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SUMMARY

We rederive and present the complete closed-form solutions of the displacements and stresses subjected to
a point load in a transversely isotropic elastic half-space. The half-space is bounded by a horizontal surface,
and the plane of transverse isotropy of the medium is parallel to the horizontal surface. The solutions are
obtained by superposing the solutions of two infinite spaces, one acting a point load in its interior and the
other being free loading. The Fourier and Hankel transforms in a cylindrical co-ordinate system are
employed for deriving the analytical solutions. These solutions are identical with the Mindlin and Bous-
sinesq solutions if the half-space is homogeneous, linear elastic, and isotropic. Also, the Lekhnitskii solution
for a transversely isotropic half-space subjected to a vertical point load on its horizontal surface is one of
these solutions. Furthermore, an illustrative example is given to show the effect of degree of rock anisotropy
on the vertical surface displacement and vertical stress that are induced by a single vertical concentrated
force acting on the surface. The results indicate that the displacement and stress accounted for rock
anisotropy are quite different for the displacement and stress calculated from isotropic solutions. ( 1998
John Wiley & Sons, Ltd.

Key words: closed-form solution; transversely isotropic half-space; Fourier transform; Hankel transform;
rock anisotropy

INTRODUCTION

In general, the magnitude and distribution of the displacements and stresses in rock are predicted
by using exact solutions that model rock as a linearly elastic, homogeneous and isotropic
continuum. However, for rock masses cut by discontinuities, such as cleavages, foliations,
stratifications, schistosities, joints, these analytical solutions should account for anisotropy.
Anisotropy rocks are often modelled as orthotropic or transversely isotropic materials from the
standpoint of practical considerations in engineering. In this paper, an elastic problem for
a transversely isotropic medium is relevant.

A point load solution is the basis of complex loading problems. For an isotropic solid, it has
been studied by Kelvin1 for an infinite space, Boussinesq2 and Cerruti3 for a semi-infinite space
with a vertical and horizontal point load, respectively. In the case of a single concentrated force
acting in the interior of a half-space, Mindlin4 proposed closed-form solutions for an isotropic
medium by using the principle of superposition of 18 nuclei. Mindlin derived the solutions by
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Table I. Existing solutions for transversely isotropic media subjected to a point load

Author Space Type of loading Solutions

Michell7 Half Vertical Vertical surface displacement, and partial stres-
ses (inapplicable to boundary value problems)

Wolf 8 Half Vertical All displacements and stresses (oversimplified
the elastic constants)

Koning9 Half Vertical All displacements and stresses
Barden10 Half Vertical Vertical surface displacement, and stresses on

load axis
De Urena et al.11 Half Vertical All displacements and stresses
Misra et al.12 Half Vertical All displacements, and stresses on load axis

(oversimplified the elastic constants)
Chowdhury13 Full Vertical All displacements, and stresses on load axis

Half Buried, vertical All displacements, and stresses on load axis
Pan14 Full 3-D All displacements and stresses
Kröner15 Half Vertical All displacements (dimensionally incorrect)
Willis16 Full Vertical All displacements (cumbersome and inaccurate)
Lee17 Half Buried, vertical All stresses (complicated)
Lekhnitskii18 Half Vertical All stresses (incomplete)
Elliott19 Full Vertical All displacements and stresses (incomplete)
Shield20 Half Buried, vertical All displacements and stresses at the surface
Eubanks et al.21 Half Vertical (completeness of Lekhnitskii’s method)
Lodge22 (transformed anisotropic problem into iso-

tropic one, inapplicable to general boundary
value problems)

Hata23 Half Vertical (rederived the Elliott’s and Lodge’s solution)
Chen24 Full Vertical All displacements and stresses

Horizontal All displacements
Pan and Chou25 Full 3-D All displacements and stresses
Pan and Chou26 Half Buried, vertical All displacements, and stresses on load axis

Buried, horizontal All displacements, and partial stresses
(potential functions assumed are lengthy)

Okumura et al.27 Half Vertical All displacements
Fabrikant28 Full 3-D All displacements, and partial stresses

Half 3-D All displacements, and partial stresses
(solution of the shear stress is wrong)

Lin et al.29 Half Vertical, horizontal All displacements and stresses
Hanson et al.30 Half Buried, 3-D (only the potential functions listed)
Sveklo31 Half Vertical All displacements
Sveklo32 Full Vertical All displacements

Half Buried, vertical All displacements

following the Kelvin’s1 approach and satisfying the condition of vanishing traction on a plane
boundary. However, the calculation of nuclei for a half-space is very difficult.5 Dean et al.6
recommended another approach for the same problem by using the method of images. Some of
the solutions can be extended to anisotropic media, whereas others are difficult.

