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ABSTRACT
The origin and subsequent accumulation of spliceosomal introns are prominent

events in the evolution of eukaryotic gene structure. However, the mechanisms

underlying intron gain remain unclear because there are few proven cases of recently

gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a

tandem duplication occurred after the divergence of potato and its wild relatives

among other Solanum plants. The duplicated sequence crosses the intron-exon

boundary of the first intron and the second exon. A new intron was detected at this

duplicated region, and it includes a small previously exonic segment of the upstream

copy of the duplicated sequence and the intronic segment of the downstream copy of

the duplicated sequence. The donor site of this new intron was directly obtained

from the small previously exonic segment. Most of the splicing signals were inherited

directly from the parental intron/exon structure, including a putative branch site,

the polypyrimidine tract, the 3′ splicing site, two putative exonic splicing enhancers,

and the GC contents differed between the intron and exon. In the widely cited

model of intron gain by tandem genomic duplication, the duplication of an AGGT-

containing exonic segment provides the GTand AG splicing sites for the new intron.

Our results illustrate that the tandem duplication model of intron gain should be

diverse in terms of obtaining the proper splicing signals.
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INTRODUCTION
Although spliceosomal introns are the characteristic feature of eukaryotic nuclear genes,

their origin and subsequent accumulation during evolution remain obscure. Several

models of spliceosomal intron gain have been proposed, including intron transposition,

transposon insertion, tandem genomic duplication, exogenous sequence insertion during

double-strand-break repair, group II intron insertion, intron transfer, intronization

and introner-like element insertion (van der Burgt et al., 2012; Yenerall & Zhou, 2012).

Comparative analyses of discordant intron positions among conserved homologous
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genes have been conducted in diverse eukaryotic lineages. Although dozens of papers

have reported intron gains over the last twenty years (Csuros, Rogozin & Koonin, 2011;

Fablet et al., 2009;Hooks, Delneri & Griffiths-Jones, 2014; Irimia & Roy, 2014; Li et al., 2009;

Li et al., 2014; Ma et al., 2015a; Roy & Gilbert, 2005; Roy & Penny, 2006; Torriani

et al., 2011; van der Burgt et al., 2012; Verhelst, Van de Peer & Rouze, 2013; Yenerall,

Krupa & Zhou, 2011; Yenerall & Zhou, 2012; Zhu & Niu, 2013a), only a few studies

have identified the source sequences of these gained introns (Collemare et al., 2015;

Denoeud et al., 2010; Hankeln et al., 1997; Simmons et al., 2015; Torriani et al., 2011;

van der Burgt et al., 2012; Verhelst, Van de Peer & Rouze, 2013). In most studies (e.g.,

Knowles & McLysaght, 2006; Zhang, Yang & Niu, 2010), the source sequences have only

been identified for a few introns, whereas tens of intron gains have been reported.

Therefore, most of the reported intron gains do not provide supporting evidence for

intron gain models. The mechanisms underlying these intron gains might be undetectable

because the evolutionary traces have been erased by randommutations. Unexpectedly, the

source sequences of most recent intron gains could not be identified. For example,

researchers could identify the source sequences of only one intron gain among the seven

new introns gained after the recent divergence (two Mya) of Drosophila persimilis and

Drosophila pseudoobscura (Yenerall, Krupa & Zhou, 2011). More astonishingly, among the

21 new introns that were gained in certain local populations of Daphnia pulex, researchers

successfully identified the source sequence of only one intron (Li et al., 2009). Because

of the lack of identified source sequences, the mechanisms underlying most intron gains

are not understood. Therefore, researchers have attempted to draw general conclusions

from a small number of cases. Among the traditional models, intron gains by tandem

genomic duplication should not occur at a low frequency because internal gene

duplications are commonly observed (Gao & Lynch, 2009). This model was originally

advanced by Rogers (1989), who suggested that the tandem duplication of an exonic

segment harboring the AGGTsequence generates two splice sites for the new intron: 5′-GT

and 3′-AG. In this model, a new intron is derived from the duplication of an exonic

sequence, and the translated peptide is not altered by the intron gain. An example that is

consistent with this model is the vertebrate gene ATP2A1 (Hellsten et al., 2011). The

duplicated region of ATP2A1 has the AGGT signal and also includes a polypyrimidine

tract and a branch point. In addition, the generation of the intron has been experimentally

reproduced in a conserved paralogous gene, ATP2A2, by Hellsten et al. (2011). In fission

yeasts, multiple tandem duplication of a 24 bp exonic segment containing AGGT has been

observed in the genes SPOG_01682 and SOCG_00815. A comparison of these two genes

with their expressed sequence tags indicates an intron across four duplicates in the

gene SPOG_01682 and an intron across two duplicates in the gene SOCG_00815 (Zhu &

