 5 [V0].

This axiom states that all the valuations defined on the empty set of variables
are the neutral element or the total contradiction: we do not have partial contra-
diction. In conclusion, under Axiom N5, we can define an equivalence relation-
ship in such a way that partial contradiction disappears.

6.2. Particularization: The General Case

In general, for a family H 5 hVijh1, . . . , nj < hOiji[I there a number of different
valuations which verify the definition of improved particularization with respect
to H. In this section we shall try to give some general rules or principles to
reduce the number of improved particularizations.

The first idea for the selection of H 9 is that the frame in which a valuation
is defined should be the basis for including a valuation on H 9. That is,

If V1 ,V2 [ VK , then (V1 [ H 9 ⇔ V2 [ H 9) (39)

The idea behind this property is that all the valuations giving information
about the same set of variables should be combined and normalized at the same
time. Variables should be grouped according to what they give information
about, as a first step. For example, if we have two variables, X1 and X2 , then all
the information about X1 should be combined and normalized, then all the
information about X2 and finally the result combined with the information relating
the 2 variables. It does not make much sense to take a valuation about X1 ,
combine it with a valuation about the two variables, normalize and then combine
the result with a valuation about X1 . We should take all the information about
X1 first, clarify (normalize) it and then proceed by combining the result with the
rest of the information.

Following these ideas, we can extract another general rule: first we should
select the valuations given in smaller frames. That is, if J1 , J2 we should take
the valuations belonging to VJ1

before the valuations on VJ2
to combine and

normalize. In other words, it does not make sense to consider a valuation relating
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two variables before the information about each one of them has been combined
and normalized. We should carry on by clarifying information from small to
large frames. The following example illustrates these ideas.

Example 7. Assume two variables: X1 and X2 . X1 is the input to a communication
channel, and X2 is the output. The values for input and output can be 0 or 1.
We assume that the input is almost always 0 and that the channel almost always
works properly, that is the output is 0 (1) if the input is 0 (1). This a priori
information can be represented by means of two infinitesimal probabilities:

● One informing about the input, X1 :

p1(0) 5 1, p1(1) 5 «

● One relating the input and the output: p2(ui , vj) 5 p(X2 5 vj u X1 5 ui):

p2(0, 0) 5 1, p2(0, 1) 5 «, p2(1, 0) 5 «, p2(1, 1) 5 1

Furthermore, we have observed that the input is 1: X1 5 1. This is represented
by the valuation:

O1(0) 5 0, O1(1) 5 1

The first thing that we have to do is to clarify the input, by combining p1

and O1 and normalizing the result: we obtain O1 again. This information can be
combined now with p2 whereby we obtain the following particularization:

pP
1 (0, 0) 5 0, pP

1 (0, 1) 5 0, pP
1 (1, 0) 5 «, pP

1 (1, 1) 5 1

which is a reasonable conclusion: the input is 1 and the output will surely be 1.
However, if we first combine p1 and p2 , normalize and combine the result

with O1 , the resulting particularization is:

pP
2 (0, 0) 5 0, pP

2 (0, 1) 5 0, pP
2 (1, 0) 5 1/2, pP

2 (1, 1) 5 1/2

With this particularization we are still sure that the input is 1, but now we
are not sure about the output: since we did not solve the partial inconsistency
between p1 and O1 at the appropriate stage, this inconsistency has contaminated
the information about the output.

Following these ideas, we make the definitions below:

DEFINITION 7. We say that VP is a frame-based improved particularization of the
family of valuations H, if and only if it can be obtained according to the procedure
in Definition 5, where every H 9 verifies condition (39) and the following condition:

If V1 , V2 , V3 [ H 9, Vi [ VKi
(i 5 1, 2, 3) and K1 # K2 # K3 then K2 5 K3 (40)
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DEFINITION 8. We say that VAP
J is a frame-based improved a posteriori information

about XJ of the a priori valuations hVji[h1,. . . , nj given the observations hOiji[I if and
only if VAP

J 5 (VP)QJ, where VP is a frame-based improved particularization induced
by the same sets of valuations.

Condition 40 states that we should first solve the inconsistency in smaller
frames: if K2 ? K3 , then the inconsistency between V1 and V2 should have been
solved before the combination with V3 .

Example 8. If we have 2 variables, X1 , and X2 , and H1 , H2 , H12 are the valuations
from H informing about the first variable, the second variable and the two
variables, respectively, then a frame based a posteriori information can be ob-
tained, by following the steps below:

● Let H 9 5 H1 and W1 5 N(^V[H1
V). After applying Combine we have H 5 hW1j

< H2 < H12 .
● Let H 9 5 H2 and W2 5 N(^V[H2

V). After applying Combine we have H 5 hW1 ,
W2j < H12 .