For the displacements and stresses in transversely isotropic media subjected to a point load,
analytical solutions have been presented by several investigators.7~32 Some of the solutions were
directly derived by the approaches for isotropic solutions.7~14 Nevertheless, others employed
complex mathematics techniques, such as Fourier transformations,15~17 potential functions,18~30
and complex variables,31,32 etc. A summary of the existing solutions is given in Table I. Table I
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indicates the type of analytical space, loads, and the results presented in their solutions. Because
of mathematical difficulty or oversimplification for solving the problems, these solutions were
limited to three-dimensional problems with partial results of displacements7,10,20 and stres-
ses,7,10,12,13,20,26,28 or axially symmetric problems9,11~13,18,19,31 with neglecting the tangen-
tial co-ordinate, h. Neglecting h, the solutions cannot be extended to solve a half-space problem
subjected to asymmetric loads. Also, it is found that Pan and Chou26 proposed a more general
solution by using the potential functions. In their solution, the buried loads can be vertical or
horizontal with respect to the boundary plane. However, only the stress components related to
the z-direction were given (i.e. p

zz
, p

zx
, p

zy
), and the expressions for the solution are quite lengthy.

A more efficient analysis for a transversely isotropic infinite space was given by Tarn and
Wang33 by employing the Fourier and Hankel transforms. The derivation of their solution is
completely systematic and the solution is the same as the Kelvin1 solution for the medium being
isotropic. Following the method, Lu34 presented analytical solutions for the displacements in an
infinite or a semi-infinite soil mass (transverse isotropy) under a long-term consolidation.
However, comparing with the Mindlin4 solution, a part of his solutions for isotropic media is
not correct.

Utilizing the approaches proposed by Tarn and Wang,33 the closed-form solutions of displace-
ments and stresses in a transversely isotropic half-space subjected to a point load are presented in
this paper. These solutions indicate that both of the displacements and stresses in a transversely
isotropic half-space are affected by the loading types (radial, tangential or normal), and the degree
and type of rock anisotropy. An illustrative example is given at the end of this paper to investigate
the effect of rock anisotropy on the displacement and stress in a medium subjected to a vertical
point load.

EXACT SOLUTIONS FOR THE DISPLACEMENTS AND STRESSES
IN A TRANSVERSELY ISOTROPIC HALF-SPACE

A problem of a point load acting in the interior (including on the surface) of a semi-infinite space
is relevant to this paper. The exact solutions for the displacements and stresses in a transversely
isotropic half-space are derived by the principle of superposition as shown in Figure 1. Figure 1
depicts that a half-space is composed of two infinite spaces, one subjected to a point load in its
interior and the other being free loading, and zero stress conditions on the z"0 plane.34 Hence,
the solutions can be derived from the governing equations for an infinite space (including the
general solutions (I) and homogeneous solutions (II)) by satisfying the free traction on the surface
of the half-space. The problem of an infinite space acting a point load is first solved below.

Displacements and stresses in a full space

Solving the displacements in an infinite mass subjected to a single concentrated force (Figure 2)
proposed by Tarn and Wang,33 is followed for solving the displacements and stresses
in a half-space. Figure 2 depicts that the r—h plane of a cylindrical co-ordinate system is
attached to the planes of elastic symmetry of a transversely isotropic material. The X—½
plane of a Cartesian co-ordinate system is parallel to the r—h plane. Then, the expression of
generalized Hooke’s law for transversely isotropic solids in a cylindrical co-ordinate system is
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Figure 1. (P
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) acting in the interior of a semi-infinite space

Figure 2. (P
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where A
ij

(i, j"1—6) are the elastic moduli35 or elasticity constants36 of the medium. For
a transversely isotropic material, only five independent elastic constants are needed to describe its
deformational response. In this paper, the five engineering elastic constants, E, E@, l, l@ and G@ are
adopted and defined as follows:

1. E and E@ are Young’s moduli in the plane of transverse isotropy and in a direction normal to
it, respectively.

2. l and l@ are Poisson’s ratios characterizing the lateral strain response in the plane of
transverse isotropy to a stress acting parallel or normal to it, respectively.