Niu, 2013b). In the Arabidopsis TOUCH3 gene, Knowles & McLysaght (2006) observed

two tandem internal gene duplications that duplicated an entire preexisting intron along

with the exonic sequences on both sides of the intron. However, this finding does not

represent the creation of new introns by tandem duplication but rather the multiplication

of a preexisting intron by tandem duplication. Segmental duplication containing entire

introns has also been observed by Gao & Lynch (2009). In the present paper, we confine
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our discussion of intron gain to the creation of new introns rather than the propagation

of preexisting introns.

By comparing the orthologous genes of Solanum lycopersicum, Solanum tuberosum, and

other Solanaceae plants, we found 11 cases of precise intron loss and six cases of imprecise

intron loss (Ma et al., 2015b). Moreover, we found indications of an intron gain in one of

the potato RNA-dependent RNA polymerase (RdRp) genes, PGSC0003DMG402000361

(Fig. 1). The RdRp genes encode enzymes that catalyze the replication of RNA from an

RNA template, and these genes have been identified in all the major eukaryotic groups

and play crucial roles in the regulation of development, maintenance of genome integrity,

and defense against foreign nucleic acids (Willmann et al., 2011; Zong et al., 2009). In

this study, we confirmed that the new intron was created by the duplication of a gene

segment crossing one intron-exon boundary. The 5′ donor site of the new intron was

activated by a cryptic donor site that previously occurred in the exonic region, whereas

other splicing signals were inherited from the preexisting intron/exon structure.

MATERIALS AND METHODS
The genome sequences and annotation files of domesticated potato S. tuberosum

(PGSC_DM_v3), domesticated tomato S. lycopersicum (ITAG2.3), wild tobacco Nicotiana

benthamiana (version 1.0.1), and wild tomato Solanum pennellii (spenn_v2.0) were

downloaded from the Sol Genomics Network (Bombarely et al., 2011), and those for

hot pepper Capsicum annuum L. (Zunla-1) were downloaded from the Pepper

Genome Database (Qin et al., 2014). The scaffold sequences of Commerson’s wild potato

(Solanum commersonii, JXZD00000000.1), another wild tomato (Solanum habrochaites,

CBYS000000000.1), and eggplant (Solanum melongena, SME_r2.5.1) were downloaded

from the NCBI Genome database (http://www.ncbi.nlm.nih.gov/genome/). The scaffold

sequences and annotation files of Mimulus guttatus (version 2.0) were downloaded from

Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html). The following files were

retrieved from the Sequence Read Archive of the NCBI (http://www.ncbi.nlm.nih.gov/sra/):

SAR files of the whole-genome shotgun (WGS) reads (SRP007439) and the leaf, tuber,

and mixed-tissue transcriptomes (SRP022916, SRP005965, SRP040682, and ERP003480)

of S. tuberosum; the transcriptomes (SRP015739 and SRP018993) of S. lycopersicum; the

transcriptome (SRP067562) of S. pennellii; the transcriptome (SRP019256) of C. annuum;

and the transcriptome (SRP018508) of N. benthamiana. We mapped the RNA-Seq reads

to the genomes using TopHat version 2.0.8 (Kim et al., 2013), whereas BWA (alignment

via Burrows-Wheeler transformation, version 0.5.7) (Li & Durbin, 2009) was used for the

WGS reads. We used the default parameters for both programs, although the minimum

intron length was adjusted to 20 bp for TopHat.

The orthologous genes of PGSC0003DMG402000361 were identified using the best

reciprocal BLAST hits with a threshold E value of < 10-10. In addition, the orthologous

relationship between the genes in S. tuberosum and S. lycopersicumwas confirmed by their

synteny using SynMap (http://genomevolution.org/CoGe/SynMap.pl). Using the

RNA-Seq data, we examined the available annotations of theRdRp genes in S. lycopersicum,

S. pennellii, N. benthamiana, and C. annuum. The annotations in S. pennellii and
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N. benthamiana have been confirmed, and those in S. lycopersicum and C. annuum have

been revised (Data S1). The orthologous sequences in S. commersonii, S. habrochaites, and