● Let H 9 5 H12 < hW1j and W12 5 N((^V[H12
V) ^ W1). After applying Combine

we have H 5 hW2 , W12j.
● Apply rule Combine to the set H 9 5 hW2 , W12j. We finally obtain the frame based

particularization VP 5 N(W2 ^ W12).

Note that in this example the information about X1 has been combined with
the information relating the two variables, before the information about the
second variable. The reverse could also be possible (valuations about X2 before
valuations about X1). This may seem a bit arbitrary: there is no reason to do
one or the other.

The different possibilities of obtaining a frame-based particularized valua-
tion can be significantly reduced if we impose the following condition on the
selection of sets H 9:

If V1 [ H, V2 [ H 9, Vi [ VKi
(i 5 1, 2) and K1 # K2 then V1 [ H 9 (41)

That is, if we consider a valuation to combine, then we have to consider all
the valuations defined for a smaller set of variables. Under these conditions, the
case in Example 8 is not possible: When we combine the valuations on H12 we
also have to consider W1 and W2 , obtaining a particularization at this step.

Although condition 41 reduces the number of final possibilities, we have no
guarantee that we are going to obtain a single final particularization, as the
following example shows.

Example 9. Assume that we have 3 variables, X1 , X2 , X3 , and H 5 hV1 , V2 , V3 ,
V12 , V23j. Then we have two possibilities:
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(a) ● Select H 9 5 hV1 , V2 , V12j. Result: W12 .
● Select H 9 5 hV3 , V23j. Result: W23 .
● Select H 9 5 hW12, W23j. Result: VP (particularization).

(b) ● Select H 9 5 hV2 , V3 , V23j. Result: W923 .
● Select H 9 5 hV1 , V12j. Result: W912 .
● Select H 9 5 hW912 , W923j. Result: V9P (particularization).

VP and V9P are different frame-based improved particularizations verifying
condition 41.

6.3. A Posteriori Information

In this case, we not only want to particularize a set of valuations to a set
of observations, but also to marginalize the result to one or several variables,
XJ . Does this make any difference? Our point is that the strategies are not the
same if we want to combine all the pieces of information in a global valuation,
or if our purpose is to marginalize the result in a set of variables. In the former,
we want to integrate all the information. In the latter, we want to calculate the
marginalization on a given objective: we have to combine and marginalize.

Consider the case of Example 8 with the difference that we now want to
calculate the a posteriori information for X2 , instead of a particularization of all
the variables. In this situation, condition 41 does not make much sense, and the
case that was considered unreasonable: combination of the information about
X1 with the information relating X1 and X2 , before considering the information
about X2 , now makes more sense.

Now there is an asymmetry between the variables which was not present
before: we want to reach X2 and we start by considering all the information for X1 .

If we have more than two variables, independence relationships can be a
very useful guide to find partial ordering among the variables, guiding the way
in which we should choose the valuations to be combined and normalized. For
example, if we have three variables, X1 , X2 , and X3 , and we want to calculate
the a posteriori information on X3 and we know that variables X1 and X3 are
independent given variable X2 , then it seems reasonable to take all the valuations
defined for X1 , then all the valuations for X2 , and finally the valuations defined
for X3 .

The reason is that all the dependence between X1 and X3 goes through X2 .
The flow of information is from X1 to X2 and then, from X2 to X3 . As a conse-
quence, it is more reasonable to combine all the valuations defined on h1j, remove
inconsistency, combine the result with the valuations not combined before and
defined on h1, 2j, remove inconsistency, and finally combine the result with
the valuations not combined before and defined on subsets h1, 2. 3j, removing
inconsistency. There is no valuation relating X1 and X3 : the relation between
these two variables is obtained through the relation of X1 with X2 and the
relation of X2 with X3 . The following practical example may help to understand
the reasoning.
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Figure 1. Message transmission in Example 6.3.

Example 10. Assume a message (see Fig. 1) that is transmitted through a channel
and the message received is transmitted again using a different channel to a new
place. We consider three variables:

X1 The original message

X2 The message received in the first place

X3 The message received in the second place

This is a clear example in which X1 and X3 are conditionally independent
given X2 . The general knowledge about the system can be given by the follow-
ing valuations:

V1 A valuation about the original message, X1 .

V2 A valuation relating the input and the output to channel 1, X1 and X2 .