3. G@ is the shear modulus in planes normal to the plane of transverse isotropy. Hence, A
ij

can
be expressed in terms of these elastic constants as
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For small strain conditions, the expressions of strain—displacement relations in a cylindrical
co-ordinate system are
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where º
r
, ºh and º

z
are radial, tangential and vertical displacements, respectively.
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Also, the partial differential forms of equilibrium equations are
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where R, #, Z are the components of the body forces per unit volume on the co-ordinate
directions, r, h and z, respectively.

For a dynamic elastic problem, an arbitrary time-harmonic body force in z direction with
angular frequency u can be expressed as37,38

Z(r, h, z, t)"Z*(r, h, z)e*ut (17)

where Z* is the complex amplitude of the body force. Following the suggestions,37,38 a concen-
trated force in z direction (P

z
), can be represented as the form of a body force:
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P
z
r
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where d ( ) is the Dirac delta function. As for a static case concerning about in this paper, u in
equation (18) will be zero. Hence, a static point load with components (P

r
, Ph , Pz

), acting at the
origin of the co-ordinate for an infinite space can be expressed as the form of body forces:
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Substituting p
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, q
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(equations (1)—(6)) and R, #, Z (equations (19)—(21)) into
equations (14)—(16), and adopting the strain—displacement relations (equations (8)—(13)), then
equations (14)—(16) can be regrouped as the Navier—Cauchy equations for transversely isotropic
materials:
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In order to solve equations (22)—(24), the following mathematic operations are made:

(i) The displacement functions º
r
, ºh and º

z
are transformed by a finite Fourier exponential

transform with respect to the tangential co-ordinate h as
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(ii) New displacement functions, '* and (* are introduced:
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(iii) The displacement functions '*, (* and º*
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are transformed by a system of proper Hankel
transformations39,40 with respect to the radial co-ordinate r of order n!1,n#1 and n, respec-
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where J
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( ) is the Bessel function of first kind of order n.

Then, equations (22)—(24) are rewritten by a system of ordinary differential equations as
follows:
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The homogeneous solutions of equations (28)—(30) are obtained by solving the simultaneous
ordinary differential equations41 as
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i
(i"1—6) are the undetermined coefficients and the relations between these

three coefficients can be determined by substituting equations (31)—(33) into equations (28)—(30).
Then, equations (31)—(33) can be expressed in terms of B
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Since the strain energy is assumed to be positive definite in the medium, the values of elastic
constants are restricted.42,43 Hence, there is three categories of the characteristic roots, u

1
and u

2
as follows:

Case 1: u
1,2

"$JM1
2
[s$J (s2!4q)]N are two real distinct roots when s2!4q'0;

Case 2: u
1,2

"$Js/2,$Js/2 are double equal real roots when s2!4q"0;

Case 3: u
1,2
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2
J(s#2Jq)!i 1

2
J(!s#2Jq)"c!id, u

2
"c#id are two complex conju-

gate roots (where c cannot be equal to zero) when s2!4q(0.

Gerrard44 and Amadei et al.45 demonstrated that for most transversely isotropic rocks, E/E@
and G/G@ vary between 1 and 3 and the Poisson’s ratios l and l@ vary between 0)15 and 0)35.
Figure 3 shows the distribution of the three categories of the characteristic roots for transversely
isotropic rocks. The figure indicates that approximately two-thirds of transversely isotropic rocks
belong to case 1.
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Figure 3. Distribution of the three categories of the characteristic roots for transversely isotropic rocks

In order to derive the particular solutions of equations (28)—(30), we define the three displace-
ment functions as follows:
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The undetermined coefficients D
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and F
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(i"1—6) can be obtained by the method of

variation of parameters.41 The general solutions are the sum of the homogeneous and the
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particular solutions. The constants B
i
(i"1—6) can be determined by the conditions that the

effect of the point load must vanish at infinity. Therefore, the final resulting expressions of general
solutions for '**

n~1
, (**

n`1
and U**

zn
are

'**
n~1

(G)"
P
r
#iPh
4m C

k

m
1

e~u1m Dz D
!

k

m
2

e~u2m Dz D
#

1

u
3
A

44

e~u3m Dz DDJ
n~1

(0)

#

P
r
!iPh
4m C!