S. melongenawere manually annotated with references to the annotations in S. lycopersicum,

C. annuum, and N. benthamiana. The annotation files are provided in Data S1.

According to the annotation files of the domesticated potato genome, PGSC_DM_v3,

the 3′ end of the gene PGSC0003DMG402000361 overlaps with the 5′ end of the

downstream gene PGSC0003DMG401000361 (Fig. S1). The orthologous genomic regions

of C. annuum,M. guttatus,N. benthamiana, S. lycopersicum, and S. pennellii present a long

gene sequence rather than two overlapping genes. We examined the annotation of this

overlapping region using the RNA-Seq data of S. tuberosum and found a paired read

(Read ID: 127022 in SRR866275) that crosses the overlapping region. It appears that a

long transcript similar to the orthologs in other species occurs in S. tuberosum. In

addition, the 3′ end of the coding sequence of the gene PGSC0003DMG402000361,

GTAATCTGA, has been annotated as the beginning of the ninth intron of the longer

transcript (Fig. S1). In total, we found 37 RNA-Seq reads that support the removal of

the ninth intron from certain mature mRNA molecules and four RNA-Seq reads

supporting the presence of the small segment GTAATCTGA in other mature mRNA

molecules. In addition, we found transcription termination signals at the ends of

both transcripts using POLYAH (Salamov & Solovyev, 1997). It appears that the

potato RdRp gene PGSC0003DMG402000361 undergoes alternative cleavage and

polyadenylation during transcription, which produces two isoforms with different

lengths. We named the shorter one PGSC0003DMG402000361.S and the longer one

PGSC0003DMG402000361.L. The newly identified intron is spliced from the identical

region of these two transcripts; therefore, potential annotation errors in either transcript

do not affect the validity of the identification of the new intron. For convenience, we

present PGSC0003DMG402000361.L in this paper.

We found that the intron gain involved duplication using a BLAT search (Kent, 2002)

and then identified the exact duplicated sequences using the programs REPuter (Kurtz

et al., 2001) and Tandem Repeats Finder (Benson, 1999).

Stub
Slyc
Smel
Cann
Nben

Stub
Slyc
Smel
Cann
Nben

Q Q QR R R R R RD D D E D DHY P P P P P PP PST ST S S S TS S S TTSF F--A A A AG GI LL L IV I M VN1
Q QK KCHYD D EP PS S ST SFR R R-- 0----------------------------A AGI LL LN
Q QR R R RD D E D EHY P PK S ST S SF -- 0----------------------------A AGI LL L
Q QR RR R R RD E EHYA A ASS S ST S SF L I LL LN G 0----------------------------
Q Q QR R RE D E ES S S SC P PM I I LL LY N -- 0----------------------------A AG G

1R R R R R R R RD D D E E ED D DH HY YP PST ST S SF F FFA AG G GI LL L L LIL I V VIML V IQ K K KN
1----------------------------K K KL LIL I V VI L V IE ED D DF FFR R RNY G GT H
1----------------------------TL LIL I V VIML I IE ED D DF FFR R RK KNY G GH

----------------------------K K KL LIL I L VIML V IE ED D DF FFR R RNY G G1 H
1----------------------------D E ED D EV L LIL I L VIML V IF FR R RK KH HY G G

Figure 1 Alignment of protein sequences close to the intron variation site. The presence and

absence of the intron are represented by 1 and 0, respectively. The genes shown in this figure are

PGSC0003DMG402000361 in S. tuberosum, Solyc12g008410.1 in S. lycopersicum, Capana09g000243 in

C. annuum, and Niben101Scf04189g00002 in N. benthamiana. The orthologous region in eggplant was

manually identified by the reciprocal best BLAST hits and manually annotated. Abbreviations: Stub,

S. tuberosum; Slyc, S. lycopersicum; Smel, S. melongena; Cann, C. annuum; and Nben, N. benthamiana.
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We searched the 5′ splicing sites, the branch sites, the polypyrimidine tracts, and the 3′

splicing sites according to Irimia & Roy (2008) and Schwartz et al. (2008). The exonic

splicing enhancers (ESEs) of Arabidopsis thaliana were identified by Pertea, Mount &

Salzberg (2007) and used as the query in a search of the 50 bp exonic sequences upstream

and downstream of the target intron.

The phylogenetic tree was constructed using MEGA 6.0 by employing the maximum

likelihood method with the Tamura-Nei substitution model and uniform rates (Tamura

et al., 2013). The number of bootstrap replications was 1,000. The schematic diagram of

the gene structures was constructed using the program GSDraw (Wang et al., 2013).