V3 A valuation relating the input and the output to channel 2, X2 and X3 .

If we have an observation about X1 , O1 , that is we know the input to channel
1 and we want to calculate the a posteriori valuation about X3 , then the partial
inconsistency between O1 and V1 should be removed before combining the result
with V2 , to obtain the resulting information about X2 . Finally this information
is combined with V3 and normalized. There is an order among the variables to
remove inconsistency: First information about X1 , then information about X2 ,
and finally information about X3 .

DEFINITION 9. An ordered partition of h1, . . . , nj is a vector (J1 , . . . , Jk) verifying
the following conditions:

● Ji # h1, . . . , nj, ;i 5 1, . . . , k.
● <i51, . . . , k Ji 5 h1, . . . , nj.
● If i ? j then Ji > Jj 5 B.

An ordered partition will be the basis to remove inconsistency for calculating
a posteriori valuations. Ordered partitions should be based on independence rela-
tionships.

DEFINITION 10. We say that the ordered partition (J1 , . . . , Jk) is based on the
independence relationships between variables hX1 , . . . , Xnj if and only if XJi

is
independent of XLi22

given XJi21
, for every i 5 3, . . . k, and where Li 5

<j51, . . . , i Jj .
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There is always a trivial ordered partition which is based on independence
relationships: the one given by (J1) where J1 5 h1, . . . , nj. This partition will
not be very useful. We are interested in partitions that express a maximal set of
independence relationships.

DEFINITION 11. We say that (J1 , . . . , Jk) is a maximal ordered partition based
on the independence relationships between variables hX1 , . . . , Xnj if and only if
every ordered partition (J1 , . . . , Ji21 , J91

i , J92
i , Ji11 , . . . , Jk), where J91

i >
J92

i 5 B, J91
i < J92

i 5 Ji is not based on independences between variables Xh1, . . ., nj .

DEFINITION 12. We say that VAP
J is a frame-based improved a posteriori information

about XJ of the family of valuations H and based on independence relationships
if and only if VAP

J 5 (VP)QJ, where VP is a frame-based improved particularization
induced by the same set of valuations and there is a maximal ordered partition
(J1 , . . . , Jk) based on independence relationships verifying:

● J 5 Jk

● The strategy to select H 9 verifies for every three different valuations V1 , V2 , V3 [
H the following condition.

If Vi [ VKi
(i 5 1, 2, 3), and K1 > Lj ? B, K2 > Lj ? B,

(42)
K3 # h1, . . . , nj 2 Lj then V3 Ó H 9

where Lj is as in Definition 10.

This definition says that a posteriori valuations should be calculated by combining
first all the valuations on J1 , then consider the valuations on J2 , and so on, until
we reach the valuations defined for Jk , a set containing J.

7. PROPAGATION ALGORITHMS

The strategies presented in the previous section have the problem of being
very complex from a computational point of view. Each time we combine valua-
tions, the resulting valuation is defined on the union of the sets of the combined
valuations. As a consequence, the set of definition of valuations is always increas-
ing, and finally we obtain a valuation defined for all the variables, which is
infeasible in most cases. Propagation algorithms for probabilities4,14 and for gen-
eral uncertainty formalisms1,2 try to solve this problem, by marginalizing the
valuations as soon as possible, without waiting till the end. The most important
and basic rule for propagation algorithms is the following:

If we want to calculate the a posteriori information in XJ and there is L #
h1, . . . , nj 2 J such that there is a single valuation, W, on H such that its set of definition,
K, has a non-empty intersection with L, then we can transform W into WQK2L, without
affecting the final result.
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This rule, which is valid for the case in which normalization is not used, is
the basis for the reduction of calculations in propagation algorithms. We can
select l [ h1, . . . , nj 2 J, then multiply all the valuations which are defined for
variable Xl (and possibly more variables). If the result is defined for the variables
K, the rule above can be applied and we can marginalize the result to K 2 hlj
(delete l). Marginalizing a valuation decreases the size of our data, i.e., the size
of the valuations we have to combine and therefore the amount of calculations.
Most propagation algorithms are based on an ordered application of this rule
to delete variables.

Here we are going to prove that this rule is also valid to calculate improved
a posteriori valuations. This will be a consequence of the following theorem.