k

m
1

e~u1m DzD
#

k

m
2

e~u2mDz D
#

1

u
3
A

44

e~u3m Dz DDJ
n`1

(0)

#

P
z

2m
[$ke~u1m Dz D

Gke~u2m Dz D]J
n
(0) (42)

(**
n`1

(G)"
P
r
#iPh
4m C!

k

m
1

e~u1m DzD
#

k

m
2

e~u2mDz D
#

1

u
3
A

44

e~u3m Dz DDJ
n~1

(0)

#

P
r
!iPh
4m C

k

m
1

e~u1m Dz D
!

k

m
2

e~u2m DzD
#

1

u
3
A

44

e~u3m Dz DDJ
n`1

(0)

#

P
z

2m
[Gke~u1m Dz D

$ke~u2m Dz D]J
n
(0) (43)

º**
zn

(G)"
P
r
#iPh
4m

[Gke~u1m Dz D
$ke~u2m Dz D]J

n~1
(0)

#

P
r
!iPh
4m

[$ke~u1m Dz D
Gke~u2m DzD]J

n`1
(0)

#

P
z

2m
[!ke~u1m Dz D

#ke~u2m DzD]J
n
(0) (44)

where the upper sign is for z'0 (the sign of z is downward positive), the lower sign is for z(0,
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The desired solutions of the displacements º
r
, ºh and º

z
can be obtained by taking the inverse

Hankel transform46 with respect to m, and inverse Fourier transform with respect to n, respective-
ly, in the following:
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The expression of complete components for the displacements in a transversely isotropic
medium with three root types mentioned above is lengthy. Since two-thirds of transversely
isotropic rocks may have two real distinct roots for equation (37), only the exact solutions for
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case 1 in an infinite space denoted by º@
r
, º@h , º@

z
are presented below:
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where z
i
"u

i
Dz D, R

i
"Jr2#z2

i
, R*

i
"R

i
!z

i
(i"1, 2, 3).

From equations (47)—(49), (8)—(13) and (1)—(6), the stresses in an infinite space (z'0, case 1) are
denoted by p@
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, p@hh , p@
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, q@
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, and expressed as
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For the medium with double equal real roots (case 2), the exact solutions for the displacements
and stresses can be obtained from equations (47)—(49) and (50)—(55) by approaching u

2
to u

1
, and

using the L’Hôpital rule, respectively. When u
1
("u

2
)"1, these solutions are in agreement with

the Kelvin1 solution for an isotropic material. Regarding the medium with complex conjugate
roots (case 3), the closed-form solutions can be easily obtained by replacing the distinct root u

1
by

the complex root c!id, and u
2

by c#id into equations (47)—(49) and (50)—(55), respectively.

Displacements and stresses in a half-space

As mentioned above, the solutions of displacement functions, '**
n~1

, (**
n`1

and º**
zn

for the
half-space problem can be directly obtained from the superposition of general solutions (equa-
tions (42)—(44)) by shifting DzD to Dz!h D and being denoted by '@**

n~1
(G), (@**

n`1
(G), º@**

zn
(G), and

homogeneous solutions (equations (34)—(36)) in which B
i
(i"1—6) are denoted by B@

i
(i"1—6)

and z is replaced by (z!h) as shown in Figure 1 are
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For an elastic semi-infinite space with free traction on the bounding plane, the boundary
conditions can be expressed in terms of displacements as follows:
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The stress functions p
zz

, qhz , and q
rz

in equations (59)—(61) are transformed by a finite Fourier
exponential transform with respect to h as
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Using the displacement functions '* and (* in equation (26) and introducing two stress
functions, a* and b*, equations (59)—(61) can be transformed as
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Hankel transformations of p*
zz

, a* and b* with respect to r of order n, n!1 and n#1,
respectively, are given as
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then, equations (63)—(65) are rewritten as follows:
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For solving equations (56)—(58), the undetermined coefficients B@
i
(i"1—6) can be obtained by

the assumptions that displacementsº
r
, ºh and º

z
must be finite when z is approaching to infinity.