RESULTS AND DISCUSSION
Among the cluster of orthologous genes for RdRp, the members of S. tuberosum and

S. commersonii have 20 exons and those of the other Solanaceae species have 19 exons.

A comparison of the annotations clearly showed that the second introns of S. tuberosum

and S. commersonii are absent from the other Solanaceae genomes (Fig. 2). By analyzing

the transcriptomic data of S. tuberosum, we found 106 RNA-Seq reads that were

exclusively mapped to the annotated exon-exon boundary (Table S1; Fig. S2), which

confirmed the annotation of this intron. Based on the phylogenetic tree constructed using

the gene PGSC0003DMG402000361.L and its orthologs (Fig. 2), there were two possible

explanations for the presence/absence of the intron: the gain of a new intron in the

common ancestor of S. tuberosum and S. commersonii, or four independent intron loss

events in the other four evolutionary branches (S. lycopersicum–S. habrochaites–S.

pennellii; S. melongena; C. annuum; and N. benthamiana). According to the principle of

parsimony, we concluded that the second intron of the gene PGSC0003DMG402000361.L

was gained after the divergence of potato (S. tuberosum and S. commersonii) from other

Solanum plants but prior to the divergence between S. tuberosum and S. commersonii.

The new intron and the inserted exonic sequence were used as a query sequence to

search against the entire genome of S. tuberosum. We found that this insertion is a tandem

genomic duplication (Fig. 2). The major part of the new intron and inserted exon region

was a direct duplicate of the upstream intron-exon structure (Fig. 2). In addition, 10

nucleotides at the 5′ end of the new intron were recruited from the upstream exon (Fig. 2).

Because two nearly identical regions in a reference genome might represent a true

duplication or a false result caused by errors in genome assembly, we verified the

duplication by examining the following three sources of evidence in S. tuberosum. First, 53

WGS reads were exclusively mapped crossing the three boundaries of two duplicates

(Figs. S3–S5; Table S2). Second, 106 RNA-Seq reads were exclusively mapped crossing

the mature mRNA exon boundary (Fig. S2; Table S1), which would not be observed in

mature mRNA if the duplication had not occurred. Third, ten nucleotides were different

between the duplicates (Fig. 3).

An intron is spliced out during the maturation of any RNA molecule, including

protein-coding mRNAs and noncoding RNAs. In recent years, numerous spliced out

sequences have been identified as originating in long noncoding RNAs and conclusively

described as introns (Derrien et al., 2012; Guttman et al., 2009; Jayakodi et al., 2015;
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Kapusta & Feschotte, 2014). Therefore, the production of functional proteins by spliced

RNA molecules should not be considered as a prerequisite for identifying a sequence

spliced out of RNA molecules as a new intron. In this study, our search for evidence of

88

100

97

100

89

100

Stub

Scom

Slyc

Shab

Spen

Smel

Cann

Nben

Mgut

0.05

Figure 2 Identification of the intron gain in potatoes. The phylogenetic tree was constructed using

the coding sequences of the gene PGSC0003DMG402000361.L and its orthologs Solyc12g008410.1 in S.

lycopersicum, Sopen12g003370.2 in S. pennellii, Capana09g000243 in C. annuum, Niben101Scf04189g00002

in N. benthamiana, and Migut.K00531 in M. guttatus as well as the orthologous regions manually

annotated in S. commersonii, S. habrochaites, and S. melongena. Numbers above the branches indicate

the percentage of bootstrap support after 1,000 replicates. In the schematic diagram of the gene

structures, the presented sequences start from the initiation codon ATG, the boxes represent exons, and

the horizontal lines represent introns. Because of space limitations, the extraordinarily long introns are

not scaled according to their lengths, and they are represented by broken lines. To avoid crowding

together the slashed lines, the introns of M. guttatus have been scaled up by a factor of two. The new

intron/exon structure is marked in red. Abbreviations: Stub, S. tuberosum; Scom, S. commersonii; Slyc,