THEOREM 2. Assume that H1 is a family of valuations and that J # h1, . . . , nj,
L # h1, . . . , nj 2 J and that there is a single valuation, W, on H1 such that its
set of definition, K, has a non-empty intersection with L, then if H2 is the set of
valuations given by H2 5 (H1 2 hWj) < hWQK2Lj then VPS

J is an a posteriori
valuation on XJ with respect to H1 , if and only if it is an a posteriori valuation
with respect to H2

Proof. The proof will be based on the following points:

● H1 and H2 have the same number of valuations. The only difference is that W in
H1 is replaced with WQK2L in H2 . So we can apply to the two families the same
strategies for the selection of subsets of valuations H 9, making the appropriate
transformation when necessary. Note that we are not talking about frame-based
improved a posteriori valuations. In this case, as the frames of W and WQK2L

are different, it is possible that we can not choose equivalent subsets for the
two families.

● We are going to prove that the property relating H1 and H2 is also verified after
applying the Combine rule under equivalent sets H 9.

● If this condition is kept after each application of the Combine rule it will be true
at the end, when we reach a single valuation on the sets: H1 5 hVP

1j, H2 5 hVP
2j,

and VP
i is an improved particularization with respect to Hi . The only possibility is

that W 5 VP
1 . Therefore, we have VP

2 5 VPQ(h1, . . . , nj2L)

1 . From Axiom 2 for valuations,
the marginalization to J of the 2 valuations is the same:

VPQJ

2 5 (VPQ(h1, . . . , nj2L)

1 )QJ 5 VPQJ
(43)

We only have to prove the second point: that the property relating H1 and
H2 is verified also after applying the Combine rule. Let H *1 and H *2 be the
transformations of H1 and H2 , respectively, after applying the Combine rule for
equivalent H 9. Let H 91 be the subset for H1 and H 92 the subset for H2 . We have
two possibilities:

(1) W Ó H 91 . In this case the sets H 91 5 H 92 and it is immediate that after the
transformation we have that H *2 5 (H *1 2 hWj) < hWQK2Lj.

(2) W [ H 91 . Then H 92 5 (H 91 2 hWj) < hWQK2Lj and we can prove the following:
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H *2 5 SH *1 2 HN S
V̂[H 91

VDJD< HN S
V̂[H 92

VDJ (44)

The condition is now verified for the valuation N(^V[H 91
V). It is the only valuation

with a set of definition, K, with a non-empty intersection with L and applying
the Axioms for valuations

SN S
V̂[H 91

VDDQK2L

5 N S
V̂[H 91

VDQK2L

5 N SS ^
V[H 912hWj

VD^ WDQK2L

(45)

5 N SS ^
V[H 912hWj

VD^ WQK2LD5 N S
V̂[H 92

VD (46)

That is, in both cases, the condition is verified after applying Combine.

In this theorem, we have proven that we can marginalize in an intermediate
step and getting the same improved a posteriori valuation. There is no difficulty
in generalizing this theorem showing that this marginalization can be applied
several times in the process of obtaining an a posteriori valuation. So allowing
the application of propagation algorithms.

8. CONCLUSIONS

In this paper, we have given an axiomatic framework for the normalization
operator applied to general valuations. This operator can be used to remove
partial inconsistency in calculations with valuations. The main problem with
its usage is that the final result depends on the concrete places in which the
normalization is applied. Furthermore, there is not an obvious way of determining
where to apply the normalization. In this paper we support the idea that indepen-
dence structures may be a good guide to determine where to normalize.

Shenoy15 has also considered the problem of inconsistency in hypertrees,
however, the point of view is different. He considers the problem of detecting
maximally consistent sets of valuations in cases in which there is total inconsis-
tency. In our case we consider the removing of partial inconsistency. The two
works can be seen as complementary and a general model could be devised
encompassing both methodologies.

Our objective has been to obtain the normalization points from general
principles. However this objective has not been achieved in all its extension and,
although the number of possible alternatives is not very great, some degree of
freedom remains in normalization points. Our feeling is that it is very difficult
to reduce it with additional general principles. At least, we have tried to do it
without going further.

In this axiomatic we have tried to codify the main properties of a normaliza-
tion operator. However, we may find particular cases in which this framework
does not apply. In concrete, in Bolaños, De Campos and Moral16 we have consid-
ered valuations representing probabilities with linguistic labels. There is a normal-
ization mechanism for this type of valuations in which N(V) is a set of valuations.
Obviously, this case is not covered by our axiomatic system. We could have
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defined a more general model including this case, but this would have complicated
even more the proposed methodology.

We have shown that the basic property to define propagation algorithms is
verified. So we can achieve in this case the same efficiency as when normalization
is not used. We have not given the details of how calculations can be organized
in graphical structures, such as trees of cliques.13 But the process would be
analogous to the one used for general valuations.1,2
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