Hence, B@
1
"B@

2
"B@

5
"0. The remaining coefficients B@

3
, B@

4
and B@

6
can also be obtained from
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the transformed boundary conditions (equations (67)—(69)) as
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Finally, the displacements in a transversely isotropic half-space with a point load (P
r
, Ph , Pz

)
acting at z"h are obtained by inverse Hankel transforms46 and inverse Fourier transforms as
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where º@
r
, º@h and º@

z
are the displacement components of an infinite space given in equations

(47)—(49), and z
!
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From equations (73)—(75), (8)—(13) and (1)—(6), the stresses in a semi-infinite space with two real
distinct roots (case 1) can be expressed as
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where p@
rr
, p@hh , p@

zz
, q@

rh , q@hz and q@
rz

are the stress components of an infinite space given in equations
(50)—(55).
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The solutions for the displacements and stresses in a medium bounded by a horizontal surface
with double equal real roots (case 2) or complex conjugate roots (case 3) could be easily derived
by the same approaches for solving the problem of an infinite space.

Equations (73)—(75) and (76)—(81) indicate that both of the displacements and stresses in
a transversely isotropic half-space induced by a point load are affected by several factors. The
factors include the loading types (radial, tangential or normal), and the degree and type of rock
anisotropy. Considering only a vertical point load (P

r
"Ph"0) acting at z"h in the interior of

a half-space, these solutions are identical with the Mindlin4 solution when the medium is
isotropic. If h"0, in other words, a point load is applied at the surface, these solutions are in
agreement with the Lekhnitskii18 solution that was based on the assumption of axisymmetry
for a transversely isotropic half-space. Also, the Boussinesq2 solution for an isotropic medium
is a special case of these analytical solutions.

ILLUSTRATIVE EXAMPLE

The closed-form solutions, equations (73)—(75) and (76)—(81) can be utilized to calculate the
displacements and stresses in a transversely isotropic half-space induced by a point load.
A FORTRAN program based on the solutions was written for conducting a parametric study.

A vertical point load acting on the bounded surface is considered as an example (Figures 4 and
5) for verifying the presented formulations. Several types of isotropic and transversely isotropic
rocks are considered to constitute the foundation materials. Their elastic properties are listed in
Table II with E/E@ and G/G@ ranging between 1 and 3 and l/l@ varying between 0)75—1)5. The
values adopted in Table II of E and l are 50 GPa and 0)25, respectively. The chosen domains of
variation are based on the suggestions of Gerrard44 and Amadei et al.45

A parametric study is conducted for looking at the effect of the ratio E/E@, l/l@ and G/G@ on the
displacements and stresses in the foundation. However, only parts of the results, including the
vertical displacement (º

z
) on the surface and vertical stress (p

zz
) in the foundation are presented in

the following.
Firstly, the influence of the degree and type of rock anisotropy on the vertical surface

displacement is investigated. Figure 4 presents the effect of ratio E/E@, l/l@ and G/G@ on the
normalized vertical surface displacement. This figure indicates that the normalized vertical
surface displacement is less than the value of 0)025 when the radial distance is large than 0)5 m for
all the constituted foundation materials. It means that the elastic settlement in these cases is little.
However, the magnitude of surface displacement is influenced by rock anisotropy. Figure 4 shows
that the vertical displacement increases with the increase of E/E@ with l/l@"G/G@"1, and G/G@
with E/E@"l/l@"1. It reflects that the vertical surface displacement increases with the increase
of deformability in the direction parallel to the applied load. However, the variation of l/l@ on the
vertical displacement is little for all the cases.

Secondly, the effect of rock anisotropy on the vertical stress in the medium is studied. In order
to investigate the variation of p

zz
point by point in the r—z plane, the relation of two non-

dimensional factors, r/z and z2p
zz

/P
z
is presented in Figure 5. The figure indicates that the vertical

stress decreases with the increase of E/E@ (l/l@"G/G@"1), and is little affected by the value of
l/l@ (E/E@"G/G@"1). For the variation of G/G@ (E/E@"l/l@"1), it can be seen that the
increase of the ratio, the non-dimensional stress could be larger than one unit. Thus, when a point
load acting on the surface of a transversely isotropic medium, it should be noted that the excessive
compressive-stress may appear in the medium.
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Figure 4. Effect of ratios of E/E@, l/l@ and G/G@ on normalized vertical surface displacement
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Figure 5. Effect of ratios of E/E@, l/l@ and G/G@ on non-dimensional vertical stress
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Table II. Elastic properties and root types for different rocks