S. lycopersicum; Shab, S. habrochaites; Spen, S. pennellii; Smel, S. melongena; Cann, C. annuum; Nben,

N. benthamiana; Mgut, M. guttatus.
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Figure 3 Splicing signals of the new intron in the potato gene PGSC0003DMG402000361. Alignment

of the two copies of the duplication. The splicing sites, the putative branch site, the polypyrimidine tract,

and putative exonic splicing enhancers (TCAGCT, CAGCTC and GAGGAA) are underlined. A cryptic 5′

splicing signal, GTAAG, was activated by the duplication event. This duplication was also found in the

orthologous region of the wild potato S. commersonii. In addition to this duplication, we detected

another 83 bp tandem genomic duplication within the first intron of the gene PGSC0003DMG402000361

but not in the orthologous region of S. commersonii. The second duplication did not change the intron/

exon structure of the gene PGSC0003DMG402000361; therefore, it is not described here in detail. Sites

that differed between the two copies are indicated in green letters.
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intron gains is limited to whether the intron sequence occurred in the potato genome and

whether the intron sequence has been removed from the mature mRNA. Although the

WGS and RNA-Seq reads could demonstrate that the duplication is real and the intron

is spliced, the best method of validating this assumption would be to perform a PCR

assay for the genomic DNA and RT-PCR on RNA. This methodology underlies the

objectives of our study.

According to Logsdon, Stoltzfus & Doolittle (1998), strong evidence of intron gain

must satisfy two conditions. The first is a clear phylogeny that provides support for the

intron gain, and the second is an identified source element for the gained intron. Because

of the clear phylogeny and the identity of the source sequence, we consider the second

intron of the potato gene PGSC0003DMG402000361.L to be a well-supported case of a

newly gained intron.

According to the tandem genomic duplication model originally proposed by Rogers

(1989), tandem duplication of an exonic segment harboring the AGGTsequence generates

two splice sites for the new intron, 5′-GT and 3′-AG, and a new intron is derived from

the duplication of the exonic sequence. However, the two splice sites do not contain

sufficient information to unequivocally determine the exon-intron boundaries (Lim &

Burge, 2001). Accurate recognition and efficient splicing of an intron also requires a

polypyrimidine tract, an adenine nucleotide at the branch site, and many other cis-acting

regulatory motifs (Schwartz et al., 2009; Spies et al., 2009; Wang & Burge, 2008; Wang

et al., 2004). In addition, introns are often remarkably richer in A and U compared with

exons (Amit et al., 2012), and this difference is considered a requirement for efficient

splicing (Carle-Urioste, Brendel & Walbot, 1997; Luehrsen & Walbot, 1994). At first glance,

it appears unlikely that a coding segment will have a full set of splicing signals. However,

the intronization of coding regions has been observed in several different organisms,

including animals and plants (Irimia et al., 2008; Kang et al., 2012; Szczesniak et al., 2011;

Zhan et al., 2014; Zhu, Zhang & Long, 2009). These observations indicate that it is possible

for certain coding sequences to contain a full set of cryptic splice signals. Furthermore,

an experimental duplication of a coding segment of the vertebrate gene ATP2A2,

which harbors the AGGT sequence, has been shown to generate the new intron (Hellsten

et al., 2011). Therefore, a full set of the splicing signals required for active splicing is

present in the coding sequence of the gene ATP2A2. Although a full set of the splicing

signals may have been contained in the coding sequences, we believe that utilization of the

active splicing signals of the parental intron/exon structure represent a more frequent

method of intron gain. In the potato gene PGSC0003DMG402000361.L, the duplication

includes the 3′ side sequence of an intron and the 5′ side of the downstream exon (Fig. 2).

The 3′ splicing site signal (CAG), the polypyrimidine tract (TCTTCCAATGCCT), and

the putative branch site (TTTAC) of this novel intron were inherited from the parental

intron (Fig. 3). Moreover, the two overlapped putative ESEs of the 3′ flanking exon,

TCAGCT and CAGCTC, and the GC contents that were different between the intron

and exon (36% vs. 46%) inherited from the parental copy (Fig. 3). The 5′ splicing signal

of the novel intron GTAAG was activated from a cryptic splice site that was recruited

from the upstream exon. This case of intron gain indicates that the tandem duplication
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model should not be narrowly considered according to its original proposal 27 years ago

(Rogers, 1989).

CONCLUSIONS
In the last common ancestor of domesticated potato S. tuberosum and wild potato

S. commersonii, a tandem duplication event in the gene PGSC0003DMG402000361.L

created a novel intron. The duplicate includes the 3′ side sequence of an intron and the 5′

side of the downstream exon. Most splicing signals that included a putative branch site,

a polypyrimidine tract, a 3′ splicing site, two putative ESEs, and GC contents that were

differentiated between the intron and exon inherited from the parental intron/exon

structure. However, the widely cited model of intron gain includes the tandem duplication

of an exonic segment containing AGGT, which would create the GT and AG splicing

sites. The case of intron gain observed here illustrates that the tandem duplication model

of intron gain should be diversified so that the proper splicing signals can be obtained.
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