Rock type E/E@ l/l@ G/G@ Root type

Rock 1. Isotropic 1)0 1)0 1)0 Equal
Rock 2. Transversely isotropic 2)0 1)0 1)0 Complex
Rock 3. Transversely isotropic 3)0 1)0 1)0 Complex
Rock 4. Transversely isotropic 1)0 0)75 1)0 Complex
Rock 5. Transversely isotropic 1)0 1)5 1)0 Distinct
Rock 6. Transversely isotropic 1)0 1)0 2)0 Distinct
Rock 7. Transversely isotropic 1)0 1)0 3)0 Distinct

The above example was utilized to examine the solutions and investigate the effect of rock
anisotropy on the displacement and stress distributions in the medium. The results show that the
displacement and stress in the medium subjected to a point load (on the surface or in the interior)
are easy and correct to calculate by the presented solutions. Also, the results indicate that the
displacement and stress accounted for rock anisotropy are quite different for the displacement
and stress calculated from isotropic solutions.

CONCLUSIONS

Closed-form solutions for the displacements and stresses in a transversely isotropic half-space
subjected to a point load are proposed. The point load can be applied on the horizontal surface or
in the interior of the half-space. The solutions are the same as the Lekhnitskii18 solution when the
load applied at the surface. Also, the Mindlin4 and the Boussinesq2 solution for an isotropic
material belong to the special cases of these exact solutions. Since the Fourier and Hankel
transformations are adopted for solving the problem, the calculation of displacements and
stresses by these solutions are more efficient. By an illustrative example to study the effect of rock
anisotropy on the vertical surface displacement and vertical stress, it can be found that the
displacement and stress calculated from isotropic solutions are quite different from these anisot-
ropic solutions.

In practice, these equations can be applied to calculate the elastic displacements and stresses
around a single end-bearing pile.47 For floating pile groups, the principle of superposition could
be utilized to analyse any compound pile group. These solutions can be extended to solve the
three-dimensional displacements and stresses in a transversely isotropic half-space subjected to
asymmetric loading types. These solutions also can be employed for preparing influence charts of
a series of displacements and stresses for a transversely isotropic half-space subjected to irregular
surface loads. The results will be presented in the forthcoming papers.
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APPENDIX

Notation

A
ij

(i, j"1—6) elastic moduli or elasticity constants
E, E@, l, l@, G@ elastic constants of a transversely isotropic rock
h in half-spaces, a distance of the surface, as seen in Figure 1
i complex number ("J!1)
J
n
( ) Bessel function of first kind of order n

k coefficient (see equations (42)—(44))
m

1
, m

2
coefficients (see equations (34)—(36))

n integer used in Fourier transforms
P
r
, Ph , Pz

components of a point load in a cylindrical co-ordinate system
q, s coefficients (see equation (37))
r, h, z cylindrical co-ordinates
R, #, Z body force components in a cylindrical co-ordinate system
¹

1
, ¹

2
, ¹

3
, ¹

4
coefficients (see equations (70)—(72))

u
1
, u

2
, u

3
roots of the characteristic equation

º
r
, ºh , ºz

displacement components of a semi-infinite space
º*

r
, º*

h , º*
z

Fourier transforms of º
r
, ºh , ºz

º@
r
, º@h , º@

z
displacement components of an infinite space

º**
zn

Hankel transform of º*
z

º@**
zn

transformed general solutions of an infinite space (see equation (58))
X, ½, Z Cartesian co-ordinates
Z* complex amplitude of the body force

Greek letters

'*, (* new displacement functions (see equation (26))
'**

n~1
, (**

n`1
Hankel transforms of '* and (*, respectively

'@**
n~1

, (@**
n`1

transformed general solutions of an infinite space (see equations (56),
(57))

a*, b* Hankel transforms of the stress functions (see equations (64), (65))
a**
n~1

, b**
n`1

Fourier transforms of a* and b* of order n!1 and n#1, respectively
c, d real and imaginary part of the complex conjugate roots, respectively
d( ) Dirac delta function
e
rr
, ehh , ezz normal strain components

c
rh , chz , crz shear strain components

p
rr
, phh , pzz

normal stress components of a semi-infinite space
p@
rr
, p@hh , p@

zz
normal stress components of an infinite space

p*
zz

Hankel transforms of p
zz

p**
zzn

Fourier transforms of p*
zz

of order n
q
rh , qhz , qrz shear stress components of a semi-infinite space

q@
rh , q@hz , q@rz shear stress components of an infinite space

u angular frequency
m Hankel transform parameter
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